Skip to main content

Enzymatic and Non-enzymatic Antioxidative Effects of Folic Acid and Its Reduced Derivates

  • Chapter
  • First Online:
Water Soluble Vitamins

Part of the book series: Subcellular Biochemistry ((SCBI,volume 56))

Abstract

A great part of the population appears to have insufficient folate intake, especially subgroups with higher demand, as determined through more sensitive methods and parameters currently in use. As the role of folate deficiency in congenital defects, e.g. in cardiovascular and neurodegenerative diseases, and in carcinogenesis has become better understood, folate has been recognized as having great potential to prevent these many disorders through folate supplementation or fortification for the general population. Folates are essential cofactors in the transfer and utilization of one-carbon groups in the process of DNA-biosynthesis with implications for genomic repair and stability. Folate acts indirectly to lower homocysteine levels and insures optimal functioning of the methylation cycle. Homocysteine was shown to be an independent risk factor for neurodegenerative and cardiovascular disease, which includes peripheral vascular disease, coronary artery disease, cerebrovascular disease and venous thrombosis. In fact, it was long believed that the beneficial effects of folate on vascular function and disease are related directly to the mechanism of homocysteine-diminution. Recent investigations have, however, demonstrated beneficial effects of folates unrelated to homocysteine-diminution, suggesting independent properties. One such mechanism could be free radical scavenging and antioxidant activity, as it is now recognized that free radicals play an important role in the oxidative stress leading to many diseases. It was found that folic acid and, in particular, its reduced derivates act both directly and indirectly to produce antioxidant effects. Folates interact with the endothelial enzyme NO synthase (eNOS) and, exert effects on the cofactor bioavailability of NO and thus, on peroxynitrite formation. Folate metabolism provides an interesting example of gene-environmental interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ang:

angiotensin

BH4:

tetrahydrobiopterin

CAD:

coronary artery disease

CβS:

cystathionine-β-synthase

DDPH:

2,2-diphenyl-1-picrylhydrazyl

DHF:

dihydrofolate

DHFR:

dihydrofolate reductase

ED:

endothelial dysfunction

EDHF:

endothelium-derived hyperpolarizing factor

EDRF:

endothelial derived relaxing factor

eNOS:

Endothelial NO synthase

FRAP:

ferric reducing ability of plasma

GPx:

glutathione peroxidase

Hcy:

homocysteine

HHcy:

hyperhomocysteinemia

H2O2 :

hydrogen peroxide

LDL:

low density lipoprotein

LPO:

lipid peroxidation

MDA:

malondialdehyde

MS:

methionine synthase

MTHFR:

methylenetetrahydrofolate reductase

5-MTHF:

5-methyl-tetrahydrofolate

NO:

nitric oxide

O2 :

superoxide anion

·OH:

hydroxyl radical

ONOO :

peroxynitrite

PG:

prostaglandin

RF:

relaxing factor

RFC-1:

reduced folate carrier-1

ROS:

radical oxygen species

SAM:

S-adenosylmethionine

SOD:

superoxide dismutase

TAC:

total antioxidant capacity

TAS:

total antioxidant status

TBARS:

2-thiobarbituric acid-reactive substances

TEAC:

trolox equivalent antioxidant capacity

THF:

tetrahydrofolate

TNFα:

tumor necrosis factor α

TXB2:

thromboxane B2

References

  • Anguera MC, Suh JR et al. (2003) Methylenetetrahydrofolate synthetase regulates folate turnover and accumulation. J Biol Chem 278:29856–29862

    Article  PubMed  CAS  Google Scholar 

  • Anthony AC (1996) Folate receptors. Annu Rev Nutr 16:501–521

    Article  Google Scholar 

  • Antoniades C, Shirodaria C, Leeson P, Baarholm OA, Van Assche T, Cunnington C, Pillai R, Ratnatunga C, Tousoulis D, Stefanadis C, Refsum H, Channon KM (2009) MTHFR 677C>T polymorphism reveals functional importance for 5-methyltetrahydrofolate, not homocysteine, in regulation of vascular redox state and endothelial function in human atherosclerosis. Circulation 119:2507–2515

    Article  PubMed  CAS  Google Scholar 

  • Antoniades C, Shirodaria C, Warrick N, Cai S, de Bono J, Lee J, Leeson P, Neubauer S, Ratnatunga C, Pillai R, Refsum H, Channon KM (2006) 5-methyltetrahydrofolate rapidly improves endothelial function and decreases superoxide production in human vessels. Circulation 114:1193–1201

    Article  PubMed  CAS  Google Scholar 

  • Austin RC, Sood SK, Dorward AM, Singh G, Shaughnessy SG, Pamidi S, Outinen PA, Weitz JI (1998) Homocysteine-dependent alterations in mitochondrial gene expression, function and structure. J Biol Chem 273:30808–30817

    Article  PubMed  CAS  Google Scholar 

  • Baggott JE, Tamura T, Baker H (2001) Re-evaluation of the metabolism of oral doses of racemic carbon isomers of formyltetrahydrofolate in human subjects. Br J Nutr 85:653–657

    Article  PubMed  CAS  Google Scholar 

  • Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Physiol 271:C1424–C1437

    PubMed  CAS  Google Scholar 

  • Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analyt Biochem 239:70–76

    Article  PubMed  CAS  Google Scholar 

  • Blair JA (1957) Some observations on the oxidative degradation of pteroyl-L-glutamic acid. Biochem J 65:209–211

    PubMed  CAS  Google Scholar 

  • Boushey CJ, Beresford SA, Omenn GS, Motulsky AG (1995) A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. J Am Med Assoc 274:1049–1057

    Article  CAS  Google Scholar 

  • Bunout D, Petermann M, Hirsch S, de la Maza P, Suazo M, Barrera G, Kauffman R (2000) Low serum folate but normal homocysteine levels in patients with atherosclerotic vascular disease and matched healthy controls. Nutrition 16:434–438

    Article  PubMed  CAS  Google Scholar 

  • Campolo J, Chiara B, Caruso R, De Maria R, Sedda V, Dellanoce C, Parolini M, Cighetti G, Penco S, Baudo F, Parodi O (2006) Methionine challenge paradoxically induces a greater activation of the antioxidant defence in subjects with hyper- vs. normohomocysteinemia. Free Radic Res 40:929–935

    Article  PubMed  CAS  Google Scholar 

  • Caruso R, Campolo J, Sedda V, De Chiara B, Dellanoce C, Baudo F, Tonini A, Parolini M, Cighetti G, Parodi O (2006) Effect of homocysteine lowering by 5-methyltetrahydrofolate on redox status in hyperhomocysteinemia. J Cardiovasc Pharmacol 47:549–555

    Article  PubMed  CAS  Google Scholar 

  • Celano L, Gil M, Carballal S, Duran R, Denicola A, Banerjee R, Alvarez B (2009) Inactivation of cystathionine β-synthase with peroxynitrite. Arch Biochem Biophys Arch Biochem Biophys 491:96–105

    CAS  Google Scholar 

  • Celermajer DS, Sorensen K, Ryalls M, Robinson J, Thomas O, Leonard JV, Deanfield JE (1993) Impaired endothelial function occurs in the systemic arteries of children with homozygous homocystinuria but not in their heterozygous parents. J Am Coll Cardiol 22:854–858

    Article  PubMed  CAS  Google Scholar 

  • Chambers JC, McGregor A, Jean-Marie J, Obeid OA, Kooner JS (1999) Demonstration of rapid onset vascular endothelial dysfunction after hyperhomocysteinemia: an effect reversible with vitamin C therapy. Circulation 99:1156–1160

    PubMed  CAS  Google Scholar 

  • Chang CM, Yu CC, Lu HT, Chou YF, Huang RF (2007) Folate deprivation promotes mitochondrial oxidative decay: DNA large deletions, cytochrome c oxidase dysfunction, membrane depolarization and superoxide overproduction in rat liver. Br J Nutr 97:855–863

    Article  PubMed  CAS  Google Scholar 

  • Chen N, Liu Y, Greiner CD, Holtzman JL (2000) Physiologic concentrations of homocysteine inhibit the human plasma GSH peroxidase that reduces organic hydroperoxides. J Lab Clin Med 136:58–65

    Article  PubMed  CAS  Google Scholar 

  • Chiao JH, Roy K, Tolner B, Yang CH, Sirotnak FM (1997) RFC-1 gene expression regulates folate absorption in mouse small intestine. J Biol Chem 272:11165–11170

    Article  PubMed  CAS  Google Scholar 

  • Chippel D, Scrimgeour KG (1970) Oxidative degradation of dihydrofolate and tetrahydrofolate. Can J Biochem 48:999–1009

    Article  PubMed  CAS  Google Scholar 

  • Coppola A, D’Angelo A, Fermo I, Mazzola G, Di Minno M, Cajani A, Sala A, Folco G, Tremoli E, Di Minno G (2005) Reduced in vivo oxidative stress follwoing 5-methyltetrahydrofolate supplementation in patients with early-onset thrombosis and 677TT methylenetetrahydrofolate reductase genotype. Br J Haematol 131:100–108

    Article  PubMed  CAS  Google Scholar 

  • Crabtree MJ, Tatham AL, Hale AB, Alp NJ, Channon KM (2009) Critical role for tetrahydrobiopterin recycling by dihydrofolate reductase in regulation of endothelial nitric-oxide synthase coupling. J Biol Chem 284:28128–28136

    Article  PubMed  CAS  Google Scholar 

  • Darley-Usmar V, Wiseman H, Halliwell B (1995) Nitric oxide and oxygen radicals: A question of balance. FEBS Lett 369:131–135

    Article  PubMed  CAS  Google Scholar 

  • Das U (2003) Folic acid says NO to vascular disease. Nutrition 19:686–692

    Article  PubMed  CAS  Google Scholar 

  • Davi G, Di Minno G, Coppola A, Andria G, Cerbone AM, Madonna P, Tufano A, Falco A, Marchesani P, Ciabattoni G, Patrono C (2001) Oxidative stress and platelet activation in homozygous homocystinuria. Circulation 104:1124–1128

    Article  PubMed  CAS  Google Scholar 

  • Delfino VD, Vianna AC, Mocelin AJ, Barbosa DS, Mise RA, Matsuo T (2007) Folic acid therapy reduces plasma homocysteine levels and improves plasma antioxidant capacity in hemodialysis patients. Nutrition 23:242–247

    Article  CAS  Google Scholar 

  • Donnelly JG (2001) Folic acid. Crit Rev Clin Lab Sci 38:183–221

    Article  PubMed  CAS  Google Scholar 

  • Doshi SN, McDowell IF, Moat SJ, Payne N, Durrant HJ, Lewis MJ, Goodfellow J (2002) Folic acid improves endothelial function in coronary artery disease via mechanisms largely independent of homocysteine lowering. Circulation 105:22–26

    Article  PubMed  CAS  Google Scholar 

  • Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    PubMed  CAS  Google Scholar 

  • Durand P, Lussier-Cacan S, Blache D (1997) Acute methionine load-induced hyperhomocysteinemia enhances platelet aggregation, thromboxane biosynthesis, and macrophage-derived tissue factor activity in rats. FASEB J 11:1157–1168

    PubMed  CAS  Google Scholar 

  • Faraci FM, Didion SP (2004) Vascular protection: superoxide dismutase isoforms in the vessel wall. Arterioscler Thromb Vasc Biol 24:1367–1373

    Article  PubMed  CAS  Google Scholar 

  • Ferrer-Sueta G, Radi R (2009) Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. ACS Chem Biol 4:161–177

    Article  PubMed  CAS  Google Scholar 

  • Fuchs D, Jaeger M, Widner B, Wirleitner B, Artner-Dworzak A, Leblhuber F (2001) Is hyperhomocysteinemia due to the oxidative depletion of folate rather than to insufficient dietary intake? Clin Chem Lab Med 39:691–694

    Article  PubMed  CAS  Google Scholar 

  • Fukai T, Folz RJ, Landmesser U, Harrison DG (2002) Extracellular superoxide dismutase and cardiovascular disease. Cardiovasc Res 55:239–249

    Article  PubMed  CAS  Google Scholar 

  • Gao L, Chalupsky K, Stefani E, Cai H (2009) Mechanistic insights into folic acid-dependent vascular protection: dihydrofolate reductase (DHFR)-mediated reduction in oxidant stress in endothelial cells and angiotensin II-infused mice: a novel HPLC-based fluorescent assay for DHFR activity. J Mol Cell Cardiol 47:752–760

    Article  PubMed  CAS  Google Scholar 

  • Ghandour H, Chen Z, Selhub J, Rozen R (2004) Mice deficient in methylenetetrahydrofolate reductase exhibit tissue-specific distribution of folates. J Nutr 134:2975–2978

    PubMed  CAS  Google Scholar 

  • Gliszczynska-Swiglo A (2007) Folates as antioxidants. Food Chem 101:1480–1483

    Article  CAS  Google Scholar 

  • Gliszcznska-Swiglo A, Muzolf M (2007) PH-dependent radical scavenging activity of folates. J Agric Food Chem 55:8237–8242

    Article  CAS  Google Scholar 

  • Haenen GR, Bast A (1983) Protection against lipid peroxidation by a microsomal glutathione-dependent labile factor. FEBS Lett 159:24–28

    Article  PubMed  CAS  Google Scholar 

  • Handy DE, Zhang Y, Loscalzo J (2005) Homocysteine down-regulates cellular glutathione peroxidase (GPx1) by decreasing translation. J Biol Chem 280:15518–15525

    Article  PubMed  CAS  Google Scholar 

  • Hasdai D, Gibbons RJ, Holmes DR, Higano ST, Lerman A (1997) Coronary endothelial dysfunction in humans is associated with myocardial perfusion defects. Circulation 96:3390–3395

    PubMed  CAS  Google Scholar 

  • Heales SJ, Blair JA, Meinschad C, Ziegler I (1988) Inhibition of monocyte luminol-dependent chemiluminescence by tetrahydrobiopterin, and the free radical oxidation of tetrahydrobiopterin, dihydrobiopterin and dihydroneopterin. Cell Biochem Funct 6:191–195

    Article  PubMed  CAS  Google Scholar 

  • Heinecke JW, Kawamura M, Suzuki, L, Chait A (1993) Oxidation of low-density lipoprotein by thiols: superoxide-dependent and –independent mechanisms. J Lipid Res 34:2051–2061

    PubMed  CAS  Google Scholar 

  • Heller R, Unbehaun A, Schellenberg B, Mayer B, Werner-Felmayer G, Werner ER (2001) L-ascorbic acid potentiates endothelial nitric oxide synthesis via a chemical stabilization of tetrahydrobiopterin. J Biol Chem 276:40–47

    Article  PubMed  CAS  Google Scholar 

  • Higashi-Okai K, Nagino H, Yamada K, Okai Y (2007) Antioxidant and prooxidant activities of B group vitamins in lipid peroxidation. J UOEH 28:359–368

    Google Scholar 

  • Hirsch S, Ronco AM, Vasquez M, de la Maza MP, Garrido A, Barrera G, Gattas V, Glasinovic A, Leiva L, Bunout D (2004) Hyperhomocysteinemia in healthy young men and elderly men with normal serum folate concentration is not associated with poor vascular reactivity or oxidative stress. Nutrition 134:1832–1835

    CAS  Google Scholar 

  • Huang A, Vita JA, Venema RC, Keaney JF (2000) Ascorbic acid enhances endothelial nitric-oxide synthase activity by increasing intracellular tetrahydrobiopterin. J Biol Chem 275:17399–17406

    Article  PubMed  CAS  Google Scholar 

  • Huang RF, Hsu YC, Lin HL, Yang FL (2001) Folate depletion and elevated plasma homocysteine promote oxidative stress in rat livers. J Nutr 131:33–38

    PubMed  CAS  Google Scholar 

  • Hyndman ME, Verma S, Rosenfeld RJ, Anderson TJ, Parsons HG (2002) Interactions of 5-methyltetrahydrofolate and tetrahydrobiopterin on endothelial function. Am J Physiol Heart Circ Physiol 282:2167–2172

    Google Scholar 

  • Joshi R, Adhikari S, Patro BS, Chattopadhyay S, Mukherjee T (2001) Free radical scavenging behavior of folic acid: evidence for possible antioxidant activity. Free Rad Biol Med 30:1390–1399

    Article  PubMed  CAS  Google Scholar 

  • Kathy KW, Au-Yeung KW, Woo CW, Sung FL, Yip JC, Siow YL, OK (2004) Hyperhomocysteinemia activates nuclear factor-κB in endothelial cells via oxidative stress. Circ Res 94:28–36

    Article  CAS  Google Scholar 

  • Kuzkaya N, Weissmann N, Harrison DG, Dikalov S (2003) Interaction of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols: implications for uncoupling endothelial nitric-oxide synthase. J Biol Chem 278:22546–22554

    Article  PubMed  CAS  Google Scholar 

  • Lindschinger M, Nadlinger K, Adelwöhrer N, Holweg K, Wögerbauer M, Birkmayer J, Smolle KH, Wonisch W (2004) Oxidative stress: potential of distinct peroxide determination systems. Clin Chem Lab Med 42:907–914

    Article  PubMed  CAS  Google Scholar 

  • Loscalzo J (1996) The oxidant stress of hyperhomocyst(e)inemia. J Clin Invest 98:5–7

    Article  PubMed  CAS  Google Scholar 

  • Luhrs CA, Slomiany BL (1989) A human membrane-associated folate binding protein is anchored by a glycosyl-phosphatidylinositol tail. J Biol Chem 264:21446–21449

    PubMed  CAS  Google Scholar 

  • Lulock MD, Proestnall M, Daskalakis I, Schorah CJ, Wild J, Levene MI (1995) Nonenzymatic degradation and salvage of dietary folate: physicochemical factors likely to influence bioavailibility. Biochem Mol Med 55:43–53

    Article  Google Scholar 

  • Mayer B, Schumacher M, Brandstätter H, Wagner FS, Hermetter A (2001) High-throughput fluorescence screening of antioxidative capacity in human serum. Anal Biochem 297:144–153

    Article  PubMed  CAS  Google Scholar 

  • Mayer O, Simon J, Rosolova H, Hromadka M, Subrt I, Vobrubova I (2002) The effects of folate supplementation on some coagulation parameters and oxidative status surrogates. Eur J Clin Pharmacol 58:1–5

    Article  PubMed  CAS  Google Scholar 

  • McCaddon A, Regland B, Hudson P, Davies G (2002) Functional vitamin (B)12 deficiency and Alzheimer disease. Neurology 58:1395–1939

    PubMed  CAS  Google Scholar 

  • McCarthy MF, Barroso-Aranda J, Contreras F (2009) High-dose folate and dietary purines promote scavenging of peroxynitrite-derived radicals. Clinical potential in inflammatory disorders. Med Hypothesis 73:824–834

    Article  CAS  Google Scholar 

  • McEneny J, Couston C, McKibben B, Young IS, Woodside JV (2007) Folate: in vitro and in vivo effects on VLDL and LDL oxidation. Int J Vitam Nutr Res 77:66–72

    Article  PubMed  CAS  Google Scholar 

  • Miura H, Bosnjak JJ, Ning G, Saito T, Miura M, Gutterman DD (2003) Role of hydrogen peroxide in flow-induced dilation of human coronary arterioles. Circ Res 92: e31–e40

    Article  PubMed  CAS  Google Scholar 

  • Moens AL, Claeys M, Wuytis FL et al. (2004) Folic acid reduces myocardial ischemia and reperfusion injury by influencing the NO pathway: an in vitro and in vivo study. Circulation 110:III–50

    Google Scholar 

  • Mosharov E, Cranford MR, Banerjee R (2000) The quantitatively important relationship between homocysteine metabolism and glutathione synthesis by the trassulfuration pathway and its regulation by redox changes. Biochemistry. 39:13005–13011

    Article  PubMed  CAS  Google Scholar 

  • Mudd SH, Skovby F, Levy HL, Pettigrew KR, Wilcken B, Pyeritz R, Andria G, Boers GH, Bromberg IL, Cerone R et al. (1985) The natural history of homocystinuria due to cystathionine-β-synthase deficiency. Am J Hum Genet 37:1–31

    PubMed  CAS  Google Scholar 

  • Murr C, Baier-Bitterlich G, Fuchs D, Werner ER, Esterbauer H, Pfleiderer W, Wachter H (1996) Effects of neopterin-derivatives on H2O2-induced luminol chemiluminescence: mechanistic aspects. Free Radic Biol Med 21:449–456

    Article  PubMed  CAS  Google Scholar 

  • Nakamura M, Nagayoshi R, Ijiri K, Nakashima-Matsushita N, Takeuchi T, Matsuyama T (2002) Nitration and chlorination of folic acid by peroxynitrite and hypochlorous acid, and the selective binding of 10-nitro-folate to folate receptor beta. Biochem Biophys Res Comm 297:1238–1244

    Article  PubMed  CAS  Google Scholar 

  • Odin E, Carlsson G, Frosing R, Gustavsson B, Spears CP, Larsson PA (1998) Chemical stability and human plasma pharmacokinetics of reduced folates. Cancer Invest 447–455

    Google Scholar 

  • Pancharuniti N, Lewis CA, Sauberlich HE, Perkins LL, Go RC, Alvarez JO, Macaluso M, Acton RT, Copeland RB, Cousins AL et al. (1994) Plasma homocyst(e)ine, folate, and vitamin B-12 concentrations and risk for early-onset coronary artery disease. Am J Clin Nutr 59:940–948

    PubMed  CAS  Google Scholar 

  • Patro BS, Adhikari S, Mukherjee T, Chattopadhyay S (2005) Possible role of hydroxyl radicals in the oxidative degradation of folic acid. Bioorg Med Chem Lett 15:67–71

    Article  PubMed  CAS  Google Scholar 

  • Patrono C, Fitzgerald GA (1997) Isoprsotanes: potential markers of oxidant stress in atherothrombotic diseae. Arterioscler Thromb Vasc Biol 17:2309–2315

    Article  PubMed  CAS  Google Scholar 

  • Prasad PD, Ramamoorthy S, Moe AJ, Smith CH, Leibach FH, Ganapathy V (1994) Selective expression of the high-affinity isoform of the folate receptor (FR-alpha) in the human placental syncytiotrophoblast and choriocarcinoma cells. Biochim Biophys Acta 1223:71–75

    Article  PubMed  CAS  Google Scholar 

  • Pullin CH, Bonham JR, McDowell IF, Lee PJ, Powers HJ, Wilson JF, Lewis MJ, Moat SJ (2002) Vitamin C therapy ameliorates vascular endothelial dysfunction in treated patients with homocystinuria. J Inherit Metab Dis 25:107–118

    Article  PubMed  CAS  Google Scholar 

  • Rice-Evans CA, Miller NJ (1994) Total antioxidant status in plasma and body fluids. Methods Enzymol 234:279–293

    Article  PubMed  CAS  Google Scholar 

  • Rimm EB, Willett WC, Hu FB et al (1998) Folate and vitamin B6 from diet and supplements in relation to risk of coronary heart disease among women. J Am Med Assoc 279:359–364

    Article  CAS  Google Scholar 

  • Rogers EJ, Chen SS, Chan A (2007) Folate deficiency and plasma homocysteine during increased oxidative stress. N Engl J Med 357:421–422

    Article  PubMed  CAS  Google Scholar 

  • Robinson K, Arheart K, Refsum H, Brattstrom L, Boers G, Ueland P, Rubba P, Palma-Reis R, Meleady R, Daly L et al. (1998) Low circulating folate and vitamin B6 concentrations: risk factors for stroke, peripheral vascular disease, and coronary artery disease: European COMAC Group. Circulation 97:437–443

    PubMed  CAS  Google Scholar 

  • Rzek BM, Haenen GR, van der Vijgh WJ, Bast A (2003) Tetrahydrofolate and 5-methyltetrahydrofolate are folates with high antioxidant activity. Identification of the antioxidant pharmacophore. FEBS Lett 555:601–605

    Article  CAS  Google Scholar 

  • Said HM, Nguyen TT, Dyer DL, Cowan KH, Rubin SA (1996) Intestinal folate transport: identification of a cDNA involved in folate transport and the functional expression and distribution of its mRNA. Biochim Biophys Acta 1281:164–172

    Article  PubMed  Google Scholar 

  • Schachinger V, Britten MB, Zeiher AM (2000) Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 101:1899–1906

    PubMed  CAS  Google Scholar 

  • Schwartz SM, Siscovick DS, Malinow MR, Rosendaal FR, Beverly RK, Hess DL, Psaty BM, Longstreth WT, Koepsell TD, Raghunathan TE et al. (1997) Myocardial infarction in young women in relation to plasma total homocysteine, folate, and a common variant in the methylenetetrahydrofolate reductase gene. Circulation 96:412–417

    PubMed  CAS  Google Scholar 

  • Scott JM, Weir DG (1981) The methyl folate trap. Lancet 8242:838–840

    Article  Google Scholar 

  • Shane B (1989) Folylpolyglutamate synthesis and role in the regulation of one-carbon metabolism. Vitam Horm 45:263–335

    Article  PubMed  CAS  Google Scholar 

  • Shaw S, Jayatilleke E, Herbert V, Colman N (1989) Cleavage of folates during ethanol metabolism. Biochem J 257:277–280

    PubMed  CAS  Google Scholar 

  • Shidfar F, Homayounfar R, Fereshtehnejad SM, Kalani A (2009) Effect of folate supplementation on serum homocysteine and plasma antioxidant capacity in hyüercholesterolemic adults under lovastatin treatment: a double-blind randomized controlles clinical trial. Arch Med Red 40:380–386

    Article  CAS  Google Scholar 

  • Sies H, Sharov VS, Klotz LO, Briviba K (1997) Glutathione peroxidase protects against peroxynitrite-mediated oxidations. A new function for selenoproteins as peroxynitrite reductase. J Biol Chem 272:27812–27817

    Article  PubMed  CAS  Google Scholar 

  • Sirotnak FM, Tolner B (1999) Carrier-mediated membrane transport of folates in mammalian cells. Annu Rev Nutr 19: 91–122

    Article  PubMed  CAS  Google Scholar 

  • Spijkerman AM, Smulders YM, Kostense PJ, Henry RM, Becker A, Teerlink T, Jakobs C, Dekker JM, Nijpels G, Heine RJ, Bouter LM, Stehouwer CD (2005) S-adenosylmethionine and 5-methyltetrahydrofolate are associated with endothelial function after controlling for confounding by homocysteine: the Hoorn Study. Arterioscler Thromb Vasc Biol 25:778–784

    Article  PubMed  CAS  Google Scholar 

  • Sprecher E, Bergman R, Sprecher H, Maor G, Reiter I, Krivoy N, Drori S, Assaraf YG, Friedman-Birnbaum R (1998) Reduced folate carrier (RFC-1) gene expression in normal and psoriatic skin. Arch Dermatol Res 290:656–660

    Article  PubMed  CAS  Google Scholar 

  • Stanger O (2002) Physiology of folic acid in health and disease. Curr Drug Metab 3:211–223

    Article  PubMed  CAS  Google Scholar 

  • Stanger O, Fowler B, Pietrzik K, Huemer M, Haschke-Becher E, Semmler A, Lorenzl S, Linnebank M (2009) Homocysteine, folate and vitamin B12 in neuropsychiatric diseases: review and treatment recommendations. Expert Rev Neurother 9:1393–1412

    Article  PubMed  CAS  Google Scholar 

  • Stanger O, Herrmann W, Pietrzik K, Fowler B, Geisel J, Dierkes J, Weger M (2003) consensus paper on the rational clinical use of homocysteine, folic acid and B-vitamins in cardiovascular and thrombotic diseases: guidelines and recommendations. Clin Chem Lab Med 41:1392–1403

    Article  PubMed  CAS  Google Scholar 

  • Stanger O, Semmelrock HJ, Wonisch W, Bös U, Pabst E, Wascher TC (2002) Effects of folate treatment and homocysteine lowering on resistance vessel reactivity in atherosclerotic subjects. J Pharmacol Exp Ther 303:158–162

    Article  PubMed  CAS  Google Scholar 

  • Stanger O, Weger M (2003) Interactions of homocysteine, nitric oxide, folate and radicals in the progressively damaged endothelium. Clin Chem Lab Med 41:1444–1454

    Article  PubMed  CAS  Google Scholar 

  • Stanger O, Weger M, Renner W, Konetschny R (2001) Vascular dysfunction in hyperhomocyst(e)inemia. Implications for atherothrombotic disease. Clin Chem Lab Med 39:725–733

    Article  PubMed  CAS  Google Scholar 

  • Steinberg SE, Campbell CL, Hillmann RS (1979) Kinetics of the normal folate enterohepatic cycle. J Clin Invest 64:83–88

    Article  PubMed  CAS  Google Scholar 

  • Stocker P, Lesgards JF, Vidal N, Chalier F, Prost M (2003) ESR study of a biological assay on whole blood: antioxidant efficiency of various vitamins. Biochim Biophys Acta 1621:1–8

    Article  PubMed  CAS  Google Scholar 

  • Stralin P, Karlsson K, Johansson BO, Marklund SL (1996) The interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase. Arterioscler Thromb Vasc Biol 15:2031–2036

    Google Scholar 

  • Stroes ES, van Faassen EE, Yo M, Martasek P, Govers R, Rabelink TJ (2000) Folic acid recerts dysfunction of endothelial nitric oxide synthase. Circ Res 86:1129–1134

    PubMed  CAS  Google Scholar 

  • Suwaidi JA, Hamasaki S, Higano ST, Nishimura RA, Holmes DR, Lerman A (2000) Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation 101:948–954

    PubMed  CAS  Google Scholar 

  • Tatzber F, Griebenow S, Wonisch W, Winkler R (2002) Dual method for the determination of peroxidase activity and total peroxides – iodide leads to a significant increase of peroxidase activity in human sera. Anal Biochem 316:147–153

    Article  CAS  Google Scholar 

  • Tchantchou F (2006) Homocysteine increase folate oxidative brain homocysteine metabolism and various consequences of folate deficiency. J Alzheimers Dis 421–427

    Google Scholar 

  • Ungvari Z, Csiszar A, Bagi Z, Koller A (2002) Impaired NO-mediated flow-induced coronary dilation in hyperhomocysteinemia: morphological and functional evidence for increased peroxynitrite formation. Am J Pathol 161:145–153

    Article  PubMed  CAS  Google Scholar 

  • Ungvari Z, Csiszar A, Edwards JG, Kaminski PM, Wolin MS, Kaley G, Koller A (2003) Increased superoxide production in coronary arteries in hyperhomocysteinemia. Role of tumor necrosis factor-α, NAD(P)H oxidase, and inducible nitric oxide synthase. Arterioscler Thromb Vasc Biol 23:418–424

    Article  PubMed  CAS  Google Scholar 

  • Upchurch GR, Welch GN, Fabian AJ, Freedman JE, Johnson JL, Keaney JF, Loscalzo J (1997) Homocyst(e)ine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase. J Biol Chem 272:17012–17017

    Article  PubMed  CAS  Google Scholar 

  • Usui M, Matsuoka H, Miyazaki H, Ueda S, Okuda S, Imaizumi T (1999) Endothelial dysfunction by acute hyperhomocyst(e)inemia: restoration by folic acid. Clin Sci 96:235–239

    Article  PubMed  CAS  Google Scholar 

  • Verhaar MC, Stroes E, Rabelink TJ (2002) Folates and cardiovascular disease. Arterioscler Thromb Vasc Biol 22:6–13

    Article  PubMed  CAS  Google Scholar 

  • Verhaar MC, Wever RM, Kastelein JJ, van Dam T, Koomans HA, Rabelink TJ (1998) 5-methyltetrahyrofolate, the active form of folic acid, improves endothelial dysfunction in familial hypercholesterolemia. Circulation 97:237–241

    PubMed  CAS  Google Scholar 

  • Verhoef P, Stampfer MJ, Buring JE, Gaziano JM, Allen RH, Stabler SP, Reynolds RD, Kok FJ, Hennekens CH, Willett WC (1996) Homocysteine metabolism and risk of myocardial infarction: relation with vitamins B6, B12, and folate. Am J Epidemiol 143:845–859

    PubMed  CAS  Google Scholar 

  • Verlinde PH, Oey I, Hendrickx ME, van Loey AM, Temme EH (2008) L-ascorbic acid improves the serum folate response to an oraal dose of [6S]-5-methyltetrahydrofolic acid in healthy men. Eur J Clin Nutr 62:1224–1230

    Article  PubMed  CAS  Google Scholar 

  • Voutilainen S, Morrow JD, Roberts LJ, Alfthan G, Alho H, Nyyssönen K, Salonen JT (1999) Enhanced in vivo lipid peroxidation at elevated plasma total homocysteine levels. Arterioscler Thromb Vasc Biol 19:1263–1266

    Article  PubMed  CAS  Google Scholar 

  • Weiss N, Heydrick S, Zhang YY, Bierl C, Loscalzo J (2002) Cellular redox state and endothelial dysfunction in mildly hyperhomocysteinemic cystathionine beta-synthase-deficient mice. Arterioscler Thromb Vasc Biol 22:34–41

    Article  PubMed  CAS  Google Scholar 

  • Weiss N, Zhang YY, Heydrick S, Bierl C, Loscalzo J (2001) Overexpression of cellular glutathione peroxidase rescues homocyst(e)ine-induced endothelial dysfunction. Proc Natl Acad Sci USA 98:12503–12508

    Article  PubMed  CAS  Google Scholar 

  • Widner B, Enzinger C, Laich A, Wirleitner B, Fuchs D (2002) Hyperhomocysteinemia, pteridines and oxidative stress. Curr Drug Metab 3:225–232

    Article  PubMed  CAS  Google Scholar 

  • Widner B, Fuchs D, Leblhuber F, Sperner-Unterweger B (2001) Does disturbed homocysteine and folate metabolism in depression result from enhanced oxidative stress? J Neurol Neurosurg Psychiatr 70:419

    Article  PubMed  CAS  Google Scholar 

  • Wilcken DE, Wang XL, Adachi T, Hara H, Duarte N, Gren K, Wilcken B (2000) Relationship between homocysteine and superoxide dismutase in homocystinuria. Possible relevance to cardiovascular risk. Arterioscler Thromb Vasc Biol 20:1199–1202

    Article  PubMed  CAS  Google Scholar 

  • Wilcken DE, Wilcken B (1997) The natural history of vascular disease in homocystinuria and effects of treatment. J Inherit Metab Dis 20:295–300

    Article  PubMed  CAS  Google Scholar 

  • Wilmink HW, Stroes ES, Erkelens WD, Gerritsen WB, Wever R, Banga JD, Rabelink JD (2000) Influence of folic acid on postprandial endothelial dysfunction. Arterioscler Thromb Vasc Biol 20:185–188

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Wu Y, Song P, Zhang M, Wang S, Zou MH (2007) Proteasome-dependent degradation of guanosine 5′- triphosphate cyclohydrolase I causes tetrahydrobiopterin deficiency in diabetes mellitus. Circulation 116:944–953

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Hara H, Adachi T (2000) Effect of homocysteine on the binding of extracellular-superoxide dismutase on the endothelial cell surface. FEBS Lett 486:159–162

    Article  PubMed  CAS  Google Scholar 

  • Yap S, Boers GH, Wilcken B, Wilcken DE, Brenton DP, Lee PJ, Walter JH, Howard PM, Naughten ER (2001) Vascular outcome in patients with homocystinuria due to cystathionine beta-synthase deficiency treated chronically: a multicenter observational study. Arterioscler Thromb Vasc Biol 21:2080–2085

    Article  PubMed  CAS  Google Scholar 

  • Yap S, Naughten ER, Wilcken B, Wilcken DE, Boers GH (2000) Vascular complications of severe hyperhomocysteinemia in patients with homocystinuria due to cystathionine beta-synthase deficiency: effects of homocysteine-lowering therapy. Semin Thromb Hemost 26:335–340

    Article  PubMed  CAS  Google Scholar 

  • Zeiher AM, Krause T, Schachinger V, Minners J, Moser E (1995) Impaired endothelium-dependent vasodilation of coronary resistance vessels is associated with exercise induced myocardial ischemia. Circulation 91:2345–2352

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Stanger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Stanger, O., Wonisch, W. (2012). Enzymatic and Non-enzymatic Antioxidative Effects of Folic Acid and Its Reduced Derivates. In: Stanger, O. (eds) Water Soluble Vitamins. Subcellular Biochemistry, vol 56. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2199-9_8

Download citation

Publish with us

Policies and ethics