Skip to main content

Energy Generation and Conversion for Portable Electronic Systems

  • Chapter
Energy-Aware System Design
  • 725 Accesses

Abstract

Portable computing and communication devices such as cellular phones, PDAs, MP3 players, and laptop computers are now being used as essential devices in our daily life. The operational lifetime of these devices is determined by the capacity of the energy source, usually a battery. The capacity of a battery is proportional to its volume and weight; however, portability places very stringent constraints on its size, weight, and form factor. Unfortunately, improvements in the energy density of batteries have lagged far behind the increasing energy demand of many portable microelectronic systems. This widening gap between the capabilities of batteries (energy source) and the demands of the processor and peripherals (energy consumers) is one of the primary challenges in the design of portable systems. Obviously, this gap can be reduced by either improving the energy efficiency of the consumer (performance per watt) or by increasing the energy density of the producer.

The ultimate goal of low-power design is holistic optimization of the system-wide power consumption. Most of the low-power research literature deals with minimization of power consumption of the energy consumers, e.g., microprocessors, memory devices, buses, and peripheral devices, as the primary issue in low-power design. However, efficient power conversion and delivery is equally important for the energy efficiency of the whole system.

Currently, there exists a large body of literature on improving the efficiency of the energy consumers, that is, processors and peripherals. For processors, the basic techniques involve dynamic voltage and frequency scaling (DVFS); for subsystems such as disk drives and other peripherals, the methods involve various forms of speed control, and are generally referred to as dynamic power management. Nevertheless, power consumption still continues to plague the industry because of the continuing increase in leakage current, and dynamic power consumption is also growing as computational demand continues to increase.

Due to discrepancies in device technologies, I/O interface, nondigital elements, and so on, each device requires different supply voltages. Some analog devices require very low ripple power supplies. Consequently, many different types of voltage regulators are used in a system. DC–DC converters and linear regulators cannot exhibit an acceptable conversion efficiency at all times, so enhancement of power conversion efficiency is crucial in leveraging the efficiency of the entire system.

In general, 20% to 30% power reduction of a target component is not easily achievable. In addition, even a dominant power-consuming component occupies around 10% of the whole system power consumption. As a result, a 30% power savings from a component achieves 3% extended battery life of the target system. However, power generation and conversion efficiency directly impacts the power of the whole system. Recovering 10% of the power conversion and generation provides an actual 10% battery life extension.

This chapter introduces power conversion subsystems and their efficiency characteristics followed by system-level solution to leverage the power conversion efficiency. The subtopics include:

  • Power sources and energy storage devices

  • DC–DC conversion and efficiency

  • Applications of power source-aware power consumption

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jongerden, M., Haverkort, B.: Battery modeling. University of Twente (2008)

    Google Scholar 

  2. Henson, W.: Optimal battery/ultracapacitor storage combination. J. Power Sources (2008)

    Google Scholar 

  3. Chen, H., Cong, T.N., Yang, W., Tan, C., Li, Y., Ding, Y.: Progress in electrical energy storage system: a critical review. Prog. Nat. Sci. (2009)

    Google Scholar 

  4. Moore, T., Douglas, J.: Energy storage, big opportunities on a smaller scale. EPRI J. (2006)

    Google Scholar 

  5. OEM Li-ion batteries. www.panasonic.com

  6. Kopera, J.J.: Inside the nickel metal hydride battery (2004)

    Google Scholar 

  7. Fetcenko, M., Ovshinsky, S., Reichman, B., Young, K., Fierro, C., Koch, J., Zallen, A., Mays, W., Ouchi, T.: Recent advances in NiMH battery technology. J. Power Sources 165(2), 544–551 (2007)

    Article  Google Scholar 

  8. Simjee, F., Chou, P.H.: Everlast: long-life, supercapacitor-operated wireless sensor node. In: Proceedings of the International Symposium on Low Power Electronics and Design, pp. 197–202 (2006)

    Chapter  Google Scholar 

  9. Atwater, T., Cygan, P., Leung, F.: Man portable power needs of the 21st century: I. applications for the dismounted soldier. ii. enhanced capabilities through the use of hybrid power sources. J. Power Sources 91(1), 27–36 (2000)

    Article  Google Scholar 

  10. Gamburzev, S., Appleby, A.J.: Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC). J. Power Sources 107(1), 5–12 (2002)

    Article  Google Scholar 

  11. Costamagna, P., Srinivasan, S.: Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part I. Fundamental scientific aspects. J. Power Sources 102(1–2), 242–252 (2001)

    Article  Google Scholar 

  12. Costamagna, P., Srinivasan, S.: Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part II. Engineering, technology development and application aspects. J. Power Sources 102(1–2), 253–269 (2001)

    Article  Google Scholar 

  13. Chang, N., Seo, J., Shin, D., Kim, Y.: Room-temperature fuel cells and their integration into portable and embedded systems. In: Proceedings of IEEE Asia South Pacific Design Automation Conference, ASP-DAC, January 2010, pp. 69–74 (2010)

    Google Scholar 

  14. Aricó, A.S., Srinivasan, S., Antonucci, V.: DMFCs: From fundamental aspects to technology development. Fuel Cells 1(2), 133–161 (2001)

    Article  Google Scholar 

  15. Kim, Y., Shin, D., Seo, J., Chang, N., Cho, H., Kim, Y., Yoon, S.: System integration of a portable direct methanol fuel cell and a battery hybrid. Int. J. Hydrog. Energy 35(11), 5621–5637 (2010)

    Article  Google Scholar 

  16. Kim, D., Cho, E.A., Hong, S.-A., Oh, I.-H., Ha, H.Y.: Recent progress in passive direct methanol fuel cells at KIST. J. Power Sources 130(1–2), 172–177 (2004)

    Article  Google Scholar 

  17. Chen, R., Zhao, T.: Performance characterization of passive direct methanol fuel cells. J. Power Sources 167(2), 455–460 (2007)

    Article  MathSciNet  Google Scholar 

  18. Guo, Z., Faghri, A.: Miniature DMFCs with passive thermal-fluids management system. J. Power Sources 160(2), 1142–1155 (2006)

    Article  Google Scholar 

  19. Steele, B.C.H.: Material science and engineering: the enabling technology for the commercialisation of fuel cell systems. J. Mater. Sci. 36, 1053–1068 (2001)

    Article  Google Scholar 

  20. Qian, W., Wilkinson, D.P., Shen, J., Wang, H., Zhang, J.: Architecture for portable direct liquid fuel cells. J. Power Sources 154(1), 202–213 (2006)

    Article  Google Scholar 

  21. Knowlen, C., Matick, A., Bruckner, A.: High efficiency energy conversion systems for liquid nitrogen automobiles. In: SAE Future Transportation Technology Conference (1998)

    Google Scholar 

  22. Wen, D., Chen, H., Ding, Y., Dearman, P.: Liquid nitrogen injection into water: pressure build-up and heat transfer. Cryogenics 46(10), 740–748 (2006)

    Article  ADS  Google Scholar 

  23. Manwell, J.F., Rogers, A., Hayman, G., Avelar, C.T., McGowan, J.G.: Hybrid 2: A Hybrid System Simulation Model: Theory Manual. University of Massachusetts Press, Amherst (1998)

    Google Scholar 

  24. Benini, L., Castelli, G., Macii, A., Macii, E., Poncino, M., Scarsi, R.: Discrete-time battery models for system-level low-power design. IEEE Trans. Very Large Scale Integr. 9(5), 630–640 (2002)

    Article  Google Scholar 

  25. Chiasserini, C., Rao, R.: Energy efficient battery management. IEEE J. Sel. Areas Commun. 19(7), 1235–1245 (2002)

    Article  Google Scholar 

  26. Rakhmatov, D., Vrudhula, S.: Energy management for battery powered embedded systems. ACM Trans. Embed. Comput. Syst. 2, 277–324 (2003)

    Article  Google Scholar 

  27. Rong, P., Pedram, M.: An analytical model for predicting the remaining battery capacity of lithium-ion batteries. In: Proceedings of Conference on Design, Automation and Test in Europe, pp. 11–48 (2003)

    Google Scholar 

  28. Doyle, M., Fuller, T.F., Newman, J.: Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J. Electrochem. Soc. 140, 1526–1533 (1994)

    Article  Google Scholar 

  29. Luo, J., Jha, N.K.: Battery-aware static scheduling for distributed real-time embedded systems. In: Proceedings of Design Automation Conference, pp. 444–449 (2001)

    Google Scholar 

  30. Khan, J., Vemuri, R.: An iterative algorithm for battery-aware task scheduling on portable computing platforms. In: Proceedings of Conference on Design, Automation and Test in Europe, pp. 622–627 (2005)

    Google Scholar 

  31. Chowdhury, P., Chakrabarti, C.: Battery aware task scheduling for a system-on-a-chip using voltage/clock scaling. In: Proceedings of IEEE Workshop on Signal Processing Systems, pp. 201–206 (2002)

    Google Scholar 

  32. Pedram, M., Wu, Q.: Battery-powered digital CMOS design. IEEE Trans. Very Large Scale Integr. 10, 601–607 (2002)

    Article  Google Scholar 

  33. Rong, P., Pedram, M.: Battery-aware power management based on Markovian decision processes. In: Proceedings of International Conference on Computer-Aided Design, pp. 707–713 (2002)

    Google Scholar 

  34. Benini, L., Castelli, G., Macii, A., Scarsi, R.: Battery-driven dynamic power management. IEEE Des. Test Comput. 18, 53–60 (2001)

    Article  Google Scholar 

  35. Shin, D., Wang, Y., Kim, Y., Seo, J., Pedram, M., Chang, N.: Battery-supercapacitor hybrid system for high-rate pulsed load applications. In: Proceedings of IEEE Design Automation and Test in Europe (2011)

    Google Scholar 

  36. Rao, V., Singhal, A.K.G., Navet, N.: Battery model for embedded systems. In: Proceedings of the 18th IEEE International Conference on VLSI Design, pp. 105–110 (2005)

    Google Scholar 

  37. Gao, L., Liu, S., Dougal, R.: Dynamic lithium-ion battery model for system simulation. IEEE Trans. Compon. Packag. Technol. 25(3), 495–505 (2002)

    Article  Google Scholar 

  38. Chen, M., Rincon-Mora, G.: Accurate electrical battery model capable of predicting runtime and I–V performance. IEEE Trans. Energy Convers. 21(2), 504–511 (2006)

    Article  Google Scholar 

  39. Erdinc, O., Vural, B., Uzunoglu, M.: A dynamic lithium-ion battery model considering the effects of temperature and capacity fading. In: International Conference on Clean Electrical Power, pp. 383–386 (2009)

    Chapter  Google Scholar 

  40. DualFoil. http://www.cchem.berkeley.edu/jsngrp/fortran.html

  41. Hageman, S.C.: Simple PSpice models let you simulate common battery types. Electron. Des. News 38, 117–129 (1993)

    Google Scholar 

  42. Rakhmatov, D., Vrudhula, S.: An analytical high-level battery model for use in energy management of portable electronic systems. In: Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, pp. 488–493 (2001)

    Google Scholar 

  43. Manwell, J.F., McGowan, J.G.: Lead acid battery storage model for hybrid energy systems. Sol. Energy 50, 399–405 (1993)

    Article  Google Scholar 

  44. Chiasserini, C., Rao, R.: Pulsed battery discharge in communication devices. In: Proceedings of the 5th IEEE International Conference on Mobile Computing and Networking, pp. 88–95 (1999)

    Google Scholar 

  45. Lee, K., Chang, N., Zhuo, J., Chakrabarti, C., Kadri, S., Vrudhula, S.: A fuel-cell-battery hybrid for portable embedded systems. ACM Trans. Des. Autom. Electron. Syst. 13(1) (2008)

    Google Scholar 

  46. Amphlett, J., Baumert, R., Mann, R., Peppley, B., Roberge, P.: Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell. J. Electrochem. Soc. 142, 1–8 (1995)

    Article  Google Scholar 

  47. Pukrushpan, J.T., Stefanopoulou, A.G., Peng, H.: Control of Fuel Cell Power Systems: Principles, Modeling Analysis, and Feedback Design. Springer, Berlin (2004)

    Google Scholar 

  48. Guzzella, L.: Control oriented modeling of fuel-cell based vehicles. In: Presentation in NSF Workshop on the Integration of Modeling and Control for Automotive Systems (1999)

    Google Scholar 

  49. Larminie, J., Dicks, A.: Fuel Cell Systems Explained. Wiley, New York (2000)

    Google Scholar 

  50. Choi, Y., Chang, N., Kim, T.: Dc-dc converter-aware power management for low-power embedded systems. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 26(8), 1367–1381 (2007)

    Article  Google Scholar 

  51. Falin, J.: A 3-A, 1.2-Vout linear regulator with 80% efficiency and Plost 1 W. Analog Appl. J. 10–12 (2006)

    Google Scholar 

  52. Stratakos, A.: High-efficiency low-voltage dc-dc conversion for portable applications. Ph.D. dissertation, University of California, Berkeley, CA, 1999

    Google Scholar 

  53. Kursun, V., Narendra, S., De, V., Friedman, E.: Monolithic DC-DC converter analysis and MOSFET gate voltage optimization. In: Proceedings of IEEE International Symposium on Quality Electronic Design, pp. 279–284 (2003)

    Chapter  Google Scholar 

  54. Linear Technology: LTC3445—I2C controllable buck regulator with two LDOs in a 4 mm × 4 mm QFN

    Google Scholar 

  55. Texas Instruments: TPS400009—low-input high-efficiency synchronous buck controller

    Google Scholar 

  56. Texas Instruments: TPS62100—multimode low-power buck converter

    Google Scholar 

  57. Min, R., Bhardwaj, M., Cho, S.-H., Shih, E., Sinha, A., Wang, A., Chandrakasan, A.: Low-power wireless sensor networks. In: Proceedings of the 14th International Conference on VLSI Design, p. 205 (2001)

    Google Scholar 

  58. Benini, L., de Micheli, G.: Dynamic Power Management: Design Techniques and CAD Tools. Kluwer Academic, Dordrecht (1998)

    MATH  Google Scholar 

  59. Jejurikar, R., Pereira, C., Gupta, R.: Leakage aware dynamic voltage scaling for real-time embedded systems. In: Proceedings of the 41st Annual Design Automation Conference, pp. 275–280 (2004)

    Chapter  Google Scholar 

  60. Cho, Y., Chang, N.: Memory-aware energy-optimal frequency assignment for dynamic supply voltage scaling. In: Proceedings of the 2004 International Symposium on Low Power Electronics and Design, pp. 387–392 (2004)

    Chapter  Google Scholar 

  61. Sinha, A., Chandrakasan, A.: Dynamic power management in wireless sensor networks. IEEE Des. Test Comput. 18, 62–74 (2001)

    Article  Google Scholar 

  62. Raghunathan, V., Schurgers, C., Park, S., Srivastava, M.: Energy-aware wireless microsensor networks. IEEE Signal Process. Mag. 19(2), 40–50 (2002)

    Article  ADS  Google Scholar 

  63. Cho, Y., Kim, Y., Chang, N.: PVS: passive voltage scaling for wireless sensor networks. In: Proceedings of IEEE International Symposium on Low Power Electronics and Design, ISLPED, August 2007, pp. 135–140 (2007)

    Google Scholar 

  64. Polastre, J., Szewczyk, R., Culler, D.: Telos: enabling ultra-low power wireless research. In: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks, pp. 364–369 (2005)

    Google Scholar 

  65. Abdelzaher, T., Blum, B., Cao, Q., Chen, Y., Evans, D., George, J., George, S., Gu, L., He, T., Krishnamurthy, S., Luo, L., Son, S., Stankovic, J., Stoleru, R., Wood, A.: Envirotrack: towards an environmental computing paradigm for distributed sensor networks. In: Proceedings of 24th International Conference on Distributed Computing Systems, pp. 582–589 (2004)

    Chapter  Google Scholar 

  66. Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., Gay, D., Hill, J., Welsh, M., Brewer, E., Culler, D.: TinyOS: an operating system for sensor networks. In: Ambient Intelligence, pp. 115–148 (2005)

    Chapter  Google Scholar 

  67. Benini, L., Castelli, G., Macii, A., Macii, E., Poncino, M., Scarsi, R.: A discrete-time battery model for high-level power estimation. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 35–41 (2000)

    Chapter  Google Scholar 

  68. Levis, P., Madden, S., Gay, D., Polastre, J., Szewczyk, R., Woo, A., Brewer, E., Culler, D.: The emergence of networking abstractions and techniques in TinyOS. In: Proceedings of the 1st Conference on Symposium on Networked Systems Design and Implementation—Volume 1, pp. 1–1 (2004)

    Google Scholar 

  69. Cho, Y., Kim, Y., Joo, Y., Lee, K., Chang, N.: Simultaneous optimization of battery-aware voltage regulator scheduling with dynamic voltage and frequency scaling. In: Proceedings of the IEEE International Symposium on Low Power Electronics and Design, ISLPED, Bangalore, India, August 2008, pp. 309–314 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naehyuck Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Chang, N. (2011). Energy Generation and Conversion for Portable Electronic Systems. In: Kyung, CM., Yoo, S. (eds) Energy-Aware System Design. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1679-7_7

Download citation

Publish with us

Policies and ethics