Skip to main content

Pluripotent Human Stem Cells: An Overview

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 1

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 1))

  • 1433 Accesses

Abstract

For the past few years, cell therapy with pluripotent stem cells has been central to the prospect of regenerative medicine. From the traditional human embryonic stem cell (HSC) to the more recent induced pluripotent stem cells (iPSC), the main objective across all is to make use of the property of cell pluripotency to generate target cell types for therapeutic purposes. This chapter reviews some aspects of pluripotency in human cells, including its characteristics and regulatory factors, as well as various cell-reprogramming and single-cell analysis techniques developed for the manipulation of pluripotency in human cells and the clinical aspects of current methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F, Vassena R, Bilic J, Pekarik V, Tiscornia G, Edel M, Boue S, Izpisua Belmonte J (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26:1276–1284

    Article  PubMed  CAS  Google Scholar 

  • Amariglio N, Hirshberg A, Scheithauer BW, Cohen Y, Loewenthal R, Trakhtenbrot L, Paz N, Koren-Michowitz M, Waldman D, Leider-Trejo L, Toren A, Constantini S, Rechavi G (2009) Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PloS Med 6(2):e1000029

    Article  PubMed  Google Scholar 

  • Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA, Itskovitz-Eldor J, Thomson JA (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and poliferative potential for prolonged periods of culture. Dev Biol 227:271–278

    Article  PubMed  CAS  Google Scholar 

  • Arnhold S, Klein H, Semkova I, Addicks K, Schraermeyer U (2004) Neurally selected ES cells induce tumor formation after long term survival following engraftment into the subretinal space. Invest Ophthalmol Vis Sci 45:4251–4255

    Article  PubMed  Google Scholar 

  • Brady G (2000) Expression profiling of single mammalian cells-small is beautiful. Yeast 17:211–217

    Article  PubMed  CAS  Google Scholar 

  • Cao F, Lin S, Xie X, Ray P, Patel M, Zhang X, Drukker M, Dylla SJ, Connolly AJ, Chen X, Weissman IL, Gambhir SS, Wu JC (2006) In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 113:1005–1014

    Article  PubMed  Google Scholar 

  • Enver T, Soneji S, Joshi C, Brown J, Iborra F, Orntoft T, Thykjaer T, Maltby E, Smith K, Dawud RA, Jones M, Matin M, Gokhale P, Draper J, Andrews PW (2005) Cellular differentiation hierarchies in normal and culture-adapted human embryonic stem cells. Hum Mol Genet 14:3129–3140

    Article  PubMed  CAS  Google Scholar 

  • Hough SR, Laslett AL, Grimmond SB, Kolle G, Pera MF (2009) A continuum of cell states spans pluripotency and lineage commitment in human embryonic stem cells. PLoS One 4:e7708

    Article  PubMed  Google Scholar 

  • Levine AJ, Brivanlou AH (2006) GDF3, a BMP inhibitor, regulates cell fate in stem cells and early embryos. Development 133:209–216

    Article  PubMed  CAS  Google Scholar 

  • Levine AJ, Levine ZJ, Brivalou AH (2009) GDF3 is a BMP inhibitor that can activate Nodal signaling only at very high doses. Dev Biol 325:43–48

    Article  PubMed  CAS  Google Scholar 

  • Maherali N, Hochedlinger K (2008) Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell 3(6):595–605

    Article  PubMed  CAS  Google Scholar 

  • Min JY, Yang Y, Converso KL, Liu L, Huang Q, Morgan JP, Xiao YF (2002) Transplantation of embryonic stem cells improves the cardiac function in postinfarcted rats. J. Appl Physiol 92(1):288–296

    Article  Google Scholar 

  • Nussbaum J, Minami E, Laflamme MA, Virag JA, Ware CB, Masino A, Muskheli V, Pabon L, Reinecke H, Murry CE (2007) Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J 21:1345–1357

    Article  PubMed  CAS  Google Scholar 

  • Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4:7–25

    PubMed  CAS  Google Scholar 

  • Shen CN, Horb ME, Slack JM, Tosh D (2003) Transdifferentiation of pancreas to liver. Mech Dev 120(1):107–116

    Article  PubMed  CAS  Google Scholar 

  • Singla DK, Hacker TA, Ma L, Douglas PS, Sullivan R, Lyons GE, Kamp TJ (2006) Transplantation of embryonic stem cells into the infarcted mouse heart: formation of multiple cell types. J Mol Cell Cardiol 40(1):195–200

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  PubMed  CAS  Google Scholar 

  • Uemura E (1980) Age-related changes in neuronal RNA content in rhesus monkeys (Macaca mulatta). Brain Res Bull 5:117–119

    Article  PubMed  CAS  Google Scholar 

  • Vallier L, Alexander M, Pedersen RA (2005) Actin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci 118:4495–4509

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Schulz TC, Sherrer ES, Dauphin DS, Shin S, Nelson AM, Ware CB, Zhan M, Song CZ, Chen X, Brimble SN, McLean A, Galeano MJ, Uhl EW, D’Amour KA, Chesnut JD, Rao MS, Blau CA, Robins AJ (2007) Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood 110:4111–4119

    Article  PubMed  CAS  Google Scholar 

  • Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324

    Article  PubMed  CAS  Google Scholar 

  • Wilmut I, Schenieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    Article  PubMed  CAS  Google Scholar 

  • Xu RH, Chen X, Li DS, Li R, Addicks GC, Glennon C, Zwaka TP, Thomson, JA (2002) BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol 20:1261–1264

    Article  PubMed  CAS  Google Scholar 

  • Xu RH, Sampsell-Barron TL, Gu F, Root S, Peck RM, Pan G, Yu J, Antosiewicz-Bourget J, Tian S, Stewart R, Thomson JA (2008) NONAG is a direct target of TGFβ/activin-mediated SMAD signaling in human embryonic stem cells. Cell Stem Cell 3:196–206

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines from human somatic cells. Science 318:1917–1920

    Article  PubMed  CAS  Google Scholar 

  • Zhong JF, Chen Y, Marcus JS, Scherer A, Quake SR, Taylor CR, Weiner LP (2008) A microfluidic processor for gene expression profiling of single human embryonic stem cells. Lab Chip 8:68–74

    Article  PubMed  CAS  Google Scholar 

  • Zhong JF, Zhao Y, Sutton S, Su A, Zhan Y, Zhu L, Yan C, Gallaher T, Johnston PB, Anderson WF, Cooke MP (2005) Gene expression profile of murine long-term reconstituting vs. short-term reconstituting hematopoietic stem cells. PNAS 102:2448–2453

    Article  PubMed  CAS  Google Scholar 

  • Zhong JF, Zhan Y, Anderson WF, Zhao Y (2002) Murine hematopoietic stem cell distribution and proliferation in ablated and nonablated bone marrow transplantation. Blood 100(10):3521–3526

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from National Science Foundation (AW# 0852720).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang F. Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Chen, G.Y., Zhong, J.F. (2012). Pluripotent Human Stem Cells: An Overview. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 1. Stem Cells and Cancer Stem Cells, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1709-1_1

Download citation

Publish with us

Policies and ethics