Skip to main content

Submarine Mass Movements and Their Consequences

  • Conference paper
  • First Online:
Submarine Mass Movements and Their Consequences

Abstract

Submarine mass movements represent major offshore geohazards due to their destructive and tsunami-generation potential. This potential poses a threat to human life as well as to coastal, near shore and offshore engineering structures. Recent examples of catastrophic submarine landslide events that affected human populations (including tsunamis) are numerous; e.g., Nice airport in 1979 (Dan et al. 2007), Finneidfjord in 1996 (e.g., L’Heureux et al., this volume, Steiner et al., this volume), Papua-New Guinea in 1998 (Tappin et al. 2001), Stromboli in 2002 (Chiocci et al. 2008), and the 2006 and 2009 failures in the submarine cable network around Taiwan (Hsu et al. 2008). The Great East Japan Earthquake of March 2011 also generated submarine landslides that may have amplified effects of the devastating tsunami as shown in Fryer et al. (2004). Given that 30% of the World’s population lives within 60 km of the coast, the hazard posed by submarine landslides is expected to grow as global sea level rises. In addition, the deposits resulting from such processes provide-various types of constraints to offshore development (Shipp et al. 2004), and have significant implications for non-renewable energy resource exploration and production (Weimer and Shipp 2004; Beaubouef and Abreu 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beaubouef RT, Abreu V (2010) MTCs of the Brazos-Trinity slope system; thoughts on the sequence stratigraphy of MTCs and their possible roles in shaping hydrocarbon traps. In: Mosher DC, Shipp RC, Moscardelli L, Chaytor JD, Baxter CDP, Lee HJ, Urgeles R (eds) Submarine mass movements and their consequences, advances in natural and technological hazards research, vol 28. Springer, Dordrecht, pp 475–490

    Chapter  Google Scholar 

  • Bondevik S, Mangerud J, Dawson S, Dawson A, Lohne Ø (2005) Evidence for three North Sea tsunamis at the Shetland Islands between 8000 and 1500 years ago. Quat Sci Rev 24:1757–1775

    Article  Google Scholar 

  • Bryn P, Berg K, Forsberg CF, Solheim A, Kvalstad TJ (2005) Explaining the Storegga slide. Mar Petrol Geol 22:11–19

    Article  Google Scholar 

  • Camerlenghi A, Urgeles R, Fantoni L (2010) A database on submarine landslides of the Mediterranean Sea. In: Mosher DC, Shipp RC, Moscardelli L, Chaytor JD, Baxter CDP, Lee HJ, Urgeles R (eds) Submarine mass movements and their consequences, advances in natural and technological hazards research, vol 28. Springer, Dordrecht, pp 491–501

    Google Scholar 

  • Casalbore D, Chiocci FL, Scarascia MG, Tommasi P, Sposato A (2011) Flash-flood hyperpycnal flows generating shallow-water landslides at Fiumara mouths in Western Messina Strait (Italy), Mar Geophys Res 32(1–2):257–271. doi: 10.1007/s11001-011-9128-y

    Google Scholar 

  • Chiocci FL, Romagnoli C, Bosman A (2008) Morphologic resilience and depositional processes due to the rapid evolution of the submerged Sciara del Fuoco (Stromboli Island) after the December 2002 submarine slide and tsunami. Geomorphology 100:356–365

    Article  Google Scholar 

  • Dan G, Sultan N, Savoye B (2007) The 1979 Nice harbour catastrophe revisited: trigger mechanism inferred from geotechnical measurements and numerical modelling. Mar Geol 245:40–64

    Article  Google Scholar 

  • Fine IV, Rabinovich AB, Bornhold BD, Thomson RE, Kulikov EA (2005) The Grand Banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modelling. Mar Geol 215:45–57

    Article  Google Scholar 

  • Fjeldskaar W, Lindholm C, Dehls JF, Fjeldskaar I (2000) Postglacial uplift, neotectonics and seismicity in Fennoscandia. Quat Sci Rev 19:1413–1422

    Article  Google Scholar 

  • Fryer GJ, Watts P, Pratson LF (2004) Source of the great tsunami of 1 April 1946: a landslide in the upper Aleutian forearc. Mar Geol 203:201–218

    Article  Google Scholar 

  • Gamboa D, Alves T, Cartwright J, Terrinha P (2010) MTD distribution on a ‘passive’ continental margin: the Espírito Santo Basin (SE Brazil) during the Palaeogene. Mar Petrol Geol 27:1311–1324

    Article  Google Scholar 

  • Gee MJR, Gawthorpe RL, Friedmann SJ (2006) Triggering and evolution of a giant submarine landslide, offshore angola, revealed by 3D seismic stratigraphy and geomorphology. J Sediment Res 76:9–19

    Article  Google Scholar 

  • Grilli ST, Watts P (2005) Tsunami generation by submarine mass failure part I: modeling, experimental validation, and sensitivity analysis. J Waterw Port Coast Ocean Eng 131:283–297

    Article  Google Scholar 

  • Haflidason H, Lien R, Sejrup HP, Forsberg CF, Bryn P (2005) The dating and morphometry of the Storegga slide. Mar Petrol Geol 22:123–136

    Article  Google Scholar 

  • Haugen KB, Løvholt F, Harbitz CB (2005) Fundamental mechanisms for tsunami generation by submarine mass flows in idealised geometries. Mar Petrol Geol 22:209–217

    Article  Google Scholar 

  • Hsu S-K, Kuo J, Lo C-L, Tsai C-H, Doo W-B, Ku C-Y, Sibuet J-C (2008) Turbidity currents, submarine landslides and the 2006 Pingtung earthquake off SW Taiwan. Terr Atmos Ocean Sci 19(6):767–772. doi:10.3319/TAO.2008.19.6.767(PT)

    Article  Google Scholar 

  • Jung W-Y, Vogt PR (2004) Effects of bottom water warming and sea level rise on Holocene hydrate dissociation and mass wasting along the Norwegian-Barents Continental Margin. J Geophys Res 109:B06104. doi:10.1029/2003JB002738

    Article  Google Scholar 

  • Lee HJ (2008) Timing of occurrence of large submarine landslides on the Atlantic Ocean margin. Mar Geol. doi:10.1016/j.margeo.2008.09.009

  • Lee HJ, Syvitsky JPM, Parker G, Orange D, Locat J, Hutton JHW, Imran J (2002) Distinguishing sediment waves from slope failure deposits: field examples, including the “Humboldt Slide” and modelling results. Mar Geol 192:79–104

    Article  Google Scholar 

  • Lee HJ, Locat J, Desgagnés P, Parsons JD, McAdoo BD, Orange DL, Puig P, Wong FL, Dartnell P, Boulanger E (2007) Submarine mass movements on continental margins. In: Nittrouer AC, Austin JA, Field ME, Kravitz JH, Syvitski PM, Wiberg PL (eds) Continental margin sedimentation: from sediment transport to sequence stratigraphy. Blackwell Publishing Ltd., Oxford, pp 213–273

    Google Scholar 

  • Leroueil S, Vaunat J, Picarelli L, Locat J, Lee H, Faure R (1996) Geotechnical characterization of slope movements. In: Proceedings of the international symposium on landslides, Trondheim, 1, 53–74

    Google Scholar 

  • Locat J (2001) Instabilities along ocean margins: a geomorphological and geotechnical perspective. Mar Petrol Geol 18:503–512

    Article  Google Scholar 

  • Locat J, Meinnert J (eds) (2003) Submarine mass movements and their consequences: 1st International symposium: advances in natural and technological hazard research. Kluwer Academic/Springer, Dordrecht, 540 pp

    Google Scholar 

  • Lykousis V, Sakellariou D, Locat J (eds) (2007) Submarine mass movements and their consequences: advances in natural and technological hazard research, vol 27. Springer, Dordrecht, 424 pp

    Google Scholar 

  • McAdoo BG, Capone MK, Minder J (2004) Seafloor geomorphology of convergent margins: implications for Cascadia seismic hazard. Tectonics 23:TC6008. doi:10.1029/2003TC001570

    Article  Google Scholar 

  • Moran K, Farrington S, Massion E, Paull C, Stephen R, Trehu A, Ussler W (2006) SCIMPI: a new seafloor observatory system, OCEANS 2006. IEEE 1–6. doi:10.1109/OCEANS.2006.307103

  • Mosher DC, Shipp RC, Moscardelli L, Chaytor JD, Baxter CDP, Lee HJ, Urgeles R (2010) Submarine mass movements and their consequences: advances in natural and technological hazard research, vol 28. Springer, Dordrecht, 786 pp

    Book  Google Scholar 

  • Nadim F, Kvalstad TJ, Guttormsen T (2005) Quantification of risks associated with seabed instability at Ormen Lange. Mar Petrol Geol 22:311–318

    Article  Google Scholar 

  • Piper DJ, Cochonat P, Morrison ML (1999) The sequence of events around the epicentre of the 1929 Grand Banks earthquake: initiation of debris flows and turbidity current inferred from sidescan sonar. Sedimentology 46:79–97

    Google Scholar 

  • Posamentier HW, Kolla V (2003) Seismic geomorphology and stratigraphy of depositional elements in deep-water settings. J Sediment Res 73:367–388

    Article  Google Scholar 

  • Sakaguchi A, Kimura G, Strasser M, Screaton EJ, Curewitz D, Murayama M (2011) Episodic seafloor mud brecciation due to great subduction zone earthquakes. Geology 39:923–926. doi:10.1130/G32172.1

    Google Scholar 

  • Satake K, Atwater BF (2007) Long-term perspectives on giant earthquakes and tsunamis at subduction zones. Annu Rev Earth Planet Sci 35:349–374

    Article  Google Scholar 

  • Sawyer DE, Flemings PB, Dugan B, Germaine JT (2009) Retrogressive failures recorded in mass transport deposits in the Ursa Basin, Northern Gulf of Mexico. J Geophys Res 114:B10102. doi:10.1029/2008JB006159

    Article  Google Scholar 

  • Shipp RC, Nott JA, Newlin JA (2004) Physical characteristics and impact of mass transport complexes on deepwater jetted conductors and suction anchor piles. In: Offshore technology conference, paper number 16751-MS, DOI: 10.4043/16751-MS

    Google Scholar 

  • Solheim A, Berg K, Forsberg CF, Byrn P (2005) The storegga slide complex: repetitive large scale sliding with similar cause and development. Mar Petrol Geol 22:97–107

    Google Scholar 

  • Solheim A (ed) (2006) Submarine mass movements and their consequences. In: Proceeding of 2nd international conference, Oslo, 2005. Nor J Geol 86:151–372

    Google Scholar 

  • Stigall J, Dugan B (2010) Overpressure and earthquake initiated slope failure in the Ursa region, northern Gulf of Mexico. J Geophys Res 115:B04101

    Article  Google Scholar 

  • Strasser M, Moore GF, Kimura G, Kopf AJ, Underwood MB, Guo J, Screaton EJ (2011) Slumping and mass transport deposition in the Nankai fore arc: evidence from IODP drilling and 3-D reflection seismic data. Geochem Geophys Geosyst 12:Q0AD13

    Article  Google Scholar 

  • Sultan N, Cochonat P, Foucher J-P, Mienert J (2004a) Effect of gas hydrates melting on seafloor slope instability. Mar Geol 213:379–401

    Article  Google Scholar 

  • Sultan N, Cochonat P, Canals M, Cattaneo A, Dennielou B, Haflidason H, Laberg JS, Long D, Mienert J, Urgeles R, Vorren T, Wilson C (2004b) Triggering mechanisms of slope instability processes and sediment failures on continental margins: a geotechnical approach. Mar Geol 213:291–321

    Article  Google Scholar 

  • Sultan N, Gaudin M, Berne S, Canals M, Urgeles R, Lafuerza S (2007) Analysis of slope failures in submarine canyon heads: an example from the Gulf of Lions. J Geophys Res 112: F01009. doi:10.1029/2005JF000408

    Google Scholar 

  • Tappin DR, Watts P, McMurtry GM, Lafoy Y, Matsumoto T (2001) The Sissano, Papua New Guinea tsunami of July 1998 – offshore evidence on the source mechanism. Mar Geol 175:1–23

    Article  Google Scholar 

  • Tinti S, Manucci A, Pagoni A, Armigliato A, Zniboni F (2005) The 30 December 2002 landslide-induced tsunamis in Stromboli: sequence of the events reconstructed from the eyewitness accounts. Nat Hazards Earth Sys Sci 5:763–775

    Article  Google Scholar 

  • Urgeles R, Leynaud D, Lastras G, Canals M, Mienert J (2006) Back-analysis and failure mechanisms of a large submarine slide on the Ebro continental slope, NW Mediterranean. Mar Geol 226:185–206

    Article  Google Scholar 

  • Urgeles R, Cattaneo A, Puig P, Liquete C, De Mol B, Sultan N, Trincardi F, Amblàs D (2011) A review of undulated sediment features on Mediterranean prodeltas: distinguishing sediment transport structures from sediment deformation. Mar Geophys Res. doi:10.1007/s11001-011-9125-1

  • von Huene R, Ranero CR, Watts P (2004) Tsunamigenic slope failure along the Middle America Trench in two tectonic settings. Mar Geol 203:303–317

    Article  Google Scholar 

  • Weimer P, Shipp C (2004) Mass transport complex: musing on past uses and suggestions for future directions. In: Offshore technology conference, paper number 16752-MS, Houston. DOI: 10.4043/16752-MS

    Google Scholar 

  • Yamada Y, Yamashita Y, Yamamoto Y (2010) Submarine landslides at subduction margins: insights from physical models. Tectonophys 484:156–167. doi:10.1016/j.tecto.2009.09.007

    Article  Google Scholar 

  • Zakeri A, Høeg K, Nadim F (2008) Submarine debris flow impact on pipelines – part I: experimental investigation. Coast Eng 55:1209–1218

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Yamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Yamada, Y. et al. (2012). Submarine Mass Movements and Their Consequences. In: Yamada, Y., et al. Submarine Mass Movements and Their Consequences. Advances in Natural and Technological Hazards Research, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2162-3_1

Download citation

Publish with us

Policies and ethics