Skip to main content

Genetic Mechanisms of Drought Stress Tolerance, Implications of Transgenic Crops for Agriculture

  • Chapter
  • First Online:
Agroecology and Strategies for Climate Change

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 8))

Abstract

This chapter review effects of drought stress on plants, and presents a list of transgenic plants tolerating drought stress. Many abiotic and biotic stresses are regularly affecting agricultural production. None are now under direct human control. Abiotic stresses such as drought, extreme temperature and salinity have clearly changed crops growth and yields in last two decades. Drought stress is the major stress affecting crop growth, development and yields. Drought stress may leave the lands barren for years to come if not taken care of at the right time. Drought is a major phenomenon leading to major crop losses. We can see the degree of drought stress severity on plants by symptoms and effects on physiological metabolisms and yield. Many symptoms of drought stress are clear such as leaf rolling, yellowing (chlorosis), browning and wilting. At the physiological level, drought stress alters the complete physiology and metabolism of plants. Drought stress modifies photosynthetic rate, relative water content, leaf water potential, and stomata conductance. Ultimately, it destabilizes the membrane structure and permeability, protein ­structure and function, leading to cell death.

We reviewed the severity of drought stress and molecular mechanisms adopted by plants. Plants can escape, avoid or tolerate drought stress using unusual mechanisms. Tolerance against drought is provided either directly through metabolites like trehalose, mannitol, glycinebetaine or indirectly through regulation of gene expression by ­transcription factors and kinases in signal transduction. The molecular response of plants to drought stress has been often considered as a complex process mainly based on the modulation of transcriptional activity of stress-related genes. Understanding the mechanisms behind these molecules and genes is needed for their usage in developing transgenics that would withstand drought stress and improve the agriculture productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ROS:

reactive oxygen species

SOD:

superoxide dismutase

CAT:

catalase

POD:

peroxidases

GDH:

Glutamate dehydrogenase

TPS:

trehalose phosphate synthase

GSMT:

glycine sarcosine methyltransferase

DMT:

dimethyl glycine methyltransferase

COX:

choline oxidase

CODA:

choline dehydrogenase

ADC:

arginine decarboxylase

SPDS:

spermidine synthase

ODC:

ornithine decarboxylase

SAMDC:

S-adenosyl-methionine decarboxylase

P5CS:

pyrroline-5-carboxylate synthetase

PEG:

polyethylene glycol

IMT:

myoinositol O-methyl transferase

LEA:

late embryogenesis abundant

HSP:

heat shock protein

DREB:

dehydration-responsive element binding protein

CBF:

C-repeat binding factor

CDPK:

calcium dependent protein kinase

MAPK:

mitogen activated protein kinase

CBL:

calcineurin B-like protein

TF:

transcription factors

ERA1:

enhanced response to ABA 1 farnesyltransferase

References

  • Aharoni A, Dixit S, Jetter R, Thoenes E, Van Arkel G, Pereira A (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16:2463–2480

    PubMed  CAS  Google Scholar 

  • Ali-Benali MA, Alary R, Joudrier P, Gautier MF (2005) Comparative expression of five LEA genes during wheat seed development and in response to abiotic stresses by real-time quantitative RT-PCR. Biochem Biophys Acta 1730:56–65

    PubMed  CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    PubMed  CAS  Google Scholar 

  • Babu RC, Jang ZX, Blum A, Ho THD, Wu R, Nguyen HT (2004) HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci 166:855–864

    CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    CAS  Google Scholar 

  • Beck EH, Fettig S, Knake C, Hartig K, Bhattarai T (2007) Specific and unspecific responses of plants to cold and drought stress. J Biosci 32:501–510

    PubMed  CAS  Google Scholar 

  • Bianchi G, Gamba A, Limiroli R, Pozzi N, Elster R, Salamini F, Bartels D (1993) The unusual sugar composition in leaves of the resurrection plant Myrothamnus flabellifolia. Plant Physiol 87:223–226

    CAS  Google Scholar 

  • Boudsocq M, Lauriere C (2005) Osmotic signaling in plants: multiple pathways mediated by emerging kinase families. Plant Physiol 138:1185–1194

    PubMed  CAS  Google Scholar 

  • Bressan R, Bohnert H, Zhu JK (2009) Abiotic stress tolerance: from gene discovery in model organisms to crop improvement. Mol Plant 2:1–2

    PubMed  CAS  Google Scholar 

  • Browne J, Tunnacliffe A, Burnell A (2002) Plant dessication gene found in a nematode. Nature 416:38

    PubMed  CAS  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci USA 101:9909–9914

    PubMed  CAS  Google Scholar 

  • Catani MV, Rossi A, Costanzo A, Sabatini S, Levrero M, Melino G, Avigliano L (2001) Induction of gene expression via activator protein-1 in the ascorbate protection against UV-induced damage. Biochem J 356:77–85

    PubMed  CAS  Google Scholar 

  • Chen TH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    PubMed  CAS  Google Scholar 

  • Cheong YH, Kim KN, Pandey GK, Gupta R, Grant JJ, Luan S (2003) CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell 15:1833–1845

    PubMed  CAS  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signaling in plants. J Exp Bot 55:225–236

    PubMed  CAS  Google Scholar 

  • Close TJ (1997) Dehydrins: a commonality in the response of plants to dehydration and low temperature. Plant Physiol 100:291–296

    CAS  Google Scholar 

  • Colaco C, Sen S, Thangavelu M, Pinder S, Roser B (1992) Extraordinary stability of enzymes dried in trehalose: simplified molecular biology. Nat Biotechnol 10:1007–1011

    CAS  Google Scholar 

  • Colaco K, Kampinga J, Roser B (1995) Amorphous stability and trehalose. Science 268:788–789

    PubMed  CAS  Google Scholar 

  • Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Leonhardt N, Dellaporta SL, Tonelli C (2005) A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol 15:1196–1200

    PubMed  CAS  Google Scholar 

  • Cortina C, Culianez-Macia F (2005) Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Sci 169:75–82

    CAS  Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosys. Annu Rev Physiol 54:579–599

    PubMed  CAS  Google Scholar 

  • De Vigilio C, Hottinger T, Dominguez J, Boller T, Wiekman A (1994) The role of trehalose synthesis for the acquisition of thermotolerance in yeast I. Genetic evidence that trehalose is a thermoprotectant. Eur J Biochem 219:179–186

    Google Scholar 

  • Debel K, Eberhard D, Kloppstech K (1995) Light stress: its effect on expression of small organellar heat-shock proteins in plants. Cues to their function? In: Leigh RA, Metchteld Blake-Kalff MA (eds) Proceedings of the second STRESSNET conference. European Commission: Directorate General VI, pp 29–34

    Google Scholar 

  • Descenzo RA, Minocha SC (1993) Modulation of cellular polyamines in tobacco by transfer and expression of mouse ornithine decarboxylase cDNA. Plant Mol Biol 22:113–127

    PubMed  CAS  Google Scholar 

  • Dobra J, Motyka V, Dobrev P, Malbeck J, Prasil IT, Haisel D, Gaudinova A, Havlova M, Gubis J, Vankova R (2010) Comparison of hormonal responses to heat, drought and combined stress in tobacco plants with elevated proline content. J Plant Physiol 167:1360–1370

    PubMed  CAS  Google Scholar 

  • Drennan PM, Smith MT, Goldsworthy D, Van Staden J (1993) The occurence of trehalose in the leaves of the dessication-tolerant angiosperm Myrothamnus flabellifolius Welw. J Plant Physiol 142:493–496

    CAS  Google Scholar 

  • Elbein A (1974) The metabolism of alpha-alpha-trehalose. Adv Carbohydr Chem Biochem 30:227–256

    PubMed  CAS  Google Scholar 

  • Eleutherio ECA, Araujo PS, Panek AD (1993) Protective role of trehalose during heat stress in Saccharomyces cerevisiae. Cryobiology 30:591–596

    PubMed  CAS  Google Scholar 

  • Escalona JM, Flexas J, Medrano H (1999) Stomatal and non-stomatal limitations of photo­synthesis under water stress in field-grown grapevines photosynthesis. Aust J Plant Physiol 26:421–433

    Google Scholar 

  • Flower DJ, Ludlow MM (1986) Contribution of osmotic adjustment to dehydration tolerance of water-stressed pigeon-pea (Cajanus cajan (L.) millsp.) leaves. Plant Cell Environ 9:33–40

    Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    PubMed  CAS  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    PubMed  CAS  Google Scholar 

  • Foyer CH, Descourvieres P, Kunert KJ (1994) Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ 17:507–523

    CAS  Google Scholar 

  • Fu D, Huang B, Xiao Y, Muthukrishnan S, Liang GH (2007) Overexpression of barley hva1 gene in creeping bentgrass for improving drought tolerance. Plant Cell Rep 26:467–477

    PubMed  CAS  Google Scholar 

  • Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2006) Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci USA 103:1988–1993

    PubMed  CAS  Google Scholar 

  • Gal TZ, Glazer I, Koltai H (2004) An LEA group 3 family member is involved in survival of C. elegans during exposure to stress. FEBS Lett 577:21–26

    PubMed  CAS  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to abiotic stresses. Proc Natl Acad Sci USA 99:15898–15903

    PubMed  CAS  Google Scholar 

  • Goddijn OJM, Verwoerd TC, Voogd E, Krutwagen PWHH, Degraaf PTHM, Poels J, Vandun K, Ponstein AS, Damm B, Pen J (1997) Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. Plant Physiol 113:181–190

    PubMed  CAS  Google Scholar 

  • Goel D, Singh AK, Yadav V, Babbar SB, Bansal KC (2010) Overexpression of osmotin gene confers tolerance to salt and drought stresses in transgenic tomato (Solanum lycopersicum L.). Protoplasma 245:133–141

    PubMed  CAS  Google Scholar 

  • Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157

    PubMed  CAS  Google Scholar 

  • Hamill JD, Robins RJ, Parr AJ, Evans DM, Furze JM, Rhodes MJC (1990) Overexpressing a yeast ornithine decarboxylase gene in transgenic roots of Nicotiana rustica can lead to enhanced nicotine accumulation. Plant Mol Biol 15:27–38

    PubMed  CAS  Google Scholar 

  • Harayama H, Ikeda T, Ishida A, Yamamoto S (2006) Seasonal variations in water relations in current-year leaves of evergreen trees with delayed greening. Tree Physiol 26:1025–1033

    PubMed  Google Scholar 

  • Heckathorn SA, Downs CA, Sharkey TD, Coleman JS (1998) The small, methionine-rich chloroplast heat-shock protein protects photosystem II electron transport during heat stress. Plant Physiol 116:439–444

    PubMed  CAS  Google Scholar 

  • Hendry GAF, Finchsavage WE, Thorpe PC, Atherton NM, Buckland SM, Nilsson KA, Seel WE (1992) Free radical processes and loss of seed viability during dessication in the recalcitrant species Quercus robur L. New Phytol 122:273–279

    CAS  Google Scholar 

  • Herve P, Serraj R (2009) Gene technology and drought: a simple solution for a complex trait. Afr J Biotechnol 8:1740–1749

    CAS  Google Scholar 

  • Hey SJ, Byrne E, Halford NG (2010) The interface between metabolic and stress signaling. Ann Bot 105:197–203

    PubMed  CAS  Google Scholar 

  • Hincha DK, Hagemann M (2004) Stabilization of model membranes during drying by compatible solutes involved in the stress tolerance of plants and microorganisms. Biochem J 383:277–283

    PubMed  CAS  Google Scholar 

  • Holmstrom KO, Welin B, Mandal A, Kristiansdottir I, Teeri TH, Lamark T, Strom AR, Palva ET (1994) Production of the Escherichia coli betaine-aldehyde dehydrogenase, an enzyme required for the synthesis of the osmoprotectant glycine betaine, in transgenic plants. Plant J 6:749–758

    PubMed  CAS  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992

    PubMed  CAS  Google Scholar 

  • Huh SM, Noh EK, Kim HG, Jeon BW, Bae K, Hu HC, Kwak JM, Park OK (2010) Arabidopsis annexins AnnAt1 and AnnAt4 interact with each other and regulate drought and salt stress responses. Plant Cell Physiol 51:1499–1514

    PubMed  CAS  Google Scholar 

  • Iordachescu M, Imai R (2008) Trehalose biosynthesis in response to abiotic stresses. J Integr Plant Biol 50:1223–1229

    PubMed  CAS  Google Scholar 

  • Ishikawa M, Soyano T, Nishihama R, Machida Y (2002) The NPK1 mitogen-activated protein kinase kinase kinase contains a functional nuclear localization signal at the binding site for the NACK1 kinesin-like protein. Plant J 32:789–798

    PubMed  CAS  Google Scholar 

  • Iwahashi H, Obuchi K, Fujii S, Komatsu Y (1995) The correlative evidence suggesting that trehalose stabilizes membrane-structure in the yeast Saccharomyces cerevisiae. Cell Mol Biol 41:763–769

    PubMed  CAS  Google Scholar 

  • Jin S, Rozina H, Ling Z, He C, Selvaraj G, Wu R (2006) Evaluation of the stress inducible production of choline oxidase in transgenic rice as a strategy for producing the stress protectant glycine betaine. J Exp Bot 57:1129–1135

    Google Scholar 

  • Jun SS, Yang JY, Choi HJ, Kim NR, Park MC, Hong YN (2005) Altered physiology in trehalose producing transgenic tobacco plants: enhanced tolerance to drought and salinity stresses. J Plant Biol 48:456–466

    CAS  Google Scholar 

  • Karakas B, Ozias-Akins P, Stushnoff C, Suefferheld M, Rieger M (1997) Salinity and drought tolerance of mannitol-accumulating transgenic tobacco. Plant Cell Environ 20:609–616

    Google Scholar 

  • Karim S, Aronsson H, Ericson H, Pirhonen M, Leyman B, Welin B, Mantyla E, Palva ET, Dijck PV, Holmstrom KO (2007) Improved drought tolerance without undesired side effects in transgenic plants producing trehalose. Plant Mol Biol 64:371–386

    PubMed  CAS  Google Scholar 

  • Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350

    PubMed  CAS  Google Scholar 

  • Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and upregulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712–722

    PubMed  CAS  Google Scholar 

  • Katiyar-Agarwal S, Agarwal M, Grover A (2003) Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Mol Biol 51:677–686

    PubMed  CAS  Google Scholar 

  • Kerr RA (2010) Climate change. El Niño lends more confidence to strong global warming. Science 330:1465

    PubMed  CAS  Google Scholar 

  • Kim SH, Hong JK, Lee SC, Sohn KH, Jung HW, Hwang BK (2004a) CAZFP1, cys2/His2- type zinc-finger transcription factor gene functions as a pathogen-induced early-defense gene in Capsicum annuum. Plant Mol Biol 55:883–904

    PubMed  CAS  Google Scholar 

  • Kim S, Kang JY, Cho DI, Park JH, Kim SY (2004b) ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J 40:75–87

    PubMed  CAS  Google Scholar 

  • Kishor PBK, Hong Z, Miao GH, Hu CAA, Verma DPS (1995) Overexpression of [Delta]-Pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    PubMed  CAS  Google Scholar 

  • Kosmas SA, Argyrokastritis A, Loukas MG, Eliopoulos E, Tsakas S, Kaltsikes PJ (2006) Isolation and characterization of drought-related trehalose 6-phosphate-synthase gene from cultivated cotton (Gossypium hirsutum L.). Planta 223:329–339

    PubMed  CAS  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97:2940–2945

    PubMed  CAS  Google Scholar 

  • Laporte MM, Shen B, Tarczynski MC (2002) Engineering for drought avoidance: expression of maize NADP-malic enzyme in tobacco results in altered stomatal function. J Exp Bot 53:699–705

    PubMed  CAS  Google Scholar 

  • Lee SB, Kwon HB, Kwon SJ, Park SC, Jeong MJ, Han SE, Byun MO, Daniell H (2003) Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Mol Breed 11:1–13

    CAS  Google Scholar 

  • Li QL, Gao XR, Yu XH, Wang XZ, An LJ (2003) Molecular cloning and characterization of betaine aldehyde dehydrogenase gene from Suaeda liaotungensis and its use in improved tolerance to salinity in transgenic tobacco. Biotechnol Lett 25:1431–1436

    PubMed  CAS  Google Scholar 

  • Lian HL, Yu X, Ye Q, Ding XS, Kitagawa Y, Kwak SS, Su W-A, Tang ZC (2004) The role of aquaporin RWC3 in drought avoidance in rice. Plant Cell Physiol 45:481–489

    PubMed  CAS  Google Scholar 

  • Liang CY, Xi Y, Shu J, Li J, Yang JL, Che KP, Jin DM, Liu XL, Weng ML, He YK, Wang B (2004) Construction of a BAC library of Physcomitrella patens and isolation of a LEA gene. Plant Sci 167:491–498

    CAS  Google Scholar 

  • Lightfoot DA, Mungur R, Amaziane R, Nolte S, Long L, Bernhard K, Colter A, Jones K, Iqbal MJ, Varsa E, Young B (2007) Improved drought tolerance of transgenic Zea mays plants that express the glutamate dehydrogenase gene (gdhA) of E. coli. Euphytica 156:103–116

    CAS  Google Scholar 

  • Mackenzie KF, Singh KK, Brown AD (1988) Water stress plating hypersensivity of yeasts: protective role of trehalose in Saccharomyces cerevisiae. J Gen Microbiol 134:1661–1666

    PubMed  CAS  Google Scholar 

  • Maestri E, Klueva N, Perrotta C, Gulli M, Nguyen HT, Marmiroli N (2002) Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol Biol 48:667–681

    PubMed  CAS  Google Scholar 

  • Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J 38:982–993

    PubMed  CAS  Google Scholar 

  • Mathews EV, Van Volkenburgh E, Boyer JS (1984) Acclimation of leaf growth to low water potentials in sunflower. Plant Cell Environ 7:199–206

    Google Scholar 

  • Meric L, Lambert-Guilois S, Neyreneuf O, Richard-Molard D (1995) Cryoresistance in baker’s yeast Saccharomyces cerevisiae in frozen dough: contribution of cellular trehalose. Cereal Chem 72:609–615

    CAS  Google Scholar 

  • Mitra J (2001) Genetics and genetic improvement of drought resistance in crop plants. Curr Sci 80:758–763

    CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    PubMed  CAS  Google Scholar 

  • Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG, Hinchey BS, Kumimoto RW, Maszle DR, Canales RD, Krolikowski KA, Dotson SB, Gutterson N, Ratcliffe OJ, Heard JE (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci USA 104:16450–16455

    PubMed  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    PubMed  CAS  Google Scholar 

  • Noh E, Minocha SC (1994) Expression of a human S-adenosylmethionine decarboxylase in transgenic tobacco and its effect on polyamine biosynthesis. Transgenic Res 3:26–35

    PubMed  CAS  Google Scholar 

  • Novillo F, Alonso JM, Ecker JR, Salinas J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance Arabidopsis. Proc Natl Acad Sci USA 101:3985–3990

    PubMed  CAS  Google Scholar 

  • Nyyssola A, Kerovuo J, Kaukinen P, Von Weymarn N, Reinikainen T (2000) Extreme halophiles synthesize betaine from glycine by methylation. J Biol Chem 275:22196–22201

    PubMed  CAS  Google Scholar 

  • Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351

    PubMed  CAS  Google Scholar 

  • Oksman-Caldentkey KM, Saito K (2005) Integrating genomics and metabolomics for engineering plant metabolic pathways. Curr Opin Biotechnol 16:174–179

    Google Scholar 

  • Pardo JM (2010) Biotechnology of water and salinity stress tolerance. Curr Opin Biotechnol 21:185–196

    PubMed  CAS  Google Scholar 

  • Park SY, Shivaji R, Krans JV, Luthe DS (1996) Heatshock response in heat-tolerant and nontolerant variants of Agrostis palustris Huds. Plant Physiol 111:515–524

    PubMed  CAS  Google Scholar 

  • Park BJ, Liu ZC, Kanno A, Kameya T (2005) Genetic improvement of Chinese cabbage for salt and drought tolerance by constitutive expression of a B. napus LEA gene. Plant Sci 169:553–558

    CAS  Google Scholar 

  • Passioura J (2006) Increasing crop productivity when water is scarce-from breeding to field management. Agric Water Manage 80:176–196

    Google Scholar 

  • Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, Almeraya R, Yamaguchi-Shinozaki K, Hoisington D (2004) Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47:493–500

    PubMed  CAS  Google Scholar 

  • Peremarti A, Bassie L, Christon P, Capell T (2009) Spermine facilitates recovery from drought but does not confer drought tolerance in transgenic rice plants expressing Datura stramonium adenosylmethionine decarboxylase. Plant Mol Biol 70:253–264

    PubMed  CAS  Google Scholar 

  • Pilon-Smits EAH, Ebskamp MJM, Paul MJ, Jenken MJW, Weisbeek PJ, Smeekens SCM (1995) Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol 107:125–130

    PubMed  CAS  Google Scholar 

  • Pilon-Smits EAH, Terry N, Sears T, Dun VK (1999) Enhanced drought resistance in fructan- producing sugarbeet. Plant Physiol Biochem 37:313–317

    CAS  Google Scholar 

  • Porcel R, Azcon R, Ruiz-Lozano JM (2005) Evaluation of the role of genes encoding for dehydrin proteins (LEA D-11) during drought stress in arbuscular mycorrhizal Glycine max and Lactuca sativa plants. J Exp Bot 56:1933–1942

    PubMed  CAS  Google Scholar 

  • Qin F, Sakuma Y, Li J, Liu Q, Li YQ, Shinozaki K, Yamaguchi-Shinozaki K (2004) Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold responsive gene expression in Zea mays L. Plant Cell Physiol 45:1042–1052

    PubMed  CAS  Google Scholar 

  • Ristic Z, Yang GP, Martin B, Fullerton S (1998) Evidence of association between specific heat-shock protein(s) and the drought and heat tolerance phenotype in maize. J Plant Physiol 153:497–505

    CAS  Google Scholar 

  • Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci USA 104:19631–19636

    PubMed  CAS  Google Scholar 

  • Rodríguez-Salazar J, Suárez R, Caballero-Mellado J, Iturriaga G (2009) Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS Microbiol Lett 296:52–59

    PubMed  Google Scholar 

  • Rohila JS, Jain RK, Wu R (2002) Genetic improvement of basmati rice for salt and drought tolerance by regulated expression of a barley Hva1 cDNA. Plant Sci 163:525–532

    CAS  Google Scholar 

  • Saad BR, Zouari N, Ramdhan WB, Azaza J, Meynard D, Guiderdoni E, Hassairi A (2010) Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc-finger AlSAP gene isolated from the halophyte grass Aeluropus littoralis. Plant Mol Biol 72:171–190

    PubMed  Google Scholar 

  • Sakamato H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol 136:2734–2746

    Google Scholar 

  • Samarah NH, Alqudah AM, Amayreh JA, McAndrews GM (2009) The effect of late terminal drought stress on yield components of four barley cultivars. J Agron Crop Sci 195:427–441

    Google Scholar 

  • Saruhan N, Terzi R, Sağlam A, Kadioğlu A (2009) The relationship between leaf rolling and ascorbate-glutathione cycle enzymes in apoplastic and symplastic areas of Ctenanthe setosa subjected to drought stress. Biol Res 42:315–326

    PubMed  CAS  Google Scholar 

  • Sawahel W (2004) Improved performance of transgenic glycinebetaine accumulating rice plants under drought stress. Biol Plant 47:39–44

    Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72

    PubMed  CAS  Google Scholar 

  • Sengupta A, Heinen JL, Holaday AS, Barke JJ, Allen RD (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA 90:1629–1633

    CAS  Google Scholar 

  • Serrano L, Peñuelas J, Ogaya R, Savé R (2005) Tissue-water relations of two co-occurring evergreen Mediterranean species in response to seasonal and experimental drought conditions. J Plant Res 118:263–269

    PubMed  Google Scholar 

  • Shao HB, Liang ZS, Shao MA (2005) LEA proteins in higher plants: structure, function, gene expression and regulation. Colloid Surf B Biointer 45:131–135

    CAS  Google Scholar 

  • Sharma SC (1997) A possible role of trehalose in osmotolerance and ethanol tolerance in Saccharomyces cerevisiae. FEMS Microbiol Lett 152:11–15

    PubMed  CAS  Google Scholar 

  • Sheveleva E, Chmara W, Bohnert HJ, Jensen RJ (1997) Increased salt and drought tolerance by D-Ononitol production in transgenic Nicotiana tabacum L. Plant Physiol 115:1211–1219

    PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    PubMed  CAS  Google Scholar 

  • Shou H, Bordallo P, Wang K (2004) Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. J Exp Bot 55:1013–1019

    PubMed  CAS  Google Scholar 

  • Sinclair TR, Purcell LC, Sneller CH (2004) Crop transformation and the challenge to increase yield potential. Trend Plant Sci 9:70–75

    CAS  Google Scholar 

  • Singh S, Cornilescu CC, Tyler RC, Cornilescu G, Tonelli M, Lee MS, Markley JL (2005) Solution structure of a late embryogenesis abundant protein (LEA14) from Arabidopsis thaliana, a cellular stress-related protein. Protein Sci 14:2601–2609

    PubMed  CAS  Google Scholar 

  • Sivamani E, Bahieldin A, Wraith JM, Al-Niemi T, Dyer WE, Ho THD, Qu R (2000) Improved biomass productivity and water use efficiency under water-deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155:1–9

    PubMed  CAS  Google Scholar 

  • Soulages JL, Kim K, Arrese EL, Walters C, Cushman JC (2003) Conformation of a group 2 late embryogenesis abundant protein from soybean. Evidence of poly-(L-proline)-type II structure. Plant Physiol 131:963–975

    PubMed  CAS  Google Scholar 

  • Taiz L, Zeiger E (1998) Stress physiology. In: Plant physiology, 2nd edn. Sinauer Associates Inc, Sunderland, pp 725–757

    Google Scholar 

  • Tommasi F, Paciolla C, Arrigoni O (1999) The ascorbate system in recalcitrant and orthodox seeds. Plant Physiol 105:193–198

    CAS  Google Scholar 

  • Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

    PubMed  CAS  Google Scholar 

  • Umezawa T, Yoshida R, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K (2004) SRK2C, a SNF1-related protein kinase2, improves drought tolerance by controlling stress responsive gene expression in Arabidopsis thaliana. Proc Natl Acad Sci USA 101:17306–17311

    PubMed  CAS  Google Scholar 

  • Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17:113–122

    PubMed  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    PubMed  CAS  Google Scholar 

  • Waditee R, Tanaka Y, Aoki K, Hibino T, Jikuya H, Takano J, Takabe T (2003) Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism Aphanothece halophytica. J Biol Chem 278:4932–4942

    PubMed  CAS  Google Scholar 

  • Waditee R, Bhuiyan MN, Rai V, Aoki K, Tanaka Y, Hibino T, Suzuki S, Takano J, Jagendrof AT, Takabe T (2005) Genes for direct methylation of glycine provide high levels of glycinebetaine and abiotic-stress tolerance in Synechococcus and Arabidopsis. Proc Natl Acad Sci USA 102:1318–1323

    PubMed  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    PubMed  CAS  Google Scholar 

  • Wang FZ, Wang QB, Kwon SY, Kwak SS, Su WA (2005a) Enhanced drought tolerance of transgenic rice plants expressing a pea maganese superoxide dismutase. J Plant Physiol 162:465–472

    PubMed  CAS  Google Scholar 

  • Wang Y, Ying J, Kuzma M, Chalifoux M, Sample A, McArthur C, Uchacz T, Sarvas C, Wan J, Dennis DT (2005b) Molecular tailoring of farnesylation for plant drought tolerance and yield protection. Plant J 43:413–424

    PubMed  CAS  Google Scholar 

  • Wang Y, Jiang J, Zhao X, Liu G, Yang C, Zhan L (2006) A novel LEA gene from Tamarix androssowii confers drought tolerance in transgenic tobacco. Plant Sci 171:655–662

    CAS  Google Scholar 

  • Wang L, Li X, Chen S, Liu G (2009) Enhanced drought tolerance in transgenic Leymus chinensis plants with constitutively expressed wheat TaLEA3. Biotechnol Lett 31:313–319

    PubMed  CAS  Google Scholar 

  • Wise MJ (2003) LEAping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles. BMC Bioinform 4:52

    Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho THD, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt-stress in transgenic rice. Plant Physiol 110:249–257

    PubMed  CAS  Google Scholar 

  • Yadav SK (2009) Cold stress tolerance mechanisms in plants. A review. Agron Sustain Dev 30:515–527

    Google Scholar 

  • Yamada A, Sekiguchi M, Mimura T, Ozeki Y (2002) The role of plant CCTα in salt- and osmotic-stress tolerance. Plant Cell Physiol 43:1043–1048

    PubMed  CAS  Google Scholar 

  • Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K, Yoshiba Y (2005) Effects of free proline accumulation in petunias under drought stress. J Exp Bot 56:1975–1981

    PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    PubMed  CAS  Google Scholar 

  • Yan J, He C, Wang J, Mao Z, Holaday SA, Allen RD, Zhang H (2004) Overexpression of the Arabidopsis 14-3-3 protein GF14λ in cotton leads to a ‘stay-green’ phenotype and improves stress tolerance under moderate drought conditions. Plant Cell Physiol 45:1007–1014

    PubMed  CAS  Google Scholar 

  • Zentella R, Mascorro-Gallardo J, Van Dijck P, Folch-Mallol J, Bonini B, Van Vaeck C, Gaxiola R, Covarrubias AA, Nieto-Sotelo J, Thevelein JM, Iturriaga G (1999) A Selaginella lepidophylla trehalose-6-phosphate synthase complements growth and stress- tolerance defects in a yeast tps1 mutant. Plant Physiol 119:1473–1482

    PubMed  CAS  Google Scholar 

  • Zhang Q (2007) Strategies for developing Green Super Rice. Proc Natl Acad Sci USA 104:16402–16409

    PubMed  CAS  Google Scholar 

  • Zhang JZ, Creelman RA, Zhu JK (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135:615–621

    PubMed  CAS  Google Scholar 

  • Zhang JY, Broeckling CD, Blancaflor EB, Sledge MK, Sumner LW, Wang ZY (2005) Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J 42:689–707

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. P. S. Ahuja, Director, IHBT, for his continuous encouragement and guidance. JB would like to acknowledge Council of Scientific and Industrial Research, Govt. of India for providing Diamond Jubilee Research Internship and Department of Science and Technology, Govt. of India for providing research funds to the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudesh Kumar Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bhardwaj, J., Yadav, S.K. (2012). Genetic Mechanisms of Drought Stress Tolerance, Implications of Transgenic Crops for Agriculture. In: Lichtfouse, E. (eds) Agroecology and Strategies for Climate Change. Sustainable Agriculture Reviews, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1905-7_9

Download citation

Publish with us

Policies and ethics