Skip to main content

Abstract

The exact solutions of the non-relativistic and relativistic equations with a Coulomb field have been the subject both in quantum mechanics and in classical mechanics. The well-known exact solutions in almost all textbooks are important achievements at the beginning stage of quantum mechanics, which provided a strong evidence in favor of the quantum theory being correct. In this Chapter, we shall study its exact solutions, the shift operators, the mapping between the Coulomb potential and harmonic oscillator radial functions, the realization of the dynamic algebra su(1,1) and its generalized case, i.e., the Coulomb potential plus an inverse squared potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To show this formula explicitly, we want to derive it in more detail. It is shown from Eqs. (7.33) and (7.35) that

    (7.36)

    which can be further modified to

    (7.37)

    from which, together with Eq. (7.35) again, we have

    (7.38)

    Moreover, this equation can be rewritten as

    (7.39)

    Using Eq. (7.35) once again, we have

    $$ (\alpha-1)L_{n+1}^{\alpha}(y)-(n+\alpha)L_{n+1}^{\alpha-2}(y)-(\alpha+y-1)L_{n}^{\alpha}(y)=0,$$
    (7.40)

    which is nothing but Eq. (7.41).

References

  1. Schiff, L.I.: Quantum Mechanics, 3rd edn. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  2. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics-Nonrelativistic Theory, 3rd edn. Pergamon, New York (1977)

    Google Scholar 

  3. Dong, S.H.: Factorization Method in Quantum Mechanics. Springer, Netherlands (2007)

    MATH  Google Scholar 

  4. Al-Jaber, S.M.: Quantization of angular momentum in the N-dimensional space. Nuovo Cimento B 110, 993–995 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  5. Kostelecky, V.A., Nieto, M.M., Truax, D.R.: Supersymmetry and the relationship between the Coulomb and oscillator problems in arbitrary dimensions. Phys. Rev. D 32, 2627–2633 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  6. Lévai, G., Kónya, B., Papp, Z.: Unified treatment of the Coulomb and harmonic oscillator potentials in D dimensions. J. Math. Phys. 39, 5811 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Bender, C.M., Boettcher, S.: Dimensional expansion for the Ising limit of quantum field theory. Phys. Rev. D 48, 4919–4923 (1993)

    Article  ADS  Google Scholar 

  8. Bender, C.M., Milton, K.A.: Scalar Casimir effect for a D-dimensional sphere. Phys. Rev. D 50, 6547–6555 (1994)

    Article  ADS  Google Scholar 

  9. Romeo, A.: Multidimensional extension of a Wentzel-Kramers-Brillouin improvement for spherical quantum billiard zeta functions. J. Math. Phys. 36, 4005 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Hosoya, H.: Hierarchical structure of the atomic orbital wavefunctions of D-dimensional atom. J. Phys. Chem. 101, 418–421 (1997)

    Google Scholar 

  11. Nieto, M.M.: Hydrogen atom and relativistic pi-mesic atom in N-space dimensions. Am. J. Phys. 47, 1067 (1979)

    Article  ADS  Google Scholar 

  12. Lin, D.H.: The path integration of a relativistic particle on a D-dimensional sphere. J. Phys. A, Math. Gen. 30, 3201 (1997)

    Article  ADS  MATH  Google Scholar 

  13. Wybourne, B.G.: Classical Groups for Physicists. Wiley, New York (1974)

    MATH  Google Scholar 

  14. Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series, and Products, 5th edn. Pergamon, New York (1994)

    Google Scholar 

  15. Gur, Y., Mann, A.: Radial coherent states—from the harmonic oscillator to the hydrogen atom. Phys. At. Nucl. 68, 1700–1708 (2005)

    Article  MathSciNet  Google Scholar 

  16. Tangherlini, F.R.: Schwarzschild field in n dimensions and the dimensionality of space problem. Nuovo Cimento XXVII, 636–651 (1963)

    MathSciNet  Google Scholar 

  17. Dong, S.H., Sun, G.H.: The Schrödinger equation with a Coulomb plus inverse-square potential in D dimensions. Phys. Scr. 70, 94–97 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Ehrenfest, P.: What way does it become manifest in the fundamental laws of physics that space has three dimensions? Proc. Amst. Acad. 20, 200–209 (1917)

    Google Scholar 

  19. Ehrenfest, P.: Welche Rolle spielt die Dimensionalität des Raumes in den Grundgesetzen der Physik? Ann. Phys. (Leipz.) 61, 440 (1920)

    Article  ADS  Google Scholar 

  20. Nieto, M.M., Simmons Jr., L.M.: Eigenstates, coherent states, and uncertainty products for the Morse oscillator. Phys. Rev. A 19, 438–444 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  21. Aebersold, D., Biedenharn, L.C.: Cautionary remark on applying symmetry techniques to the Coulomb problem. Phys. Rev. A 15, 441–443 (1977)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Hai Dong .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dong, SH. (2011). Coulomb Potential. In: Wave Equations in Higher Dimensions. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1917-0_7

Download citation

Publish with us

Policies and ethics