Skip to main content

Analyzing and Developing Strategy Flexibility in Mathematics Education

  • Chapter
  • First Online:
Links Between Beliefs and Cognitive Flexibility

Abstract

In this chapter, we describe and comment on how strategy flexibility or adaptivity has been defined, operationalized, and investigated from different theoretical perspectives on (elementary) mathematics learning and teaching. The resulting working definition is the selection and execution of the most appropriate solution strategy (available in one’s strategy repertoire) on a given mathematical task, and for a given individual, in a given context or situation. Then we report the scarce available empirical research indicating that strategy flexibility is an important and distinctive feature of being good at mathematics or having true mathematical expertise. In the third and final part, we argue that, because strategy flexibility has to be viewed as a disposition (involving also knowledge, beliefs, attitudes, and emotions) rather than a skill, teaching for strategy flexibility cannot be conceived as a process that one can implement until routine expertise in the use of the strategies has been obtained, but should be the goal from the start of the teaching and learning process and in an integrative way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although we are aware that some authors define the terms “adaptivity” and “flexibility” differently (Verschaffel et al., 2009), in this chapter they will be used as synonyms.

  2. 2.

    For example, Dowker’s (1992) analysis of the role of flexibility in mathematicians’ estimations, Cortés (2003) study of flexibility in high school mathematics teachers’, engineers’ and scientists’ solutions of (systems of) algebraic equations, or Carry, Lewis, and Bernard’s (1980) analysis of the flexibility in expert solvers of algebraic equations.

References

  • Acevedo Nistal, A., Clarebout, G., Elen, J., Van Dooren, W., & Verschaffel, L. (2009). Conceptualising, investigating and stimulating representational flexibility in mathematical problem solving and learning: A critical review. ZDM-The International Journal on Mathematics Education, 41, 627–636.

    Article  Google Scholar 

  • Baroody, A. J., & Dowker, A. (Eds.). (2003). The development of arithmetic concepts and skills. Constructing adaptive expertise. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Bisanz, J. (2003). Arithmetical development: Commentary on chapters 1 through 8 and reflections on directions. In A. J. Baroody & A. Dowker (Eds.), The development of arithmetic concepts and skills (pp. 435–452). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Blöte, A. W., Van der Burg, E., & Klein, A. S. (2001). Students’ flexibility in solving two-digit addition and subtraction problems: Instruction effects. Journal of Educational Psychology, 93, 627–638.

    Article  Google Scholar 

  • Bransford, J. (2001). Thoughts on adaptive expertise. Unpublished manuscript. Retrieved from http://www.vanth.org/docs/AdaptiveExpertise.pdf

  • Carr, M., & Jessup, D. L. (1997). Gender differences in first-grade mathematics strategy use: Social and metacognitive influences. Journal of Educational Psychology, 89, 318–328.

    Article  Google Scholar 

  • Carry, L. R., Lewis, C., & Bernard, J. E. (1980). Psychology of equation solving: An information processing study (Final Technical Report). Austin, TX: The University of Texas at Austin.

    Google Scholar 

  • Cortés, A. (2003, July). A cognitive model of experts’ algebraic solving methods. Proceedings of the International Group for the Psychology of Mathematics Education, USA, 2, 253–260.

    Google Scholar 

  • Coulson, R. L., Feltovich, P. J., & Spiro, R. J. (1989). Foundations of a misunderstanding of the ultrastructural basis of myocardial failure. A reciprocation network of oversimplifications. The Journal of Medicine and Philosophy, 14, 109–146.

    Google Scholar 

  • De Corte, E., Mason, L., Depaepe, F., & Verschaffel, L. (2011). Self-regulation of mathematical knowledge and skills. In B. Zimmerman & D. Schunk (Eds.), Handbook of self-regulation of learning and performance (pp. 155–172). New York: Routledge.

    Google Scholar 

  • Dowker, A. (1992). Computational estimation strategies of professional mathematicians. Journal for Research in Mathematics Education, 23, 45–55.

    Article  Google Scholar 

  • Duncker, K. (1945). On problem solving. Psychological Monographs, 58(5, Whole no 270).

    Google Scholar 

  • Ellis, S. (1997). Strategy choice in sociocultural context. Developmental Review, 17, 490–524.

    Article  Google Scholar 

  • Ericsson, A. K., Charness, N., Feltovich, P., & Hoffman, R. R. (2006). Cambridge handbook on expertise and expert performance. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Feltovich, P. J., Spiro, R. J., & Coulson, R. L. (1997). Issues of expert flexibility in contexts characterized by complexity and change. In P. J. Feltovich, K. M. Ford, & R. R. Hoffman (Eds.), Expertise in context: Human and machine (pp. 125–146). Menlo Park, CA: AAAI Press.

    Google Scholar 

  • Geary, D. C. (2003). Arithmetical development: Commentary on chapters 9 through 15 and future directions. In A. J. Baroody & A. Dowker (Eds.), The development of arithmetic concepts and skills: Constructing adaptive expertise (pp. 453–464). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Gravemeijer, K. (2004). Local instruction theories as means of support for teachers in reform mathematics education. Mathematical Thinking and Learning, 6, 105–128.

    Article  Google Scholar 

  • Greeno, J. G., Collins, A. M., & Resnick, L. B. (1996). Cognition and learning. In D. C. Berliner & R. C. Calfee (Eds.), Handbook of educational psychology (pp. 15–46). New York: Macmillan.

    Google Scholar 

  • Greer, B. (1997). Modelling reality in mathematics classrooms: The case of word problems. Learning and Instruction, 7, 293–307.

    Article  Google Scholar 

  • Hacker, D. J. (1998). Definitions and empirical foundations. In D. J. Hacker, J. Dunlosky, & A. Graesser (Eds.), Metacognition in educational theory and practice (pp. 1–24). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Hatano, G. (1982). Cognitive consequences of practice in culture specific procedural skills. The Quarterly Newsletter of the Laboratory of Comparative Human Cognition, 4, 15–18.

    Google Scholar 

  • Hatano, G. (2003). Foreword. In A. J. Baroody & A. Dowker (Eds.), The development of arithmetic concepts and skills (pp. xi–xiii). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Hatano, G., & Inagaki, K. (1992). Desituating cognition through the construction of conceptual knowledge. In P. Light & G. Butterworth (Eds.), Context and cognition (pp. 115–133). Hemel Hempstead, UK: Harvester Wheatsheaf.

    Google Scholar 

  • Hatano, G., & Oura, Y. (2003). Reconceptualizing school learning using insight from expertise research. Educational Researcher, 32, 26–29.

    Article  Google Scholar 

  • Hecht, S. A. (2002). Counting on working memory in simple arithmetic when counting is used for problem solving. Memory and Cognition, 30, 447–455.

    Article  Google Scholar 

  • Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding it up. Helping children learn mathematics. Washington, DC: National Academy Press.

    Google Scholar 

  • Koninklijke Nederlandse Akademie van Wetenschappen. (2009). Rekenonderwijs op de basisschool: Analyse en sleutels tot verbetering [Elementary mathematics education: Analysis and keys for improvement]. Amsterdam: KNAW.

    Google Scholar 

  • Lemaire, P., & Reder, L. (1999). What effects strategy selection in arithmetic. The example of parity and five effects on product verification. Memory and Cognition, 27, 364–382.

    Article  Google Scholar 

  • Luwel, K., Foustana, A., Papadatos, Y., & Verschaffel, L. (2011). The role of intelligence and feedback in children’s strategy competence. Journal of Experimental Child Psychology, 108, 61–76.

    Google Scholar 

  • Luwel, K., Lemaire, P., & Verschaffel, L. (2005). Children’s strategies in numerosity judgment. Cognitive Development, 20, 448–471.

    Article  Google Scholar 

  • Luwel, K., Torbeyns, J., Schillemans, V., Onghena, P., & Verschaffel, L. (2009). Strengths and weaknesses of the choice/no-choice method in research on strategy use. European Psychologist, 14, 351–362.

    Article  Google Scholar 

  • Luwel, K., Torbeyns, J., & Verschaffel, L. (2003). The relation between metastrategic knowledge, strategy use and task performance: Findings and reflections from a numerosity judgement task. European Journal of Psychology of Education, 18, 425–447.

    Article  Google Scholar 

  • Luwel, K., Verschaffel, L., Onghena, P., & De Corte, E. (2003). Flexibility in strategy use: Adaptation of numerosity judgement strategies to task characteristics. European Journal of Cognitive Psychology, 15, 247–266.

    Article  Google Scholar 

  • Milo, B., & Ruijssenaars, A. J. J. M. (2002). Strategiegebruik van leerlingen in het speciaal basisonderwijs: begeleiden of sturen? [Strategy instruction in special education: Guided or direct instruction?]. Pedagogische Studiën, 79, 117–129.

    Google Scholar 

  • Muis, K. R. (2007). The role of epistemic beliefs in self-regulated learning. Educational Psychologist, 42, 173–190.

    Article  Google Scholar 

  • Muis, K. R. (2008). Epistemic profiles and self-regulated learning: Examining relations in the context of mathematics problem solving. Contemporary Educational Psychology, 33, 177–208.

    Article  Google Scholar 

  • National Council of Teachers of Mathematics. (1989). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Retrieved from http://standards.nctm.org/document/index.htm

  • National Mathematics Advisory Panel. (2008). Foundations for Success: The final report of the National Mathematics Advisory Panel. Washington, DC: U.S. Department of Education.

    Google Scholar 

  • Ontwikkelingsdoelen en eindtermen. Informatiemap voor de onderwijspraktijk. Gewoon basisonderwijs. (1998). [Standards. Documentation for practitioners. Elementary education.]. Brussel, Belgium: Ministerie van de Vlaamse Gemeenschap, Departement Onderwijs, Afdeling Informatie en Documentatie.

    Google Scholar 

  • Payne, J. W., Bettman, J. R., & Johnson, J. R. (1993). The adaptive decision maker. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Perkins, D. (1995). Outsmarting IQ: The emerging science of learnable intelligence. New York: The Free Press.

    Google Scholar 

  • Rittle-Johnson, B., Star, J. R., & Durkin, K. (2009). The importance of prior knowledge when comparing examples: Influences on conceptual and procedural knowledge of equation solving. Journal of Educational Psychology, 101(4), 836–852.

    Article  Google Scholar 

  • Schillemans, V., Luwel, K., Onghena, P., & Verschaffel, L. (in press). The influence of presentation order on individuals’ strategy choice. Studia Psychologica.

    Google Scholar 

  • Selter, C. (1998). Building on children’s mathematics. A teaching experiment in grade three. Educational Studies in Mathematics, 36, 1–27.

    Article  Google Scholar 

  • Siegler, R. S. (1996). Emerging minds: The process of change in children’s thinking. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Siegler, R. S. (1998). Children’s thinking. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Siegler, R. S. (2000). The rebirth of children’s learning. Child Development, 71, 26–35.

    Article  Google Scholar 

  • Siegler, R. S., & Araya, R. (2005). A computational model of conscious and unconscious strategy discovery. In R. V. Kail (Ed.), Advances in child development and behavior (Vol. 33, pp. 1–42). Oxford, UK: Elsevier.

    Google Scholar 

  • Siegler, R. S., & Lemaire, P. (1997). Older and younger adults’ strategy choices in multiplication: Testing predictions of ASCM using the choice/no-choice method. Journal of Experimental Psychology. General, 126, 71–92.

    Article  Google Scholar 

  • Spiro, R. J. (1980). Constructive processes in prose comprehension and recall. In R. J. Spiro, B. C. Bruce, & W. F. Brewer (Eds.), Theoretical issues in reading comprehension (pp. 245–278). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Star, J. (2005). Reconceptualizing procedural knowledge. Journal for Research in Mathematics Education, 36, 404–411.

    Google Scholar 

  • Star, J. R., & Newton, K. (2009). The nature and development of experts’ strategy flexibility for solving equations. ZDM-The International Journal on Mathematics Education, 41, 557–567.

    Article  Google Scholar 

  • Star, J. R., Rittle-Johnson, B., Lynch, K., & Perova, N. (2009). The role of prior knowledge in the development of strategy flexibility: The case of computational estimation. ZDM-The International Journal on Mathematics Education, 41, 569–579.

    Article  Google Scholar 

  • Star, J. R., & Seifert, C. (2006). The development of flexibility in equation solving. Contemporary Educational Psychology, 31, 280–300.

    Article  Google Scholar 

  • Straker, A. (1999). The national numeracy project: 1996–99. In I. Thompson (Ed.), Issues in teaching numeracy in primary schools (pp. 39–48). Buckingham, UK: Open University Press.

    Google Scholar 

  • Sweller, J., van Merrienboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251–296.

    Article  Google Scholar 

  • Thompson, I. (1999). Getting your head around mental calculation. In I. Thompson (Ed.), Issues in teaching numeracy in primary schools (pp. 145–156). Buckingham, UK: Open University Press.

    Google Scholar 

  • Threlfall, J. (2002). Flexible mental calculation. Educational Studies in Mathematics, 50, 29–47.

    Article  Google Scholar 

  • Torbeyns, J., Verschaffel, L., & Ghesquière, P. (2005). Simple addition strategies in a first-grade class with multiple strategy instruction. Cognition and Instruction, 23, 1–21.

    Article  Google Scholar 

  • Treffers, A., De Moor, E., & Feijs, E. (1990). Proeve van een national programma voor het reken/wiskundeonderwijs op de basisschool. Deel 1. Overzicht einddoelen [Towards a national curriculum for mathematics education in the elementary school. part 1. Overview of the goals]. Tilburg, the Netherlands: Zwijsen.

    Google Scholar 

  • Van der Heijden, M. K. (1993). Consistentie van aanpakgedrag [Consistency in solution behavior]. Lisse, the Netherlands: Swets & Zeitlinger.

    Google Scholar 

  • Van Dooren, W., Verschaffel, L., & Onghena, P. (2002). The impact of preservice teachers’ content knowledge on their evaluation of students’ strategies for solving arithmetic and algebra word problems. Journal for Research in Mathematics Education, 33, 319–351.

    Article  Google Scholar 

  • Verschaffel, L., De Corte, E., Lamote, C., & Dhert, N. (1998). Development of a flexible strategy for the estimation of numerosity. European Journal of Psychology of Education, 13, 347–270.

    Article  Google Scholar 

  • Verschaffel, L., Greer, B., & De Corte, E. (2007). Whole number concepts and operations. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 557–628). Greenwich, CT: Information Age Publishing.

    Google Scholar 

  • Verschaffel, L., Luwel, K., Torbeyns, J., & Van Dooren, W. (2009). Conceptualizing, investigating, and enhancing adaptive expertise in elementary mathematics education. European Journal of Psychology of Education, 24, 335–359.

    Article  Google Scholar 

  • Wittmann, E. Ch., & Müller, G. N. (1990–1992). Handbuch Produktiver Rechnenübungen: Vols 1 & 2 [Handbook of productive arithmetic exercises: Vols. 1 & 2]. Düsseldorf und Stuttgart, Germany: Klett Verlag.

    Google Scholar 

  • Wittmann, E. Ch., & Müller, G. N. (2004). Das Zahlenbuch [The book of numbers. Mathematics]. Düsseldorf und Stuttgart, Germany: Klett Verlag.

    Google Scholar 

Download references

Acknowledgments

This study was funded by Grant GOA 2006/01 “Developing adaptive expertise in mathematics education” from the Research Fund Katholieke Universiteit Leuven, Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lieven Verschaffel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Verschaffel, L., Luwel, K., Torbeyns, J., Van Dooren, W. (2011). Analyzing and Developing Strategy Flexibility in Mathematics Education. In: Elen, J., Stahl, E., Bromme, R., Clarebout, G. (eds) Links Between Beliefs and Cognitive Flexibility. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1793-0_10

Download citation

Publish with us

Policies and ethics