Skip to main content

Endophytic Bacteria in Tree Shoot Tissues and Their Effects on Host

  • Chapter
  • First Online:
Endophytes of Forest Trees

Part of the book series: Forestry Sciences ((FOSC,volume 80))

Abstract

The interactions between the plant and endophytic bacteria in the shoots likely differ to some extent from those in the roots. Shoot endophytic bacteria are typically isolated during plant tissue culture started from shoot tips (buds) or embryos. With methods such as in situ hybridization and transmission electron microscopy, endophytic bacteria have been localized in buds, seeds, and flowers of forest trees, and GFP tagging has been used to observe colonization of seedlings by endophytic bacteria. Vertical transmission of endophytic bacteria has been suggested. Shoot endophytic bacteria share many plant growth-promoting effects with the root endophytes, the ability of producing plant growth hormones and nitrogen fixation being the most common ones. In addition, some shoot endophytes may affect plant growth through production of adenine derivatives and vitamin B12. Many more likely remain to be determined by powerful methods such as genomics and metabolomics, which will be valuable tools for describing the significance of endophytic bacteria for forest trees in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

(TEM):

transmission electron microscopy

(PHB):

polyhydroxybutyrate

(GFP):

green fluorescent protein

(IAA):

Indole-acetic acid

References

  • Akiyoshi DE, Regier DA, Gordon MP (1987) Cytokinin production by Agrobacterium and Pseudomonas spp. J Bacteriol 169:4242–4248

    PubMed  CAS  Google Scholar 

  • Baldani JI, Caruso L, Baldani VLD et al (1997) Recent advances in BNF with non legume plants. Soil Biol Biochem 29:911–922

    Article  CAS  Google Scholar 

  • Bandara WMMS, Seneviratne G, Kulasooriya SA (2006) Interactions among endophytic bacteria and fungi: effects and potentials. J Biosci 31:645–650

    Article  PubMed  CAS  Google Scholar 

  • Basile DV, Basile MR, Li QY et al (1985) Vitamin B12-stimulated growth and development of Jungermannia leiantha Grolle and Gymnocolea inflata (Huds.) Dum. (Hepaticae). Bryologist 88:77–81

    Article  CAS  Google Scholar 

  • Bastián F, Cohen A, Piccoli P et al (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined cultures. Plant Growth Regul 24:7–11

    Article  Google Scholar 

  • Baumann TW, Schulthess BH, Linden A et al (1994) Structure and metabolism of t-β-D-glucopyranosyladenine. The product of a cytokinin-sparing reaction? Phytochemistry 36: 537–542

    Article  CAS  Google Scholar 

  • Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503

    Article  PubMed  CAS  Google Scholar 

  • Brandl MT, Lindow SE (1996) Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indole-3-acetic acid synthesis in Erwinia herbicola. Appl Environ Microbiol 62:4121–4128

    PubMed  CAS  Google Scholar 

  • Cankar K, Kraigher H, Ravnikar M et al (2005) Bacterial endophytes from seed of Norway spruce (Picea abies L. Karst). FEMS Microbiol Lett 244:341–345

    Article  PubMed  CAS  Google Scholar 

  • Costacurta A, Mazzafera P, Rosato Y (1998) Indole-3-acetic acid biosynthesis by Xanthomonas axonopodis pv. citri is increased in the presence of plant leaf extracts. FEMS Microbiol Lett 159:215–220

    Article  CAS  Google Scholar 

  • Dalla Santa OR, Hernández RF, Alvarez GLM et al (2004) Azospirillum sp. inoculation in wheat, barley and oats seeds greenhouse experiments. Braz Arch Biol Technol 47:843–850

    Article  Google Scholar 

  • DeLong EF, Wickham GS, Pace NR (1989) Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243:1360–1363

    Article  PubMed  CAS  Google Scholar 

  • Doronina NV, Ivanova EG, Trotsenko YA (2002) New evidence for the ability of methylobacteria and methanotrophs to synthesize auxins. Mikrobiologiya 71:130–132

    CAS  Google Scholar 

  • Doronina NV, Ivanova EG, Suzina NE et al (2004) Methanotrophs and methylobacteria are found in woody plant tissues within the winter period. Mikrobiologiya 73:702–709

    CAS  Google Scholar 

  • Doty SL, Oakley B, Xin G et al (2009) Diazotrophic endophytes of native black cottonwood and willow. Symbiosis 47:23–33

    Article  CAS  Google Scholar 

  • Fall R (1996) Cycling of methanol between plants, methylotrophs and the atmosphere. In: Lidstrom ME, Tabita FR (eds) Microbial growth on C1 compounds. Kluwer, Dordrecht, pp 343–350

    Google Scholar 

  • Fall R, Benson AA (1996) Leaf methanol – the simplest natural product from plants. Trends Plant Sci 1:296–301

    Google Scholar 

  • Ferreira A, Quecine MC, Lacava PT et al (2008) Diversity of endophytic bacteria from Eucalyptus species seed and colonization of seedlings by Pantoea agglomerans. FEMS Microbiol Lett 287:8–14

    Article  PubMed  CAS  Google Scholar 

  • Freyermuth SK, Long RLG, Mathur S et al (1996) Metabolic aspects of plant interaction with commensal methylotrophs. In: Lidstrom ME, Tabita RF (eds) Microbial growth on C1 compounds. Kluwer, Dordrecht, pp 277–284

    Google Scholar 

  • Gamalero E, Fracchia L, Cavaletto M et al (2003) Characterization of functional traits of two fluorescent pseudomonads isolated from basidiomes of ectomycorrhizal fungi. Soil Biol Biochem 35:55–65

    Article  CAS  Google Scholar 

  • Garcia de Salamone IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411

    Article  PubMed  CAS  Google Scholar 

  • George EF, Sherrington PD (1984) Plant propagation by tissue culture methods. Handbook and directory of commercial laboratories. Eastern Press, Reading

    Google Scholar 

  • Holland MA (1997) Occam’s razor applied to hormonology. Are cytokinins produced by plants? Plant Physiol 115:865–868

    PubMed  CAS  Google Scholar 

  • Holland MA, Polacco JC (1992) Urease-null and hydrogenase-null phenotypes of a phylloplane bacterium reveal altered nickel metabolism in two soybean mutants. Plant Physiol 98:942–948

    Article  PubMed  CAS  Google Scholar 

  • Holland MA, Polacco JC (1994) PPFMs and other covert contamination: is there more to plant physiology than just plant? Annu Rev Plant Phys Plant Mol Biol 45:197–209

    Article  CAS  Google Scholar 

  • Ivanova EG, Doronina NV, Shepelyakovskaya AO et al (2000) Facultative and obligate aerobic methylobacteria synthesize cytokinins. Mikrobiologiya 69:764–769

    CAS  Google Scholar 

  • Ivanova EG, Doronina NV, Trotsenko YA (2001) Aerobic methylobacteria are capable of synthesizing auxins. Microbiologiya 70:452–458

    CAS  Google Scholar 

  • Ivanova EG, Fedorov DN, Doronina NV et al (2006) Production of vitamin B12 in aerobic methylotrophic bacteria. Microbiologiya 75:494–496

    CAS  Google Scholar 

  • Ivanova EG, Pirttilä AM, Fedorov DNF et al (2008) Association of methylotrophic bacteria with plants: metabolic aspects. In: Sorvari S, Pirttilä AM (eds) Prospects and applications for plant associated microbes. A laboratory manual, part A: bacteria. Biobien Innovations, Turku, pp 225–231

    Google Scholar 

  • Kalyaeva MA, Zakharchenko NS, Doronina NV et al (2001) Plant growth and morphogenesis in vitro is promoted by associative methylotrophic bacteria. Russ J Plant Physiol 48:514–517

    Article  CAS  Google Scholar 

  • Kamoun R, Lepoivre P, Boxus P (1998) Evidence for the occurrence of endophytic prokaryotic contaminants in micropropagated plantlets of Prunus cerasus cv. ‘Montgomery’. Plant Cell Tissue Org Cult 52:57–59

    Article  CAS  Google Scholar 

  • Keppler F, Hamilton JTG, Bra M et al (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191

    Article  PubMed  CAS  Google Scholar 

  • Koenig RL, Morris RO, Polacco JC (2002) tRNA is the source of low-level trans-zeatin production in Methylobacterium spp. J Bacteriol 184:1832–1842

    Article  PubMed  CAS  Google Scholar 

  • Koopman V, Kutschera U (2005) In vitro regeneration of sunflower plants: effects of a Methylobacterium strain on organ development. J Appl Bot Food Qual 79:59–62

    Google Scholar 

  • Koskimäki JJ, Nylund S, Suorsa M et al (2010) Mycobacterial endophytes are enriched during micropropagation of Pogonatherum paniceum. Env Microbiol Rep 2:619–624

    Article  Google Scholar 

  • Koutsompogeras P, Kyriacou A, Zabetakis I (2007) The formation of 2,5-dimethyl-4-hydroxy-2 H-furan-3-one by cell free extracts of Methylobacterium extorquens and strawberry (Fragaria × ananassa cv. Elsanta). Food Chem 104:1654–1661

    Article  CAS  Google Scholar 

  • Lata H, Li XC, Silva B et al (2006) Identification of IAA-producing endophytic bacteria from micropropagated Echinacea plants using 16 S rRNA sequencing. Plant Cell Tiss Org Cult 85:353–359

    Article  CAS  Google Scholar 

  • Laukkanen H, Soini H, Kontunen-Soppela S et al (2000) A mycobacterium isolated from tissue cultures of mature Pinus sylvestris interferes with growth of Scots pine seedlings. Tree Physiol 20:915–920

    PubMed  Google Scholar 

  • Long HH, Schmidt DD, Baldwin IT (2008) Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLoS ONE 3:e2702

    Article  PubMed  Google Scholar 

  • Madmony A, Chernin L, Pleban S et al (2005) Enterobacter cloacae, an obligatory endophyte of pollen grains of Mediterranean pines. Folia Microbiol 50:209–216

    Article  CAS  Google Scholar 

  • Merzaeva OV, Shirokikh IG (2010) The production of auxins by the endophytic bacteria of winter rye. Appl Biochem Microbiol 46:51–57

    Article  CAS  Google Scholar 

  • Moore FP, Barac T, Borremans B et al (2006) Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterisation of isolates with potential to enhance phytoremediation. Syst Appl Microbiol 29:539–556

    Article  PubMed  CAS  Google Scholar 

  • Moritz T, Sundberg B (1996) Endogenous cytokinins in the vascular cambial region of Pinus sylvestris during activity and dormancy. Physiol Plant 98:693–698

    Article  CAS  Google Scholar 

  • Murthy BNS, Vettakkorumakankav NN, KrishnaRaj S et al (1999) Characterization of somatic embryogenesis in Pelargonium × hortorum mediated by a bacterium. Plant Cell Rep 18: 607–613

    Article  CAS  Google Scholar 

  • Nishio N, Tanaka M, Matsuno R et al (1977) Production of vitamin B12 by methanol-utilizing bacteria, Pseudomonas AM-1 and Microcyclus eburneus. Ferment Technol 55:200–203

    CAS  Google Scholar 

  • Nonomura AM, Benson AA (1991) The path of carbon in photosynthesis: improved crop yields with methanol. PNAS 89:9794–9798

    Article  Google Scholar 

  • Pirttilä AM (2010) Colonization of tree shoots by endophytic fungi. In: Pirttilä AM, Sorvari S (eds) Prospects and applications for plant-associated microbes. A laboratory manual, part B: fungi. BioBien Innovations, Turku

    Google Scholar 

  • Pirttilä AM, Laukkanen H, Pospiech H et al (2000) Detection of intracellular bacteria in the buds of Scotch pine (Pinus sylvestris L.) by in situ hybridization. Appl Environ Microbiol 66: 3073–3077

    Article  PubMed  Google Scholar 

  • Pirttilä AM, Laukkanen H, Hohtola A (2002) Chitinase production in pine callus (Pinus sylvestris L.): a defense reaction against endophytes? Planta 214:848–852

    Article  PubMed  Google Scholar 

  • Pirttilä AM, Pospiech H, Laukkanen H et al (2003) Two endophytic fungi in different tissues of Scots pine buds (Pinus sylvestris L.). Microb Ecol 45:53–62

    Article  PubMed  Google Scholar 

  • Pirttilä AM, Joensuu P, Pospiech H et al (2004) Bud endophytes of Scots pine produce adenine derivatives and other compounds that affect morphology and mitigate browning of callus cultures. Physiol Plant 121:305–312

    Article  PubMed  Google Scholar 

  • Pirttilä AM, Pospiech H, Laukkanen H et al (2005) Seasonal variation in location and population structure of endophytes in buds of Scots pine. Tree Physiol 25:289–297

    PubMed  Google Scholar 

  • Pirttilä AM, Hohtola A, Ivanova EG et al (2008) Identification and localization of methylotrophic plant-associated bacteria. In: Sorvari S, Pirttilä AM (eds) Prospects and applications for plant associated microbes. A laboratory manual, part A: bacteria. Biobien Innovations, Turku, pp 218–224

    Google Scholar 

  • Podolich O, Laschevskyy V, Ovcharenko L et al (2009) Methylobacterium sp. resides in unculturable state in potato tissues in vitro and becomes culturable after induction by Pseudomonas fluorescens IMGB163. J Appl Microbiol 106:728–737

    Article  PubMed  CAS  Google Scholar 

  • Reed BM, Mentzer J, Tanprasert P et al (1998) Internal bacterial contamination of micropropagated hazelnut: identification and antibiotic treatment. Plant Cell Tiss Org Cult 52:67–70

    Article  CAS  Google Scholar 

  • Scherling C, Ulrich K, Ewald D et al (2009) Metabolic signature of the beneficial interactionof the endophyte Paenibacillus sp. isolate and in vitro–grown poplar plants revealed by metabolomics. Mol Plant Microbe Interact 22:1032–1037

    Article  PubMed  CAS  Google Scholar 

  • Skoog F, Armstrong DJ (1970) Cytokinins. Annu Rev Plant Physiol 21:359–384

    Article  CAS  Google Scholar 

  • Taghavi A, Garafola C, Monchy S et al (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757

    Article  PubMed  CAS  Google Scholar 

  • Tanaka S, Walter KS, Schnoor JL (2008) Methods to investigate the role of endophytes in phytoremediation. In: Sorvari S, Pirttilä AM (eds) Prospects and applications for plant associated microbes. A laboratory manual, part A: bacteria. Biobien Innovations, Turku, pp 325–332

    Google Scholar 

  • Timmusk S, Nicander B, Granhall U et al (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852

    Article  CAS  Google Scholar 

  • Ulrich K, Ulrich A, Ewald D (2008) Paenibacillus- a predominant endophytic bacterium colonizing tissue cultures of woody plants. Plant Cell Tiss Organ Cult 93:347–351

    Article  Google Scholar 

  • Van Aken B, Peres CM, Doty SL et al (2004) Methylobacterium populi sp. nov., a novel aerobic, pink-pigmented, facultatively methylotrophic, methane-utilizing bacterium isolated from poplar trees (Populus deltoides x nigra DN34). Int J Syst Evol Microbiol 54:1191–1196

    Article  PubMed  Google Scholar 

  • Visser C, Murthy BNS, Odumeru J et al (1994) Modulation of somatic embryogenesis in hypocotyl cultures of geranium (Pelargonium × hortorum Bailey) cv. Ringo Rose by a bacterium. In Vitro Cell Dev Biol 30P:140–143

    Google Scholar 

  • Yrjälä K, Mancano G, Fortelius C et al (2010) The incidence of Burkholderia in epiphytic and endophytic bacterial cenoses in hybrid aspen grown on sandy peat. Boreal Environ Res15:81–96

    Google Scholar 

  • Zabetakis I (1997) Enhancement of flavour biosynthesis from strawberry (Fragaria × ananassa) callus cultures by Methylobacterium species. Plant Cell Tiss Org Cult 50:179–183

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Academy of Finland (Projects no. 129852, 113607).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Maria Pirttilä .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pirttilä, A.M. (2011). Endophytic Bacteria in Tree Shoot Tissues and Their Effects on Host. In: Pirttilä, A., Frank, A. (eds) Endophytes of Forest Trees. Forestry Sciences, vol 80. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1599-8_8

Download citation

Publish with us

Policies and ethics