Skip to main content

Recent Trends in Valorization of Lignocellulose to Biofuel

  • Chapter
  • First Online:
Microorganisms in Sustainable Agriculture and Biotechnology

Abstract

Bioconversion of renewable lignocellulosic biomass is globally gaining significant prominence. Market forces demonstrate a drive towards products benign to natural environment increasing the importance of renewable materials. The development of second generation bioethanol from lignocellulosic biomass serves many advantages from both energy and environmental point of views. Lignocellulose is a major structural component of woody and non-woody plants and consists of cellulose, hemicellulose and lignin. The effective utilization of all the three components would play a significant role in the economic viability of cellulosic ethanol. The huge amount of plant biomass can be used as an inexpensive feedstock for the production of various value added products including biofuels, chemicals and improved animal feeds. Biomass conversion process involves five major steps: choice of suitable biomass, effective pretreatment, production of saccharolytic enzymes such as cellulases and hemicellulases along with the accessory enzymes, fermentation of hexoses and pentoses, downstream processing. Within the context of production of fuels from biomass, pretreatment has come to denote processes by which cellulosic biomass is made amenable to the action of hydrolytic enzymes. The limited effectiveness of current enzymatic process on lignocellulose is thought to be due to the relative difficulty of pretreating the feedstocks. The present chapter is a comprehensive state of the art describing the advancement in recent pretreaments, metabolic engineering approaches, valorization with special emphasis on the latest developments in consolidated biomass processing and biorefinery concept for the production of biofuel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A. Abbas, S. Ansumali, Bioenerg. Res. 3, 328–334 (2010)

    Google Scholar 

  • A.F. Abdel-Fattah, M.Y. Osman, M.A. Abdel-Naby, Chem. Eng. J. 68, 189–196 (1997)

    CAS  Google Scholar 

  • M.G. Adsul, J.E. Ghule, R. Singh, H. Shaikh, K.B. Bastawdea, D.V. Gokhale, Carbohydr. Polym. 57, 67–72 (2004)

    CAS  Google Scholar 

  • S.G. Allen, D. Schulman, J. Lichwa, M.J. Antal, M. Laser, L.R. Lynd, Ind. Eng. Chem. Res. 40, 2934–2941 (2001)

    CAS  Google Scholar 

  • F.F. Alves, S.K. Bose, R.C. Francis, J.L. Colodette, M. Iakovlev, A.V. Heiningen, Carbohydr. Polym. 82, 1097–1101 (2010)

    CAS  Google Scholar 

  • U.S. Aswathy, R.K. Sukumaran, G.L. Devi, K.P. Rajasree, R.R. Singhania, A. Pandey, Bioresour. Technol. 101, 925–930 (2010)

    PubMed  CAS  Google Scholar 

  • M. Balat, Energy Explor. Exploit. 25, 195–218 (2007)

    CAS  Google Scholar 

  • M. Balat, H. Balat, Appl. Energy 86, 2273–2282 (2009)

    CAS  Google Scholar 

  • M. Ballesteros, J.M. Oliva, M.J. Negro, P. Manzanarse, I. Ballesteros, Process Biochem. 39, 1843–1848 (2004)

    CAS  Google Scholar 

  • S. Banerjee, S. Mudaliar, R. Sen, B. Giri, D. Satupte, T.A. Chakrabarti, R.A. Pandey, Biofuels Bioprod. Bioref. 4, 77–93 (2010)

    CAS  Google Scholar 

  • H. Belghith, S. Ellouz-Chaabouni, A. Gargouri, J. Biotechnol. 89, 257–262 (2001)

    PubMed  CAS  Google Scholar 

  • A. Berlin, N. Gilkes, A. Kurabi, R. Bura, M.B. Tu, D. Kilburn, J.N. Saddler, Appl. Biochem. Biotechnol. 121, 163–170 (2005)

    PubMed  Google Scholar 

  • C. Bougrier, J.P. Delgenes, H. Carrere, Biochem. Eng. J. 34, 20–27 (2007)

    CAS  Google Scholar 

  • A.N. Brylev, D.K. Adylov, G.G. Tukhtaeva, N.A.K. Dinova, L.D. Abidova, D.A. Rakhimov, Chem. Nat. Compd. 37, 569–570 (2001)

    CAS  Google Scholar 

  • N. Cao, Y. Xia, C.S. Gong, G.T. Tsao, Appl. Biochem. Biotechnol. 63–65, 129–139 (1997)

    PubMed  Google Scholar 

  • C. Cara, E. Ruiz, J.M. Oliva, F. Sáez, E. Castro, Bioresour. Technol. 99, 1869–1876 (2008)

    PubMed  CAS  Google Scholar 

  • J.M. Carothers, J.A. Goler, J.D. Keasling, Curr. Opin. Biotechnol. 20, 498–503 (2009)

    PubMed  CAS  Google Scholar 

  • P. Chandrakant, V.S. Bisaria, Crit. Rev. Biotechnol. 18, 295–331 (1998)

    PubMed  CAS  Google Scholar 

  • C. Chapple, M. Ladisch, R. Meilan, Nat. Biotechnol. 25, 746–748 (2007)

    PubMed  CAS  Google Scholar 

  • H.L. Chum, L.J. Douglas, D.A. Feinberg, H.A. Schroeder, Evaluation of Pretreatments of Biomass for Enzymatic Hydrolysis of Cellulose (Solar Energy Research Institute, Golden, 1985), pp. 1–64

    Google Scholar 

  • J.M. Clomburg, R. Gonzalez, Appl. Microbiol. Biotechnol. 86, 419–434 (2010)

    PubMed  CAS  Google Scholar 

  • A.P. Dadi, C.A. Schall, S. Varanasi, Biotechnol. Bioeng. 95, 904–910 (2006)

    PubMed  CAS  Google Scholar 

  • C. Dellomonaco, F. Fava, R. Gonzalez, Microb. Cell Fact. 9, 3 (2010)

    PubMed  Google Scholar 

  • A. Demirbas, Energy Sour. B 2, 391–401 (2007)

    CAS  Google Scholar 

  • A.F. Diego, C.R. Richard, P.S. Richard, M. Patrick, M. Guillermo, D.R. Robin, Green Chem. 9, 63–69 (2007)

    Google Scholar 

  • T.D. DiStefano, A. Ambulkar, Water Sci. Technol. 53, 33–41 (2006)

    PubMed  CAS  Google Scholar 

  • D.R. Dodds, R.A. Gross, Science 318, 1250–1251 (2007)

    PubMed  CAS  Google Scholar 

  • M.J. Earle, K.R. Seddon, Pure Appl. Chem. 72, 1391–1398 (2000)

    CAS  Google Scholar 

  • T. Eggeman, R.T. Elander, Bioresour. Technol. 96, 2019–2025 (2005)

    PubMed  CAS  Google Scholar 

  • M.A. Eiteman, S.A. Lee, E. Altman, J. Biol. Eng. 2, 3 (2008)

    PubMed  Google Scholar 

  • M.M. Ekperigin, Afr. J. Biotechnol. 6, 28–33 (2007)

    CAS  Google Scholar 

  • M. Fitzpatrick, P. Champagne, M.F. Cunningham, R.A. Whitney, Bioresour. Technol. 101, 8915–8922 (2010)

    PubMed  CAS  Google Scholar 

  • M. Freemantle, Chem. Eng. News 76, 32–37 (1998)

    Google Scholar 

  • X. Fujian, C. Hongzhang, L. Zuohu, Enzyme Microb. Technol. 30, 45–48 (2002)

    Google Scholar 

  • M. Galbe, G. Zacchi, Adv. Biochem. Eng. Biotechnol. 108, 41–65 (2007)

    PubMed  CAS  Google Scholar 

  • J. Gao, H. Weng, D. Zhu, M. Yuan, F. Guan, Y. Xi, Bioresour. Technol. 99, 7623–7629 (2008)

    PubMed  CAS  Google Scholar 

  • M.A.P. Garda-Aparicio, I. Ballesteros, A. Gonzalez, J.M. Oliva, M. Ballesteros, M.A.J. Negro, Appl. Biochem. Biotechnol. 129–132, 278–288 (2006)

    Google Scholar 

  • B.A. Gashe, J. Appl. Microbiol. 73, 79–82 (1992)

    CAS  Google Scholar 

  • S.P. George, A. Ahmad, M.B. Rao, Bioresour. Technol. 78, 221–224 (2001)

    PubMed  CAS  Google Scholar 

  • L.E. Gollapalli, B.E. Dale, D.M. Rivers, Appl. Biochem. Biotechnol. 100, 23–35 (2002)

    Google Scholar 

  • A.L. Grigorevski de-Limaa, R.P. do-Nascimento, E.P. da-Silva Bon, R.R. Coelho, Enzyme Microb. Technol. 37, 272–277 (2005)

    Google Scholar 

  • K. Grohmann, R. Torget, M. Himmel, Biotechnol. Bioeng. Symp. 15, 59–80 (1985)

    Google Scholar 

  • O.B. Hélène, M. Lionel, J. Mol. Catal. A Chem. 182–183, 419–437 (2002)

    Google Scholar 

  • A.T.W.M. Hendriks, G. Zeeman, Bioresour. Technol. 100, 10–18 (2009)

    PubMed  CAS  Google Scholar 

  • A. Herrera, S.J. Téllez-Luis, J.A. Ramírez, M. Vázquez, J. Cereal Sci. 37, 267–274 (2003)

    CAS  Google Scholar 

  • M. Holtzapple, M. Cognata, Y. Shu, C. Hendrickson, Biotechnol. Bioeng. 36, 275–287 (1990)

    PubMed  CAS  Google Scholar 

  • M.T. Holtzapple, J.E. Lundeen, R. Sturgis, Appl. Biochem. Biotechnol. 34, 5–21 (1992)

    Google Scholar 

  • D.N.S. Hon, Natural Polymers and Agrofibers Composites (Marcel Dekker Inc, New York, 2000), pp. 1–14

    Google Scholar 

  • R.J. Hooper, J. Li, Biomass Bioenerg. 11, 469–474 (1996)

    Google Scholar 

  • R.L. Howard, E. Abotsi, E.L. Rensburg, S. Howard, Afr. J. Biotechnol. 2, 602–619 (2003)

    CAS  Google Scholar 

  • T.-A. Hsu, in Handbook on Bioethanol, Production and Utilization, ed. by C.E. Wyman, C.E. Wyman (Taylor & Francis, Washington, DC, 1996), pp. 179–212

    Google Scholar 

  • L.O. Ingram, T. Conway, D.P. Clark, G.W. Sewell, J.F. Preston, Appl. Environ. Microbiol. 53, 2420–2425 (1987)

    PubMed  CAS  Google Scholar 

  • L.O. Ingram, H.C. Aldrich, A.C.C. Borges, T.B. Causey, A. Martinez, F. Morales et al., Biotechnol. Prog. 15, 855–866 (1999)

    PubMed  CAS  Google Scholar 

  • C.M.C. James, W. Barry, in Proceedings of the Water Environment Federation, Industrial Water Quality, 2007, 15, 168–182

    Google Scholar 

  • S.K. Jana, V.K. Ghosh, A. Singh, Appl. Biochem. Biotechnol. 20, 233–239 (1994)

    CAS  Google Scholar 

  • H. Jang, K. Chang, Biotechnol. Lett. 27, 239–242 (2005)

    PubMed  CAS  Google Scholar 

  • L.R. Jarboe, T.B. Grabar, L.P. Yomano, K.T. Shanmugan, L.O. Ingram, Adv. Biochem. Eng. Biotechnol. 108, 237–261 (2007)

    PubMed  CAS  Google Scholar 

  • T.W. Jeffries, Y.S. Jin, Appl. Microbiol. Biotechnol. 63, 495–509 (2004)

    PubMed  CAS  Google Scholar 

  • Y.J. Jeon, Z. Xun, P.L. Rogers, Lett. Appl. Microbiol. 51, 518–524 (2010)

    PubMed  CAS  Google Scholar 

  • F. John, G. Monsalve, P.I.V. Medina, C.A.A. Ruiz, Dyna Universidad Nacional de Colombia 73, 21–27 (2006)

    Google Scholar 

  • H. Jorgensen, J.B. Kristensen, C. Felby, Biofuels Bioprod. Bioref. 1, 119–134 (2007)

    Google Scholar 

  • S.J. Kadolph, A.L. Langford, Textiles, 8th edn. (Prentice-Hall, Inc, Upper Saddle River, 1998)

    Google Scholar 

  • N. Kamiya, Y. Matsushita, M. Hanaki, K. Nakashima, M. Narita, M. Goto, H. Takahashi, Biotechnol. Lett. 30, 1037–1040 (2008)

    PubMed  CAS  Google Scholar 

  • J. Kim, C. Park, T.H. Kim, M. Lee, S. Kim, S.W. Kim, J. Lee, J. Biosci. Bioeng. 95, 271–275 (2003)

    PubMed  CAS  Google Scholar 

  • T.H. Kim, F. Taylor, K.B. Hicks, Bioresour. Technol. 99, 5694–5702 (2008)

    PubMed  CAS  Google Scholar 

  • M. Knauf, M. Moniruzzaman, Int. Sugar J. 106, 147–150 (2004)

    CAS  Google Scholar 

  • C.P. Kubicek, M. Mikus, A. Schuster, M. Schmoll, B. Seiboth, Biotechnol. Biofuels 2, 19 (2009)

    PubMed  Google Scholar 

  • P. Kumar, D.M. Barrett, M.J. Delwiche, P. Stroeve, Ind. Eng. Chem. Res. 48, 3713–3729 (2009)

    CAS  Google Scholar 

  • C.H. Kuo, C.K. Lee, Bioresour. Technol. 100, 866–871 (2009)

    PubMed  CAS  Google Scholar 

  • A. Kurabi, A. Berlin, N. Gilkes, D. Kilburn, R. Bura, J. Robinson, A. Markov, A. Skomarovsky, A. Gusakov, O. Okunev, A. Sinitsyn, D. Gregg, D. Xie, J. Saddler, Appl. Biochem. Biotechnol. 121, 219–230 (2005)

    PubMed  Google Scholar 

  • M. Kurakake, N. Ide, T. Komaki, Curr. Microbiol. 54, 424–428 (2007)

    PubMed  CAS  Google Scholar 

  • D. Lee, A.H.C. Yu, K.K.Y. Wong, J.R. Saddler, Appl. Biochem. Biotechnol. 45, 407–415 (1994)

    Google Scholar 

  • S.K. Lee, H. Chou, T.S. Ham, T.S. Lee, J.D. Keasling, Curr. Opin. Biotechnol. 19, 556–563 (2008)

    PubMed  CAS  Google Scholar 

  • Q. Li, Y.C. He, M. Xian, G. Jun, X. Xu, M.Y. Jian, L.Z. Li, Bioresour. Technol. 100, 3570–3575 (2009)

    PubMed  CAS  Google Scholar 

  • Q. Li, X. Jiang, Y. He, L. Li, M. Xian, J. Yang, Appl. Microbiol. Biotechnol. 87, 117–126 (2010)

    PubMed  CAS  Google Scholar 

  • E.S. Lipinsky, Science 212, 1465–1471 (1981)

    PubMed  CAS  Google Scholar 

  • L.Y. Liu, H.Z. Chen, Chin. Sci. Bull. 51, 2432–2436 (2006)

    CAS  Google Scholar 

  • C. Louime, H. Uckelmann, Curr. Sci. 94, 1567–1568 (2008)

    Google Scholar 

  • H. Lyko, G. Deerberg, E. Weidner, J. Biotechnol. 142, 78–86 (2009)

    PubMed  CAS  Google Scholar 

  • L.R. Lynd, P.J. Weimer, W.H. Zyl, I.S. Pretorius, Microbiol. Mol. Biol. Rev. 66, 506–577 (2002)

    PubMed  CAS  Google Scholar 

  • L.R. Lynd, W.H. van Zyl, J.E. McBride, M. Laser, Curr. Opin. Biotechnol. 16, 577–583 (2005)

    PubMed  CAS  Google Scholar 

  • W. Mabee, D. Gregg, J.N. Saddler, Appl. Biochem. Biotechnol. 121–124, 765–778 (2005)

    PubMed  Google Scholar 

  • S. Malherbe, T.E. Cloete, Rev. Environ. Sci. Biotechnol. 1, 105–114 (2002)

    CAS  Google Scholar 

  • M. McCoy, Chem. Eng. News 85, 12 (2007)

    Google Scholar 

  • P. McKendry, Bioresour. Technol. 83, 37–43 (2002)

    PubMed  CAS  Google Scholar 

  • J.D. McMillan, Enzymatic Conversion of Biomass for Fuels Production (American Chemical Society, Washington, DC, 1994), pp. 292–324

    Google Scholar 

  • V. Menon, G. Prakash, M. Rao, Global J. Biochem. 1, 36–67 (2010a)

    Google Scholar 

  • V. Menon, G. Prakash, A. Prabhune, M. Rao, Bioresour. Technol. 101, 5366–5373 (2010b)

    PubMed  CAS  Google Scholar 

  • V. Menon, G. Prakash, M. Rao, J. Biotechnol. 148, 233–239 (2010c)

    PubMed  CAS  Google Scholar 

  • J. Miron, E. Yosef, D. Ben-Ghedalia, J. Agric. Food Chem. 49, 2322–2326 (2001)

    PubMed  CAS  Google Scholar 

  • Z. Mladenovska, H. Hartmann, T. Kvist, M. Sales-Cruz, R. Gani, B.K. Ahring, Water Sci. Technol. 53, 59–67 (2006)

    PubMed  CAS  Google Scholar 

  • N.S. Mosier, C. Wyman, B. Dale, R. Elander, Y.Y. Lee, M. Holtzapple, M.R. Ladisch, Bioresour. Technol. 96, 673–686 (2002)

    Google Scholar 

  • M. Mosihuzzaman, O. Theander, P. Aman, J. Sci. Food Agric. 33, 1207–1212 (1982)

    CAS  Google Scholar 

  • A. Mukhopadhyay, A.M. Redding, B.J. Rutherford, J.D. Keasling, Curr. Opin. Biotechnol. 19, 228–234 (2008)

    PubMed  CAS  Google Scholar 

  • T.-A.D. Nguyen, K.-R. Kima, S.J. Hanb, H.Y. Choc, J.W. Kimc, S.M. Parkc, J.C. Parkc, S.J. Sima, Bioresour. Technol. 101, 7432–7438 (2010)

    PubMed  CAS  Google Scholar 

  • J.N. Nigam, J. Biotechnol. 97, 107–116 (2002)

    PubMed  CAS  Google Scholar 

  • S. Octave, D. Thomas, Biochimie 91, 659–664 (2009)

    PubMed  CAS  Google Scholar 

  • H. Ohara, Appl. Microbiol. Biotechnol. 62, 474–477 (2003)

    PubMed  CAS  Google Scholar 

  • K. Olofsson, M. Bertilsson, G. Liden, Biotechnol. Biofuels 1, 1–14 (2008)

    Google Scholar 

  • P. Oosterveer, A.P.J. Mol, Biofuels Bioprod. Bioref. 4, 66–76 (2010)

    CAS  Google Scholar 

  • M. Pagliaro, M. Rossi, New Uses of a Versatile Raw Material (Royal Society of Chemistry, Cambridge, 2008)

    Google Scholar 

  • G. Panagiotou, M. Kekos, B.J. Macris, P. Christakopoulos, Ind. Crops Prod. 18, 37–45 (2003)

    CAS  Google Scholar 

  • A. Pandey, Handbook of Plant Based Biofuels (CRC press, Taylor & Francis Group, Boca Raton, 2009), pp. 159–173

    Google Scholar 

  • J.L. Parcell, P. Westhoff, J. Agric. Appl. Econ. 38, 377–387 (2006)

    Google Scholar 

  • P.P. Peralta-Yahya, J.D. Keasling, Biotechnol. J. 5, 147–162 (2010)

    PubMed  CAS  Google Scholar 

  • H. Pereira, Wood Fiber Sci. 20, 82–90 (1988)

    CAS  Google Scholar 

  • N. Pérez-Díaz, F. Márquez-Montesinos, P.M. Autíe Pinar del Río: CIGET (2005), www.ciget.pinar.cu/No.2005-2/beneficio.htm

  • A. Petersson, M.H. Thomsen, H. Hauggaard-Nielsen, A.-B. Thomsen, Biomass Bioenerg. 31, 812–819 (2007)

    CAS  Google Scholar 

  • L.J. Pham, S.C. Halos, Ann. N. Y. Acad. Sci. 613, 575–581 (1990)

    CAS  Google Scholar 

  • S. Prassad, A. Singh, H.C. Joshi, Resour. Conserv. Recycl. 50, 1–39 (2007)

    Google Scholar 

  • M.I. Rajoka, K.A. Malik, Folia Microbiol. 42, 59–64 (1997)

    CAS  Google Scholar 

  • D.S. Rani, S. Thirumale, K. Nand, World J. Microbiol. Biotechnol. 20, 629–632 (2004)

    CAS  Google Scholar 

  • J. Reguant, M. Rinaudo Groupe Français d’études et d’applications des polymères, France 13 (2000)

    Google Scholar 

  • M. Rodriguez-Moya, R. Gonzalez, Biofuels 1, 291–310 (2009)

    Google Scholar 

  • R.D. Rogers, K.R. Seddon, Science 302, 792–793 (2003)

    PubMed  Google Scholar 

  • M.D. Romero, J. Aguado, L. Gonzalez, M. Ladero, Enzyme Microb. Technol. 25, 244–250 (1999)

    CAS  Google Scholar 

  • C. Roosen, P. Müller, L. Greiner, Appl. Microbiol. Biotechnol. 81, 607–614 (2008)

    PubMed  CAS  Google Scholar 

  • M.R. Rowell, Emerging Technologies for Material and Chemicals from Biomass: Proceedings of Symposium (American Chemical Society, Washington, DC, 1992), pp. 26–31

    Google Scholar 

  • E.M. Rubin, Nature 454, 841–845 (2008)

    PubMed  CAS  Google Scholar 

  • M. Rubio, J.F. Tortosa, J. Quesada, D. Gomez, Biomass Bioenerg. 15, 483–491 (1998)

    CAS  Google Scholar 

  • M.A. Rude, A. Schirmer, Curr. Opin. Microbiol. 12, 274–281 (2009)

    PubMed  CAS  Google Scholar 

  • E. Ruiz, C. Cara, M. Ballesteros, P. Manzanares, I. Ballesteros, E. Castro, Appl. Biochem. Biotechnol. 129, 631–643 (2006)

    PubMed  Google Scholar 

  • J.N. Saddler, D.J. Gregg, in Forest Products Biotechnology, ed. by A. Bruce, J.W. Palfreyman (Taylor&Francis Ltd, London, 1998), pp. 183–207

    Google Scholar 

  • C. Sánchez, Biotechnol. Adv. 27, 185–194 (2009)

    PubMed  Google Scholar 

  • J. Sanders, E. Scott, R. Weusthuis, H. Mooibroek, Macromol. Biosci. 7, 105–117 (2007)

    PubMed  CAS  Google Scholar 

  • D.J. Schell, M.F. Ruth, M.P. Tucker, Appl. Biochem. Biotechnol. 77–79, 67–81 (1999)

    Google Scholar 

  • M. Schulein, Cellulases from Tricoderma reesei. Methods Enzymol. 60, 234–242 (1988)

    Google Scholar 

  • K.R. Seddon, in Proceedings of 5th International Conference on Molten Salt Chemistry and Technology, vol. 5–6, 1998, ed. by H. Wendt, pp. 53–62

    Google Scholar 

  • X. Shen, L. Xia, Process Biochem. 39, 1363–1367 (2004)

    CAS  Google Scholar 

  • R. Singh, A.J. Varma, R.S. Laxman, M. Rao, Bioresour. Technol. 100, 6679–6681 (2009)

    PubMed  CAS  Google Scholar 

  • M. Sinner, J. Puls, H. Dietrichs, Starch 31, 267–269 (1979)

    CAS  Google Scholar 

  • E.M.W. Smeets, A.P.C. Faaij, I.M. Lewandowski, W.C. Turkenburg, Prog. Energ. Combust.Sci. 33, 56–106 (2007)

    CAS  Google Scholar 

  • J.C. Stewart, J.B. Parry, J. Gen. Microbiol. 125, 33–39 (1981)

    PubMed  CAS  Google Scholar 

  • D. Stewart, A. Azzini, A. Hall, I. Morrison, Ind. Crops Prod. 6, 17–26 (1997)

    CAS  Google Scholar 

  • Y. Sun, J. Cheng, Bioresour. Technol. 83, 1–11 (2002)

    PubMed  CAS  Google Scholar 

  • M.J. Taherzadeh, K. Karimi, Int. J. Mol. Sci. 9, 1621–1651 (2008)

    PubMed  CAS  Google Scholar 

  • F. Teymouri, L.L. Perez, H. Alizadeh, B.E. Dale, Appl. Biochem. Biotechnol. 116, 951–963 (2004)

    Google Scholar 

  • R. Torget, T.A. Hsu, Appl. Biochem. Biotechnol. 45–46, 5–22 (1994)

    Google Scholar 

  • R.W. Torget, J.S. Kim, Y.Y. Lee, Ind. Eng. Chem. Res. 39, 2817–2825 (2000)

    Google Scholar 

  • G.T. Tsao, L. Xia, N. Cao, C.S. Gong, Appl. Biochem. Biotechnol. 84/86, 743–749 (2000)

    Google Scholar 

  • M.S. Umikalsom, A.B. Ariff, Z.H. Shamsuddin, C.C. Tong, M.A. Hassan, M.I.A. Karim, Appl. Microbiol. Biotechnol. 47, 590–595 (1997)

    CAS  Google Scholar 

  • E. Varga, K. Reczey, G. Zacchi, Appl. Biochem. Biotechnol. 113, 509–523 (2004)

    PubMed  Google Scholar 

  • M. Vázquez, M. Oliva, S.J. Téllez-Luis, J.A. Ramírez, Bioresour. Technol. 98, 3053–3060 (2007)

    PubMed  Google Scholar 

  • A. Ward, H.D. Stensel, J.F. Ferguson, G. Ma, S. Hummel, Water Sci. Technol. 38, 435–442 (1998)

    CAS  Google Scholar 

  • Worldwatch Institute, State of the world 2006: Special Focus: China and India. A Worldwatch Institute Report on Progress Toward a Sustainable Society, Worldwatch Institute, Washington DC, 7 January 2006

    Google Scholar 

  • C.E. Wyman, B.E. Dale, R.T. Elander, M. Holtzapple, M.R. Ladisch, Y.Y. Lee, Bioresour. Technol. 96, 1959–1966 (2005)

    PubMed  CAS  Google Scholar 

  • B. Yang, Y. Lu, J. Chem. Technol. Biotechnol. 82, 6–10 (2006)

    Google Scholar 

  • B. Yang, C. Wyman, Biofuels Bioprod. Bioref. 2, 26–40 (2008)

    CAS  Google Scholar 

  • Y.H. Yang, B.C. Wang, Q.H. Wang, L.J. Xiang, C.R. Duan, Colloids Surf. B Biointerfaces 34, 1–6 (2004)

    PubMed  Google Scholar 

  • J.S. Yuan, K.H. Tiller, H. Al-Ahmad, N.R. Stewart, C.N. Stewart Jr., Trends Plant Sci. 13, 421–429 (2008)

    PubMed  CAS  Google Scholar 

  • Y.H.P. Zhang, L.R. Lynd, Biotechnol. Bioeng. 88, 797–824 (2004)

    PubMed  CAS  Google Scholar 

  • M. Zhang, C. Eddy, K. Deanda, M. Finkelstein, S. Picataggio, Science 267, 240–243 (1995)

    PubMed  CAS  Google Scholar 

  • H. Zhao, A.B. Gary, Y.S. Zhi, O. Olarongbe, C. Tanisha, S.P. Darkey, Green Chem. 10, 696–705 (2008)

    CAS  Google Scholar 

  • H. Zhao, L.J. Cecil, A.B. Gary, Q.X. Shu, O. Olarongbe, N.P. Vernecia, J. Biotechnol. 139, 47–54 (2009)

    PubMed  CAS  Google Scholar 

  • Y. Zheng, Z. Pan, R. Zhang, Int. J. Agric. Biol. Eng. 2, 51–68 (2009)

    CAS  Google Scholar 

  • J. Zhu, K. Shimizu, Appl. Microbiol. Biotechnol. 64, 367–375 (2004)

    PubMed  CAS  Google Scholar 

  • S. Zhu, Y. Wu, Z. Yu, J. Liao, Y. Zhang, Process Biochem. 40, 3082–3086 (2005)

    CAS  Google Scholar 

  • S. Zhu, Y. Wu, Z. Yu, C. Wang, F. Yu, S. Jin, Y. Ding, R. Chi, J. Liao, Y. Zhang, Biosyst. Eng. 93, 279–283 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mala Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Menon, V., Rao, M. (2012). Recent Trends in Valorization of Lignocellulose to Biofuel. In: Satyanarayana, T., Johri, B. (eds) Microorganisms in Sustainable Agriculture and Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2214-9_18

Download citation

Publish with us

Policies and ethics