Skip to main content

Lactic Acid Bacteria in Food Industry

  • Chapter
  • First Online:
Microorganisms in Sustainable Agriculture and Biotechnology

Abstract

Lactic acid bacteria (LAB) are known through ages for their wide ­applications in food, pharmaceutical and chemical industries. But recently LAB have aroused interest for their ability to secrete extracellular polysaccharides or glucans. These glucans have immense commercial value because of their industrially useful physico-chemical properties. The glucans derived from LAB play crucial role in improving rheology, texture, mouth feel of fermented food formulations and conferring beneficial physiological effects on human health, such as antitumour activity, immunomodulating bioactivity and anticarcinogenicity. The modulation of biochemical properties of glucans require a thorough understanding of its biosynthetic pathway and the relation between the structure of glucans and the functional effect provided by them after incorporation into the food matrix. LAB are employed in food industry for making yoghurt, cheese, sourdough bread, sauerkraut, pickles, beer, wine and other fermented foods and animal feeds like silage. LAB can also produce a variety of functional oligosaccharides that have applications as prebiotics, neutraceuticals, sweetners, humectants, drug against colon cancer and as immune stimulator. LAB are gram positive rods or cocci, non spore forming, acid tolerant, low GC containing, anaerobic or micro-aerophilic bacteria characterized by their ability to ferment sugar to lactic acid. The commonly known LAB genera are Lactobacillus, Leuconostoc, Pediococcus, Lactococcus and Streptococcus. Besides prolonging the shelf life, lactic acid enhances the gustatory and nutritional value, imparts appetizing flavour and texture to the food. Some LAB produce proteinaceous antimicrobial compounds called bacteriocins which inhibit the growth of Gram-positive pathogenic and spoilage bacteria and used as food additives. Lactic acid bacteria as probiotics have been proven effective against diarrhoea, irritable bowel disorder, allergies, stimulation of immunity, lactose intolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • L. Avonts, E. Van Uytven, L. De Vuyst, Cell growth and bacteriocin production of probiotic Lactobacillus strains in different media. Int. Dairy J. 14, 947–955 (2004)

    Article  CAS  Google Scholar 

  • H. Barreteau, C. Delattre, P. Michaud, Production of oligosaccharides as promising new food additive generation. Food Technol. Biotechnol. 44, 323–333 (2006)

    CAS  Google Scholar 

  • C.S. Brennan, C.M. Tudorica, V. Kuri, Soluble and insoluble dietary fibres (non-starch polysaccharides) and their effects on food structure and nutrition. Food Ind. J. 5, 261–272 (2002)

    Google Scholar 

  • F. Carvalheiro, P.C. Moniz, L.C. Duarte, M.P. Esteves, F.M. Girio, Mannitol production by lactic acid bacteria grown in supplemented carob syrup. J. Ind. Microbiol. Biotechnol. (2010). doi:10.1007/s10295-010-0823-5

    Google Scholar 

  • Y. Chalfan, R. Levy, R.I. Mateles, Detection of mannitol formation by bacteria. Appl. Microbiol. 30, 476 (1975)

    PubMed  CAS  Google Scholar 

  • C.H. Chung, D.F. Day, Gluco-oligosaccharides from Leuconostoc mesenteroides B-742 (ATCC 13146): A potential prebiotic. J. Ind. Microbiol. Biotechnol. 29, 196–199 (2002)

    Article  PubMed  CAS  Google Scholar 

  • G. Cote, J.F. Robyt, Isolation and partial characterization of an extracellular glucansucrase from Leuconostoc mesenteroides NRRL B-1355 that synthesizes an alterning (1–6), (1–3)-α-D Glucan. Carbohydr. Res. 101, 57–74 (1982)

    Article  PubMed  CAS  Google Scholar 

  • K. Demuth, H.J. Jordening, K. Buchholz, Oligosaccharide synthesis by dextransucrase: New unconventional acceptors. Carbohydr. Res. 337, 1811–1820 (2002)

    Article  PubMed  CAS  Google Scholar 

  • M. Dols-Lafargue, H.Y. Lee, C. Le Marrec, A. Heyraud, G. Chambat, A. Lonvaud-Funel, Characterization of gtf, a glucosyltransferase gene in the genomes of Pediococcus parvulus and Oenococcus oeni. Appl. Environ. Microbiol. 74, 4079–4090 (2008)

    Article  PubMed  CAS  Google Scholar 

  • D. Ercolini, G. Moschetti, G. Blaiotta, S. Coppola, Behavior of variable V3 region from 16S rDNA of lactic acid bacteria in denaturing gradient gel electrophoresis. Curr. Microbiol. 42, 199–202 (2001)

    Article  PubMed  CAS  Google Scholar 

  • A. Galvez, H. Abriouel, R.L. López, N.B. Omar, Bacteriocin-based strategies for food biopreservation. Int. J. Food Microbiol. 120, 51–70 (2007)

    Article  PubMed  CAS  Google Scholar 

  • A.K. Goulas, D.A. Fisher, G.K. Grimble, A.S. Grandison, R.A. Rastall, Synthesis of isomaltoligosaccharides and oligodextrans by the combined use of dextransucrase and dextranase. Enz. Microb. Technol. 35, 327–338 (2004)

    Article  CAS  Google Scholar 

  • G.J. Grobben, S.W.P.G. Peters, H.W. Wisselink, R.A. Weusthuis, M.H.N. Hoefnagel, J. Hugenholtz, G. Eggink, Spontaneous formation of a mannitol-producing variant of Leuconostoc pseudomesenteroides grown in the presence of fructose. Appl. Environ. Microbiol. 67, 2867–2870 (2001)

    Article  PubMed  CAS  Google Scholar 

  • W.H. Holzapfel, P. Haberer, R. Geisen, J. Bjorkroth, U. Schillinger, Taxonomy and important features of probiotic microorganisms in food nutrition. Am. J. Clin. Nutr. 73, 365S–373S (2001)

    PubMed  CAS  Google Scholar 

  • M.H. Hsieh, J. Versalovic, The human microbiome and probiotics: Implications for pediatrics. Curr. Probl. Pediatr. Adolesc. Health Care 38, 309–327 (2008)

    Article  PubMed  Google Scholar 

  • I. Iliev, T. Vassileva, C. Ignatova, I. Ivanova, T. Haertlé, P. Monsan, J.M. Chobert, ­Gluco-oligosaccharides synthesized by glucosyltransferases from constitutive mutants of Leuconostoc mesenteroides strain Lm28. J. Appl. Microbiol. 104, 243–250 (2008)

    PubMed  CAS  Google Scholar 

  • V. Kontogiorgos, C.G. Biliaderis, V. Kiosseoglou, G. Doxastakis, Stability and rheology of egg-yolk-stabilized concentrated emulsions containing cereal b-glucans of varying molecular size. Food Hydrocolloids 18, 987–998 (2004)

    Article  CAS  Google Scholar 

  • M. Korakli, R.F. Vogel, Structure/function relationship of homopolysaccharide producing glycansucrases and therapeutic potential of their synthesized glycans. Appl. Microbiol. Biotechnol. 71, 790–803 (2006)

    Article  PubMed  CAS  Google Scholar 

  • C. Kubik, B. Sikora, S. Bielecki, Immobilization of dextransucrase and its use with soluble dextranase for glucooligosaccharides synthesis. Enz. Microb. Technol. 34, 555–560 (2004)

    Article  CAS  Google Scholar 

  • O.P. Kuipers, G. Buist, J. Kok, Current strategies for improving food bacteria. Res. Microbiol. 151, 815–822 (2000)

    Article  PubMed  CAS  Google Scholar 

  • V. Ladero, A. Ramos, A. Wiersma, P. Goffin, A. Schanck, M. Kleerebezem, J. Hugenholtz, E.J. Smid, P. Hols, High-level production of the low-calorie sugar sorbitol by Lactobacillus plantarum through metabolic engineering. Appl. Environ. Microbiol. 73, 1864–1872 (2007)

    Article  PubMed  CAS  Google Scholar 

  • T.D. Leathers, Biopolymers, in Polysaccharides I: Polysaccharides from Prokaryotes, ed. by E.J. Vandamme, S. DeBaets, A. Steinbüchel (Wiley-VCH, Weinheim, 2002), pp. 229–321

    Google Scholar 

  • A. Majumder, A. Goyal, Rheological and gelling properties of a novel glucan from Leuconostoc dextranicum NRRL B-1146. Food Res. Int. 42, 525–528 (2009)

    Article  CAS  Google Scholar 

  • A. Majumder, A. Singh, A. Goyal, Application of response surface methodology for glucan production from Leuconostoc dextranicum and its structural characterization. Carbohydr. Polym. 75, 150–156 (2009)

    Article  CAS  Google Scholar 

  • V. Monchois, R.M. Willemot, P. Monsan, Glucansucrases: Mechanism of action and structure -function relationships. FEMS Microb. Rev. 23, 131–151 (1999)

    CAS  Google Scholar 

  • P. Monsan, F. Paul, Enzymatic synthesis of oligosaccharides. FEMS Microbiol. Rev. 16, 187–192 (1995)

    Article  CAS  Google Scholar 

  • P.F. Monsan, S. Bozonnet, C. Albenne, G. Joulca, R.M. Willemot, M. Remaud-Simeon, Homopolysaccharides from lactic acid bacteria. Int. Dairy J. 11, 675–685 (2001)

    Article  CAS  Google Scholar 

  • G. Mooser, Glycosidases and glycosyltransferases. Enzymes 20, 187–221 (1992)

    Article  CAS  Google Scholar 

  • G. Moro, I. Minoli, M. Mosca, S. Fanaro, J. Jelinek, B. Stahl, G. Boehm, Dosage-related bifidogenic effects of galacto- and fructooligosaccharides in formula-fed term infants. J. Pediatr. Gastroenterol. Nutr. 34, 291–295 (2002)

    Article  PubMed  CAS  Google Scholar 

  • M. Naessens, A. Cerdobbel, W. Soetaert, E.J. Vandamme, Leuconostoc dextransucrase and dextran: production, properties and applications. J. Chem. Technol. Biotechnol. 80, 845–860 (2005)

    Article  CAS  Google Scholar 

  • A.R. Neves, A. Ramos, C. Shearman, M.J. Gasson, J.S. Almeida, H. Santos, Metabolic characterization of Lactococcus lactis deficient in lactate dehydrogenase using in vivo 13 C-NMR. Eur. J. Biochem. 267, 3859–3868 (2000)

    Article  PubMed  CAS  Google Scholar 

  • K.K. Nikkila, H. Mervi, L. Matti, P. Airi, Metabollic engineering of Lactobacillus helvicticus CNRZ32 for production of pure, L(+) Lactic acid. Appl. Environ. Microbiol. 66, 3835–3841 (2000)

    Article  Google Scholar 

  • L. Nissen, G. Pérez-Martínez, M.J. Yebra, Sorbitol synthesis by an engineered Lactobacillus casei strain expressing a sorbitol-6-phosphate dehydrogenase gene within the lactose operon. FEMS Microbiol. Lett. 249, 177–183 (2005)

    Article  PubMed  CAS  Google Scholar 

  • S. Patel, N. Kasoju, U. Bora, A. Goyal, Structural analysis and biomedical applications of dextran produced by a new isolate Pediococcus pentosaceus screened from biodiversity hot spot Assam. Biores. Technol. 101, 6852–6855 (2010)

    Article  CAS  Google Scholar 

  • M.J. Pucci, B.S. Kunka, Novel dextran produced by Leuconostoc dextranicum NRRL B-18242, United States Patent 4,933,191, 1990

    Google Scholar 

  • R.K. Purama, A. Goyal, Dextransucrase production by Leuconostoc mesenteroides. Indian J. Microbiol. 2, 89–101 (2005)

    Google Scholar 

  • R.K. Purama, A. Goyal, Identification, effective purification and functional characterization of dextransucrase from Leuconostoc mesenteroides NRRL B-640. Biores. Technol. 99, 3635–3642 (2008)

    Article  CAS  Google Scholar 

  • R.K. Purama, P. Goswami, A.T. Khan, A. Goyal, Structural analysis and properties of dextran produced by Leuconostoc mesenteroides NRRL B-640. Carbohydr. Polym. 76, 30–35 (2009)

    Article  CAS  Google Scholar 

  • B. Ray, Bacteriocins of starter culture bacteria as food biopreservative, in Food Biopreservatives of Microbial Origin, ed. by B. Ray, M. Daeschel, vol. 8 (CRC Press, Florida, 1992), pp. 177–205

    Google Scholar 

  • J.M. Rodríguez, M.I. Martínez, J. Kok, Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Crit. Rev. Food Sci. Nutr. 42, 91–121 (2002)

    Article  PubMed  Google Scholar 

  • S. Roller, I.C.M. Dea, Biotechnology in the production and modification of biopolymers for foods. Crit. Rev. Biotechnol. 12(3), 261 (1992)

    Article  CAS  Google Scholar 

  • M. Saarela, Lahteenaki, R. Crittenden, S. Salminen, T. Mattila-Sandholm, Gut bacteria and health foods – The European perspective. Int. J. Food Microbol. 78, 99–117 (2002)

    Article  CAS  Google Scholar 

  • B.C. Saha, L.K. Nakamura, Production of mannitol and lactic acid by fermentation with Lactobacillus intermedius NRRL B-3693. Biotechnol. Bioeng. 82, 864–871 (2003)

    Article  PubMed  CAS  Google Scholar 

  • J. Schrezenmeir, M. de Vrese, Probiotics, prebiotics, and synbiotics – Approaching a definition. Am. J. Clin. Nutr. 73, 361S–364S (2001)

    PubMed  CAS  Google Scholar 

  • F.R. Seymour, R.D. Knapp, Structural analysis of dextrans from strains of Leuconostoc and related genera, that contain 3-O-a glucosylated-D-glucopyranosyl residues at the branched points or in consecutive linear position. Carbohydr. Res. 81, 105–129 (1980)

    Article  CAS  Google Scholar 

  • E.L. Sing, Culture of Sour Dough Bacteria, United States Patent 4,021,581 (1977)

    Google Scholar 

  • M.R. Smiricky-Tjardes, C.M. Grieshop, E.A. Flickinger, L.L. Bauer, G.C. Fahey Jr., Dietary galactooligosaccharides affect ileal and total-tract nutrient digestibility, ileal and fecal bacterial concentrations, and ileal fermentative characteristics of growing pigs. J. Anim. Sci. 81, 2535–2545 (2003)

    PubMed  CAS  Google Scholar 

  • A. Sodegard, Preparation of poly (L-lactide-graft-acrylic acid) by pre-irradiation grafting. Polymer Preparation 39, 215–216 (1998)

    Google Scholar 

  • I.W. Sutherland, Novel and established applications of bacterial polysaccharides. Trends Biotechnol. 16, 41–46 (1998)

    Article  PubMed  CAS  Google Scholar 

  • D. Twomey, R.P. Ross, M. Ryan, B. Meaney, C. Hill, Lantibiotics produced by lactic acid bacteria: Structure, function and applications. Antonie Van Leeuwenhoek 82, 165–185 (2002)

    Article  PubMed  CAS  Google Scholar 

  • S. Uzochukwu, E. Balogh, R.T. Loefler, P.O. Ngoddy, Structural analysis by13C nuclear magnetic resonance spectroscopy of glucan extracted from natural palm wine. Food Chem. 76, 287–291 (2002)

    Article  CAS  Google Scholar 

  • A.D. Welman, I.S. Maddox, Exopolysaccharides from lactic acid bacteria: Perspectives and challenges. Trends Biotechnol. 21, 269–274 (2003)

    Article  PubMed  CAS  Google Scholar 

  • M.L. Werning, I. Ibarburu, M.T. Dueñas, A. Irastorza, J. Navas, P. López, Pediococcus parvulus gtf gene encoding the GTF glycosyltransferase and its application for specific PCR detection of D-glucan-producing bacteria in foods and beverages. J. Food Prot. 69, 161–169 (2006)

    PubMed  CAS  Google Scholar 

  • M.L. Werning, M.A. Corrales, A. Prieto, P. Fernandez de Palencia, J. Navas, P. López, Heterologous expression of a 2-substituted-(1,3)-D-glucan in Lactococcus lactis. Appl. Environ. Microbiol. 74, 5259–5262 (2008)

    Article  PubMed  CAS  Google Scholar 

  • J.W. Yun, D.H. Kim, A comparative study of mannitol production by two lactic acid bacteria. J. Ferm. Bioeng. 85, 203–208 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Goyal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Das, D., Goyal, A. (2012). Lactic Acid Bacteria in Food Industry. In: Satyanarayana, T., Johri, B. (eds) Microorganisms in Sustainable Agriculture and Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2214-9_33

Download citation

Publish with us

Policies and ethics