Skip to main content

A Review of Nanoparticle Functionality and Toxicity on the Central Nervous System

  • Chapter
  • First Online:
Nanotechnology, the Brain, and the Future

Part of the book series: Yearbook of Nanotechnology in Society ((YNTS,volume 3))

Abstract

Although nanoparticles have tremendous potential for a host of applications, their adverse effects on living cells have raised serious concerns recently for their use in the healthcare and consumer sectors. As regards the central nervous system (CNS), research data on nanoparticle interaction with neurons has provided evidence of both negative and positive effects. Maximal application dosage of nanoparticles in materials to provide applications such as antibacterial and antiviral functions is approximately 0.1–1.0 wt.%. This concentration can be converted into a liquid phase release rate (leaching rate) depending upon the host or base materials used. For example, nanoparticulate silver (Ag) or copper oxide (CuO)-filled epoxy resin demonstrates much reduced release of the metal ions (Ag+ or Cu2+) into their surrounding environment unless they are mechanically removed or aggravated. Subsequent to leaching effects and entry into living systems, nanoparticles can also cross through many other barriers, such as skin and the blood – brain barrier (BBB), and may also reach bodily organs. In such cases, their concentration or dosage in body fluids is considered to be well below the maximum drug toxicity test limit (10−5 g ml−1) as determined in artificial cerebrospinal solution. As this is a rapidly evolving area and the use of such materials will continue to mature, so will their exposure to members of society. Hence, neurologists have equal interests in nanoparticle effects (positive functionality and negative toxicity) on human neuronal cells within the CNS, where the current research in this field will be highlighted and reviewed.

Springer Science+Business Media Dordrecht/Journal of the Royal Society Interface published online 2 June 2010, doi: 10.1098/rsif.2010.0158.focus – p. 1–12, A review of nanoparticle functionality and toxicity on the central nervous system, with kind permission from Springer Science+Business Media Dordrecht 2012.

One contribution to a Theme Supplement ‘Scaling the heights— challenges in medical materials: An issue in honour of William Bonfield, Part I. Particles and drug delivery’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allaker, R.P., and G. Ren. 2008. Potential impact of nanotechnology on the control of infectious diseases. Transactions of the Royal Society of Tropical Medicine and Hygiene 102: 1–2. doi:10.1016/j.trstmh.2007. DOI:dx.doi.org 07.003 DOI:dx.doi.org.

    Article  Google Scholar 

  • Au, C., L. Mutkus, A. Dobson, J. Riffle, J. Lalli, and M. Aschner. 2007. Effects of nanoparticles on the adhesion and cell viability on astrocytes. Biological Trace Element Research 120: 248–256. doi:10.1007/s12011-007-0067-z DOI:dx.doi.org.

    Article  Google Scholar 

  • Belyanskaya, L., S. Weigel, C. Hirsch, U. Tobler, H.F. Krug, and P. Wick. 2009. Effects of carbon nanotubes on primary neurons and glial cells. Neurotoxicology 30: 702–711. doi:10.1016/j.neuro.2009.05.005 DOI:dx.doi.org.

    Article  Google Scholar 

  • Brooking, J., S.S. Davis, and L. Illum. 2001a. Transport of nanoparticles across the rat nasal mucosa. Journal of Drug Targeting 9: 267–279. doi:10.3109/10611860108997935 DOI:dx.doi.org.

    Article  Google Scholar 

  • Cha, K.E., and H. Myung. 2007. Cytotoxic effects of nanoparticles assessed in vitro and in vivo. Microbial Biotechnology 17: 1573–1578.

    Google Scholar 

  • Cha, K., H.W. Hong, Y.G. Choi, M.J. Lee, J.H. Park, H.K. Chae, G. Ryu, and H. Myung. 2008. Comparison of acute responses of mice livers to short-term exposure to nano-sized or micro-sized silver particles. Biotechnology Letters 30: 1893–1899. doi:10.1007/s10529-008-9786-2 DOI:dx.doi.org.

    Article  Google Scholar 

  • Chen, J., C.M. Han, X.W. Lin, Z.J. Tang, and S.J. Su. 2006. Effect of silver nanoparticle dressing on second degree burn wound. Zhonghua Wai Ke Za Zhi 44: 50–52.

    Google Scholar 

  • Chunfu, Z., C. Jinquan, Y. Duanzhi, W. Yongxian, F. Yanlin, and T. Jiaju. 2004. Preparation and radiolabeling of human serum albumin (HSA)-coated magnetite nanoparticles for magnetically targeted therapy. Applied Radiation and Isotopes 61: 1255–1259. doi:10.1016/j.apradiso.2004.03.114 DOI:dx.doi.org.

    Article  Google Scholar 

  • Cole, J.C., and H.R. Sumnall. 2003. Altered states: The clinical effects of ecstasy. Pharmacology & Therapeutics 98: 35–58. doi:10. DOI:dx.doi.org 1016/S0163-7258(03)00003-2 DOI:dx.doi.org.

    Article  Google Scholar 

  • De Jong, W.H., and P.J. Borm. 2008. Drug delivery and nanoparticles: Applications and hazards. International Journal of Nanomedicine 3: 133–149.

    Article  Google Scholar 

  • Gatti, A.M., S. Montanari, E. Monari, A. Gambarelli, F. Capitani, and B. Parisini. 2004. Detection of micro- and nano-sized biocompatible particles in the blood. Journal of Materials Science. Materials in Medicine 15: 469–472. doi:10.1023/B:JMSM. DOI:dx.doi.org 0000021122.49966.6d DOI:dx.doi.org.

    Article  Google Scholar 

  • Guo, F., N. Yu, J.Q. Cai, T. Quinn, Z.H. Zong, Y.J. Zeng, and L.Y. Hao. 2008. Voltage-gated sodium channels Nav1.1, Nav1.3 and b1 subunit were up-regulated in the hippocampus of spontaneously epileptic rat. Brain Research Bulletin 75: 179–187. doi:doi:10.1016/j.brainresbull.2007.10.005 DOI:dx.doi.org.

    Article  Google Scholar 

  • Hoet, P.H., I. Bruske-Hohlfeld, and O.V. Salata. 2004. Nanoparticles—known and unknown health risks. Journal of Nanobiotechnology 2: 12. doi:10.1186/1477-3155-2-12 DOI:dx.doi.org.

    Article  Google Scholar 

  • Hussain, S.M., A.K. Javorina, A.M. Schrand, H.M. Duhart, S.F. Ali, and J.J. Schlager. 2006a. The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicological Sciences 92: 456–463. doi:10.1093/ DOI:dx.doi.org toxsci/kfl020 DOI:dx.doi.org.

    Article  Google Scholar 

  • Hussain, S.M., A.K. Javorina, A.M. Schrand, H.M. Duhart, S.F. Ali, and J.J. Schlager. 2006b. The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicological Sciences 92: 456–463. doi:10. DOI:dx.doi.org 1093/toxsci/kfl020 DOI:dx.doi.org.

    Article  Google Scholar 

  • Kim, J.S., et al. 2006. Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicological Sciences 89: 338–347. doi:10.1093/toxsci/kfj027 DOI:dx.doi.org.

    Article  Google Scholar 

  • Kim, K.J., W.S. Sung, B.K. Suh, S.K. Moon, J.S. Choi, J.G. Kim, and D.G. Lee. 2009. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22: 235–242. doi:10.1007/s10534-008-9159-2 DOI:dx.doi.org.

    Article  Google Scholar 

  • Kim, S.C., D.-R. Chen, C. Qi, R.M. Gelein, J.N. Finkelstein, A. Elder, K. Bentley, G. OberdĂśrster, and D.Y.H. Pui. 2010. A nanoparticle dispersion method for in vitro and in vivo nanotoxicity study. Nanotoxicology 4: 42–51. doi:10.3109/17435390903374019 DOI:dx.doi.org.

    Article  Google Scholar 

  • Kirkpatrick, C.J., and W. Bonfield. 2010. NanoBioInterface: A multidisciplinary challenge. Journal of the Royal Society, Interface 7: S1–S4. doi:10.1098/rsif.2009.0489.focus DOI:dx.doi.org.

    Article  Google Scholar 

  • Lecoanet, H.F., J.Y. Bottero, and M.R. Wiesner. 2004. Laboratory assessment of the mobility of nanomaterials in porous media. Environmental Science & Technology 38: 5164–5169. doi:10. DOI:dx.doi.org 1021/es0352303 DOI:dx.doi.org.

    Article  Google Scholar 

  • Liu, Z., G. Ren, T. Zhang, and Z. Yang. 2009. Action potential changes associated with the inhibitory effects on voltage- gated sodium current of hippocampal CA1 neurons by silver nanoparticles. Toxicology 264: 179–184. doi:10. DOI:dx.doi.org 1016/j.tox.2009.08.005 DOI:dx.doi.org.

    Article  Google Scholar 

  • Liu, S., L. Xu, T. Zhang, G. Ren, and Z. Yang. 2010. Oxidative stress and apoptosis induced by nanosized titanium dioxide in PC12 cells. Toxicology 267: 172–177. doi:10. DOI:dx.doi.org 1016/j.tox.2009.11.012 DOI:dx.doi.org.

    Article  Google Scholar 

  • Long, T.C., N. Saleh, R.D. Tilton, G.V. Lowry, and B. Veronesi. 2006. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): Implications for nanoparticle neurotoxicity. Environmental Science & Technology 40: 4346–4352. doi:10.1021/es060589n DOI:dx.doi.org.

    Article  Google Scholar 

  • Lu, S., W. Gao, and H.Y. Gu. 2008. Construction, application and biosafety of silver nanocrystalline chitosan wound dressing. Burns 34: 623–628. doi:10.1016/j.burns.2007. DOI:dx.doi.org 08.020 DOI:dx.doi.org.

    Article  Google Scholar 

  • Meisler, M.H., and J.A. Kearney. 2005. Sodium channel mutations in epilepsy and other neurological disorders. The Journal of Clinical Investigation 115: 2010–2017. doi:10.1172/JCI25466 DOI:dx.doi.org.

    Article  Google Scholar 

  • Moore, W.R., S.E. Graves, and G.I. Bain. 2001. Synthetic bone graft substitutes. ANZ Journal of Surgery 71: 354–361. doi:10.1046/ DOI:dx.doi.org j.1440-1622.2001.02128.x DOI:dx.doi.org.

    Article  Google Scholar 

  • Muthu, M.S., and S. Singh. 2009. Targeted nanomedicines: Effective treatment modalities for cancer, AIDS and brain disorders. Nanomedicine (London, England) 4: 105–118. doi:10. DOI:dx.doi.org 2217/17435889.4.1.105 DOI:dx.doi.org.

    Article  Google Scholar 

  • OberdĂśrster, E. 2004. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environmental Health Perspectives 112: 1058–1062.

    Article  Google Scholar 

  • OberdĂśrster, G., ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group, et al. 2005. Review: Principles for characterizing the potential human health effects from exposure to nanomaterials elements of a screening strategy. Particle and Fibre Toxicology 2: 8. doi:10.1186/1743-8977-2-8 DOI:dx.doi.org.

    Article  Google Scholar 

  • Panyala, N.R., E.M. Pena-Mendez, and J. Havel. 2008. Silver or silver nanoparticles: A hazardous threat to the environment and human health? Journal of Applied Biomedicine 6: 117–129.

    Google Scholar 

  • Raffi, M., F. Hussain, T.M. Bhatti, J.I. Akhter, A. Hameed, and M.M. Hasan. 2008. Antibacterial characterization of silver nanoparticles against. Journal of Materials Science and Technology 24: 192–196.

    Google Scholar 

  • Robichaud, C.O., D. Tanzil, U. Weilenmann, and M.R. Wiesner. 2005. Relative risk analysis of several manufactured nanomaterials: An insurance industry context. Environmental Science & Technology 39: 8985–8994. doi:10.1021/es0506509 DOI:dx.doi.org.

    Article  Google Scholar 

  • Royal Academy of Engineering. 2004. Nanotechnology: Views of the general public. Quantitative and qualitative research carried out as part of the Nanotechnology Study. BMRB Social Research Report for the Royal Society and Royal Academy of Engineering Nanotechnology Working Group, BMRB/45/101-666. London: BMRB Social Research.

    Google Scholar 

  • Rungby, J., and G. Danscher. 1983. Localization of exogenous silver in brain and spinal cord of silver exposed rats. Acta Neuropathologica 60: 92–98. doi:10.1007/BF00685352 DOI:dx.doi.org.

    Article  Google Scholar 

  • Sarin, H., et al. 2008. Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells. Journal of Translational Medicine 6: 80. doi:10. DOI:dx.doi.org 1186/1479-5876-6-80 DOI:dx.doi.org.

    Article  Google Scholar 

  • Sarlo, K., et al. 2009. Tissue distribution of 20 nm, 100 nm and 1000 nm fluorescent polystyrene latex nanospheres following acute systemic or acute and repeat airway exposure in the rat. Toxicology 263: 117–126. doi:10.1016/j.tox. DOI:dx.doi.org 2009.07.002 DOI:dx.doi.org.

    Article  Google Scholar 

  • Seaton, A., L. Tran, R. Aitken, and K. Donaldson. 2010. Nanoparticles, human health hazard and regulation. Journal of the Royal Society, Interface 7: S119–S129. doi:10.1098/rsif.2009.0252.focus DOI:dx.doi.org.

    Article  Google Scholar 

  • Seeman, N.C. 2006. DNA enables nanoscale control of the structure of matter. Quarterly Reviews of Biophysics 6: 1–9.

    Google Scholar 

  • Seemayer, N.H., W. Hadnagy, and T. Tomingas. 1990. Evaluation of health risks by airborne particulates from in vitro cyto- and genotoxicity testing on human and rodent tissue culture cells: A longitudinal study from 1975 until now. Journal of Aerosol Science 21(Suppl. 1): 501–504. doi:10.1016/0021-8502(90)90290-E DOI:dx.doi.org.

    Article  Google Scholar 

  • Seidner, G., et al. 1998. GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood-brain barrier hexose carrier. Nature Genetics 18: 188–191. doi:10.1038/ng0298-188.

    Article  Google Scholar 

  • Sharma, H.S., and A. Sharma. 2007. Nanoparticles aggravate heat stress induced cognitive deficits, blood-brain barrier disruption, edema formation and brain pathology. Progress in Brain Research 162: 245–273. doi:10.1016/S0079-6123(06)62013-X.

    Article  Google Scholar 

  • Sharma, H.S., S. Hussain, J. Schlager, S.F. Ali, and A. Sharma. 2010. Influence of nanoparticles on blood-brain barrier permeability and brain edema formation in rats. Acta Neurochirurgica. Supplement 106: 359–364. doi:10.1007/978-3-211- DOI:dx.doi.org 98811-4_65 DOI:dx.doi.org.

    Article  Google Scholar 

  • Shimizu, M., H. Tainaka, T. Oba, K. Mizuo, M. Umezawa, and K. Takeda. 2009. Maternal exposure to nanoparticulate titanium dioxide during the prenatal period alters gene expression related to brain development in the mouse. Particle and Fibre Toxicology 6: 20. doi:10.1186/1743-8977-6-20 DOI:dx.doi.org.

    Article  Google Scholar 

  • Shin, S.H., M.K. Ye, H.S. Kim, and H.S. Kang. 2007. The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. International Immunopharmacology 7: 1813–1818. doi:10.1016/j.intimp. DOI:dx.doi.org 2007.08.025 DOI:dx.doi.org.

    Article  Google Scholar 

  • Sun, H., T.S. Choy, D.R. Zhu, W.C. Yam, and Y.S. Fung. 2009. Nano-silver-modified PQC/DNA biosensor for detecting E. coli in environmental water. Biosensors and Bioelectronics 24: 1405–1410. doi:10.1016/j.bios.2008.08.008 DOI:dx.doi.org.

    Article  Google Scholar 

  • Tang, M., et al. 2008. Unmodified CdSe quantum dots induce elevation of cytoplasmic calcium levels and impairment of functional properties of sodium channels in rat primary cultured hippocampal neurons. Environmental Health Perspectives 116: 915–922. doi:10.1289/ehp. 11225 DOI:dx.doi.org.

    Article  Google Scholar 

  • Tang, J., L. Xiong, S. Wang, J. Wang, L. Liu, J. Li, F. Yuan, and T. Xi. 2009. Distribution, translocation and accumulation of silver nanoparticles in rats. Journal of Nanoscience and Nanotechnology 9: 4924–4932. doi:10.1166/ DOI:dx.doi.org jnn.2009.1269 DOI:dx.doi.org.

    Article  Google Scholar 

  • Thian, E.S., et al. 2008. The role of electrosprayed nanoapatites in guiding osteoblast behaviour. Biomaterials 29: 1833–1843. doi:10.1016/j.biomaterials.2008.01.007 DOI:dx.doi.org.

    Article  Google Scholar 

  • Wang, J., et al. 2008. Potential neurological lesion after nasal instillation of TiO(2) nanoparticles in the anatase and rutile crystal phases. Toxicology Letters 183: 72–80. doi:10. DOI:dx.doi.org 1016/j.toxlet.2008.10.001 DOI:dx.doi.org.

    Article  Google Scholar 

  • Wang, J., M.F. Rahman, H.M. Duhart, G.D. Newport, T.A. Patterson, R.C. Murdock, S.M. Hussain, J.J. Schlager, and S.F. Ali. 2009. Expression changes of dopaminergic system-related genes in PC12 cells induced by manganese, silver, or copper nanoparticles. Neurotoxicology 30: 926–933. doi:10.1016/j.neuro.2009.09.005 DOI:dx.doi.org.

    Article  Google Scholar 

  • Warheit, D.B., B.R. Laurence, K.L. Reed, D.H. Roach, G.A. Reynolds, and T.R. Webb. 2004. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxico­logical Sciences 77: 117–125. doi:10.1093/toxsci/ DOI:dx.doi.org kfg228 DOI:dx.doi.org.

    Article  Google Scholar 

  • Xu, L.J., J.X. Zhao, T. Zhang, G.G. Ren, and Z. Yang. 2009. In vitro study on influence of nano particles of CuO on CA1 pyramidal neurons of rat hippocampus potassium currents. Environ­mental Toxicology 24: 211–217. doi:10.1002/ DOI:dx.doi.org tox.20418 DOI:dx.doi.org.

    Article  Google Scholar 

  • Zhao, J., L. Xu, T. Zhang, G. Ren, and Z. Yang. 2009. Influences of nanoparticle zinc oxide on acutely isolated rat hippocampal CA3 pyramidal neurons. Neurotoxicology 30: 220–230. doi:10.1016/j.neuro.2008.12.005 DOI:dx.doi.org.

    Article  Google Scholar 

  • Zou, B., Y. Chen, C. Wu, and P. Zhou. 2000. Blockade of U50488H on sodium currents in acutely isolated mice hippocampal CA3 pyramidal neurons. Brain Research 855: 132–136. doi:10.1016/S0006-8993(99)02360-4 DOI:dx.doi.org.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Reng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Š 2013 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Yang, Z. et al. (2013). A Review of Nanoparticle Functionality and Toxicity on the Central Nervous System. In: Hays, S., Robert, J., Miller, C., Bennett, I. (eds) Nanotechnology, the Brain, and the Future. Yearbook of Nanotechnology in Society, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1787-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1787-9_18

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1786-2

  • Online ISBN: 978-94-007-1787-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics