Skip to main content

Examining the Role of Logic in Teaching Proof

  • Chapter
  • First Online:
Proof and Proving in Mathematics Education

Part of the book series: New ICMI Study Series ((NISS,volume 15))

Abstract

Enhancing the teaching of mathematics in ways that support the development of students’ competence in argumentation and proof calls for increasing teachers’ awareness of the crucial role played by logical reasoning in proof. The chapter examines the relevance of, and interest in, teaching logic in order to foster competence with proof in the mathematics classroom. It reviews various positions on the role of logic in argumentation and proof, taking psychological studies into account, discusses these positions from an educational perspective, and offers some suggestions about how to modify curriculum to help students develop their logical reasoning abilities. A challenge for the future is to develop and implement the suggestions in research programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Ufer et al. (2009) propose a cognitive model based on mental models.

  2. 2.

    A; and “If A, then B”; hence B.

  3. 3.

    Not B; and “If A, then B”; hence not A.

  4. 4.

    If A then B; If B then C; hence If A then C.

  5. 5.

    A or B; not B; hence A.

  6. 6.

    If not A, then both B and not B; hence A.

  7. 7.

    In the academic year 1998–1999, 22 mathematics teachers from various French scientific universities were asked to comment on an invalid proof written by an undergraduate (see Durand-Guerrier and Arsac 2005, pp.159–163).

  8. 8.

    Mathematicians with broad knowledge of mathematical subjects can similarly recall mathematical facts without having to re-derive them, which could be one of the reasons they may underrate the extent to which logic plays a role in their work.

  9. 9.

    In addition, the logical analysis of statements may vary from one natural language to another. For example, in French statements of the form “tous les A ne sont pas B” (“All A are not B”) are ambiguous. Depending on the context, they may mean either “There is an A that is not-B” (existential statement) or “For all A, A is non-B” (universal statement). In written Arabic, however, this ambiguity does not exist (Durand-Guerrier and Ben Kilani 2004). Such issues were discussed in a paper presented at ICMI Study 21: Mathematics Education and Language Diversity, São Paolo, Brazil, September 16–21, 2011.

  10. 10.

    This will be discussed in Sect. 3.4.

  11. 11.

    A theorem-in-action is a mathematical property that a person may not be consciously aware of but may use in certain situations, such as to find an answer to a mathematical question. However, because the property may not apply to all the situations in which the person might try to use it, it could lead to an invalid deduction.

  12. 12.

    These stacked quantifiers may also be described as instances of the dependence rule for variables: in a statement of the form “For all x, there exists y such that F(x, y),” y is dependent on x.

References

  • Barallobres, G. (2007). Introduction à l’algèbre par la généralisation: Problèmes didactiques soulevés. For the learning in mathematics, 27(1), 39–44.

    Google Scholar 

  • Barrier, T., Durand-Guerrier, V. & Blossier, T. (2009). Semantic and game-theoretical insight into argumentation and proof (Vol. 1, pp. 77–82).

    Google Scholar 

  • Bartolini Bussi, M. G., Boni, M., Ferri, F., & Garuti, R. (1999). Early approach to theoretical thinking: Gears in primary school. Educational Studies in Mathematics, 39, 67–87.

    Google Scholar 

  • Battie, V. (2009) Proving in number theory at the transition from secondary to tertiary level: Between organizing and operative dimensions (Vol. 1, pp. 71–76).

    Google Scholar 

  • Blanché, R. (1970). La logique et son histoire. Paris: Armand Colin.

    Google Scholar 

  • Blossier, T., Barrier, T. & Durand-Guerrier, V. (2009). Proof and quantification (Vol. 1, pp. 83–88).

    Google Scholar 

  • Boero, P., Chiappini, G., Garuti, R. & Sibilla, A. (1995). Towards statements and proofs in elementary arithmetic. In Proceedings of PME-XIX (Vol. 3, pp. 129–136). Recife: Universitade Federal de Pernambuco.

    Google Scholar 

  • Boero, P., Douek, N., & Ferrari, P. L. (2008). Developing mastery of natural language: Approach to theoretical aspects of mathematics. In L. English (Ed.), Handbook of international research in mathematics education (pp. 262–295). New York/London: Routledge.

    Google Scholar 

  • Boero, P., Douek, N., Morselli, F., & Pedemonte, B. (2010). Argumentation and proof: A contribution to theoretical perspectives and their classroom implementation. In M. F. F. Pinto & T. F. Kawasaki (Eds.), Proceedings of the 34th conference of the international group for the psychology of mathematics education (Vol. 1, pp. 179–205). Belo Horizonte: PME.

    Google Scholar 

  • Chellougui, F. (2009). L’utilisation des quantificateurs universels et existentiels en première année d’université, entre l’implicite et l’explicite. Recherches en didactique des Mathématiques, 29(2), 123–154.

    Google Scholar 

  • Cheng, P., Holyoak, K., Nisbett, R. E., & Oliver, L. (1986). Pragmatic versus syntactic approaches to training deductive reasoning. Cognitive Psychology, 18, 293–328.

    Google Scholar 

  • Copi, I. (1954). Symbolic logic. New York: The Macmillan Company.

    Google Scholar 

  • Da Costa, N. C. A. (1997). Logiques classiques et non classiques: essai sur les fondements de la logique. Paris: Masson.

    Google Scholar 

  • Deloustal-Jorrand, V. (2004). Studying the mathematical concept of implication through a problem on written proofs, proceedings of the 28th conference of the international group for the psychology of mathematics education (Vol. 2, pp. 263–270). Bergen: Bergen University College.

    Google Scholar 

  • Douek, N. (2003). Les rapports entre l’argumentation et la conceptualisation dans les domaines d’expérience. Thèse, Université ParisV, Paris.

    Google Scholar 

  • Dreyfus, T. (1999). Why Johnny can’t prove. Educational Studies in Mathematics, 38, 85–109.

    Google Scholar 

  • Dubinsky, E., & Yiparaki, O. (2000). On students understanding of AE and EA quantification. Research in Collegiate Mathematics Education IV, CBMS Issues in Mathematics Education, 8, 239–289.

    Google Scholar 

  • Durand-Guerrier, V. (2003). Which notion of implication is the right one ? From logical considerations to a didactic perspective. Educational Studies in Mathematics, 53, 5–34.

    Google Scholar 

  • Durand-Guerrier, V. (2008). Truth versus validity in mathematical proof. ZDM The International Journal on Mathematics Education, 40(3), 373–384.

    Google Scholar 

  • Durand-Guerrier, V., & Arsac, G. (2005). An epistemological and didactic study of a specific calculus reasoning rule. Educational Studies in Mathematics, 60(2), 149–172.

    Google Scholar 

  • Durand-Guerrier, V., & Arsac, G. (2009). Analysis of mathematical proofs: Some questions and first answers (Vol. 1, pp. 148–153).

    Google Scholar 

  • Durand-Guerrier, V., & Ben Kilani, I. (2004). Négation grammaticale versus négation logique dans l’apprentissage des mathématiques. Exemple dans l’enseignement secondaire Tunisien, Les Cahiers du Français Contemporain, 9, 29–55.

    Google Scholar 

  • Duval, R. (1991). Structure du raisonnement déductif et apprentissage de la démonstration. Educational Studies in Mathematics, 22(3), 233–262.

    Google Scholar 

  • Epp, S. (2003). The role of logic in teaching proof. The American Mathematical Monthly, 110(10), 886–899.

    Google Scholar 

  • Epp, S. (2009). Proof issues with existential quantification (Vol. 1, pp. 154–159).

    Google Scholar 

  • Frege, G. (1882). Uber die Wissenschaftliche Berechtigung einer Begriffschrift. Zeitschrift fûr Philosophy und Philosophische kritik Nf, 81, 48–56.

    Google Scholar 

  • Gentzen, G. (1934). Untersuchungen über das logische Schließen. Mathematische Zeitschrift, 39(2), 176–210.

    Google Scholar 

  • Grenier, D., & Payan, C. (1998). Spécificités de la preuve et de la modélisation en mathématiques discrètes. Recherches en didactiques des mathématiques, 18(1), 59–99.

    Google Scholar 

  • Habermas, J. (2003). Truth and justification. Cambridge: MIT Press.

    Google Scholar 

  • Hanna, G. (2000). Proof, explanation and exploration: An overview. Educational Studies in Mathematics, 44, 5–23.

    Google Scholar 

  • Hintikka, J. (1996). The principles of mathematics revisited. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hitt, F. (2006). L’argumentation, la preuve et la démonstration dans la construction des mathématiques: des entités conflictuelles ? Une lettre de Godefroy Guillaume Leibnitz à Chrétien Wolf (1713). In D. Tanguay (Ed.), Actes du colloque du Groupe des didacticiens des mathématiques du Québec (pp. 135–146). Montréal: Université du Québec à Montréal.

    Google Scholar 

  • Houzel, C. (1996). Analyse mathématique. Cours et exercices. Paris: Belin.

    Google Scholar 

  • Johnson-Laird, P. N. (1975). Models of deduction’. In R. J. Falmagne (Ed.), Reasoning: Representation and process in children and adults (pp. 7–54). Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Johnson-Laird, P. N. (1986). Reasoning without logic. In T. Meyers, K. Brown, & B. McGonigle (Eds.), Reasoning and discourse processes (pp. 14–49). London: Academic.

    Google Scholar 

  • Johnson-Laird, P. N., Legrenzi, P., & Legrenzi, M. (1972). Reasoning and a sense of reality. British Journal of Psychology, 63(3), 395–400.

    Google Scholar 

  • Kieran, C., Drijvers, P., Boileau, A., Hitt, F., Tanguay, D., Saldanha, L., & Guzmán, J. (2006). Learning about equivalence, equality, and equation in a CAS environment: The interaction of machine techniques, paper-and-pencil techniques, and theorizing. In C. Hoyles, J. Lagrange, LH Son, & N. Sinclair (Eds.), Proceedings for the Seventeenth ICMI Study Conference: Technology Revisited, Hanoi : Hanoi University of Technology.

    Google Scholar 

  • Lakatos, I. (1976). Proofs and refutations. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lee, K. & Smith III, J.P. (2009). Cognitive and linguistic challenges in understanding proving (Vol. 2, pp. 21–26).

    Google Scholar 

  • Luria, A. R. (1976). The Cognitive Development: Its Cultural and Social Foundations. London: Harvard University Press.

    Google Scholar 

  • Mamona-Downs, J. & Downs, M. (2009). Proof status from a perspective of articulation (Vol. 2, pp. 94–99).

    Google Scholar 

  • Mariotti, A. (2006). Proof and proving in mathematics education. In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: Past, present and future (pp. 173–204). Rotterdam/Taipei: Sense.

    Google Scholar 

  • Mason, J. (2010). Mathematics education: Theory, practice & memories over 50 years. For the Learning of Mathematics, 30(3), 3–9.

    Google Scholar 

  • Moore, R. C. (1994). Making the transition to formal proof. Educational Studies in Mathematics, 27, 249–266.

    Google Scholar 

  • Morselli, F. & Boero, P. (2009). Habermas’ construct of rational behaviour as a comprehensive frame for research on the teaching and learning of proof (Vol. 2, pp. 100–105).

    Google Scholar 

  • Norenzayan, C., & Peng. (2007). Perception and cognition. In S. Kitayama & D. Cohen (Eds.), Handbook of cultural psychology (pp. 569–594). New York: The Guilford Press.

    Google Scholar 

  • Noveck, I. A., Lea, R. B., Davidson, G. M., & O’Brien, D. P. (1991). Human reasoning is both logical and pragmatic. Intellectica, 11, 81–109.

    Google Scholar 

  • Pólya, G. (1954). Mathematics and plausible reasoning: Volume 1: Induction and analogy in mathematics. Vol. 2: Patterns of plausible inference. Princeton: Princeton University Press.

    Google Scholar 

  • Quine, W. V. (1982). Methods of logic (4th ed., 1st ed. 1950). New York: Holt, Rinehart & Winston.

    Google Scholar 

  • Roh. (2009). Students’ understanding and use of logic in evaluation of proofs about convergence (Vol. 2, pp. 148–153).

    Google Scholar 

  • Selden, A., & Selden, J. (1995). Unpacking the logic of mathematical statements. Educational Studies in Mathematics, 29, 123–151.

    Google Scholar 

  • Simpson, A. (1995). Developing a proving attitude. Conference Proceedings: Justifying and Proving in School Mathematics (pp. 39–46). London: Institute of Education, University of London.

    Google Scholar 

  • Sinaceur, H. (2001). Alfred Tarski, semantic shift, heuristic shift in metamathematics. Synthese, 126, 49–65.

    Google Scholar 

  • Stenning, K., & Lambalgen, M. V. (2008). Human reasoning and cognitive science. Cambridge: Bradfors Books.

    Google Scholar 

  • Stenning, K., Cox, R., & Oberlander, J. (1995). Contrasting the cognitive effects of graphical and sentential logic teaching: Reasoning, representation and individual differences. Language and Cognitive Processes, 10(3–4), 333–354.

    Google Scholar 

  • Tarski, A. (1944). The semantic conception of truth. Philosophy and Phenomenological Research, 4, 13–47.

    Google Scholar 

  • Tarski, A. (1983). Logic, semantics and metamathematics, papers from 1923 to 1938. Indianapolis: John Corcoran.

    Google Scholar 

  • Thom, R. (1974). Mathématiques modernes et mathématiques de toujours, suivi de Les mathématiques « modernes », une erreur pédagogique et philosophique ? In R. Jaulin (Ed.), Pourquoi la mathématique ? (pp. 39–88). Paris: Éditions 10–18.

    Google Scholar 

  • Thurston, W. P. (1994). On proof and progress in mathematics. Bulletin of the American Mathematical Society, 30(2), 161–177.

    Google Scholar 

  • Ufer, S., Heinze, A. & Reiss, K.(2009). What happens in students minds when constructing a geometric proof ? A cognitive model based on mental models (Vol. 2, pp. 239–244).

    Google Scholar 

  • van der Pal, J., & Eysink, T. (1999). Balancing situativity and formality: The importance of relating a formal language to interactive graphics in logic instruction. Learning and Instruction, 9(4), 327–341.

    Google Scholar 

  • Vergnaud, G. (1990). La théorie des champs conceptuels. Recherches en didactique des mathématiques, 10(2), 133–170.

    Google Scholar 

  • Vygotsky, L. S. (1986). Thought and language (2nd ed.). Cambridge: MIT Press.

    Google Scholar 

  • Wason, P. C. (1966). Reasoning. In I. B. M. Foss (Ed.), New horizons in psychology. Harmondsworth: Penguin.

    Google Scholar 

  • Wason, P. C. (1977). Self-contradictions. In P. N. Johnson-Laird & P. C. Wason (Eds.), Thinking: Readings in cognitive science (pp. 114–128). New York: Cambridge University Press.

    Google Scholar 

  • Wittgenstein, L. (1921). Annalen der naturphilosophie [Tractatus logico-philosophicus], Leipzig (Ed. & Trans.). London: Routledge and Kegan Paul Ltd.

    Google Scholar 

Download references

Acknowledgements

We wish to thank the members of Working Group 2: Thomas Barrier, Thomas Blossier, Paolo Boero, Nadia Douek, Viviane Durand-Guerrier, Susanna Epp, Hui-yu Hsu, Kosze Lee, Juan Pablo Mejia-Ramos, Shintaro Otsuku, Cristina Sabena, Carmen Samper, Denis Tanguay, Yosuke Tsujiyama, Stefan Ufer, and Michelle Wilkerson-Jerde.

We are grateful for the support of the Institut de Mathématiques et de Modélisation de Montpellier, Université Montpellier 2 (France), IUFM C. Freinet, Université de Nice (France), Università di Genova (Italy), DePaul University (USA), and the Fonds québécois de recherche sur la société et la culture (FQRSC, Grant #2007-NP-116155 and Grant #2007-SE-118696).

We also thank the editors and the reviewers for their helpful feedback on earlier versions of these chapters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viviane Durand-Guerrier .

Editor information

Editors and Affiliations

Additional information

 NB: References marked with * are in Lin, F. L., Hsieh, F. J., Hanna, G. & de Villiers M. (Eds.) (2009). ICMI Study 19: Proof and proving in mathematics education. Taipei, Taiwan: The Department of Mathematics, National Taiwan Normal University.

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Durand-Guerrier, V., Boero, P., Douek, N., Epp, S.S., Tanguay, D. (2012). Examining the Role of Logic in Teaching Proof. In: Hanna, G., de Villiers, M. (eds) Proof and Proving in Mathematics Education. New ICMI Study Series, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2129-6_16

Download citation

Publish with us

Policies and ethics