Skip to main content

Bioenergy

  • Chapter
  • First Online:
Energy Resources and Systems

Abstract

Bioenergy is derived from various biological sources, called biomass, and is considered a renewable energy source, since biomass can be replenished on a regular basis. Biomass offers opportunity in every part of the world to develop sustainable resources including fuel, power, and chemicals. Biomass can be used to generate heat, electricity, and transportation fuel (called biofuel). In this chapter, the energy content of various types of biomass and their conversion to useful energy sources are discussed. Both the cellulosic and lignocellulosic based biomass can be used for energy generation or for biofuel synthesis. Various methods developed to process biomass are also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wall JD, Harwood CS, Demain AL (2008) Bioenergy. ASM Press, Washington, DC

    Google Scholar 

  2. Schuck S (2006) Biomass as an energy source. Int J Environ Stud 63(6):823–35

    Google Scholar 

  3. Anon (2006) Bioenergy: fuel of the future. Environ Sci Technol 40(15):4537

    Google Scholar 

  4. Chum HL, Overend RP (2003) Biomass and bioenergy in the United States. Adv Sol Energ 15:83–148

    Google Scholar 

  5. Clarke N, Lunnan A (eds) (2007) Special Issue: sustainable use of forest biomass for energy. In: Biomass and Bioenergy 31(10):666–746

    Google Scholar 

  6. McCormick K, Kaberger T (2007) Key barriers for bioenergy in Europe: economic conditions, know-how and institutional capacity, and supply chain co-ordination. Biomass Bioenergy 31(7):443–452

    Google Scholar 

  7. Mitchell CP, Overend RP (2000) Biomass and bioenergy. Biomass Bioenergy 19(1):1–15

    Google Scholar 

  8. Rosillo-Calle F, de Groot P, Hemstock SL, Woods J (2008) The biomass assessment handbook: bioenergy for a sustainable environment. Earthscan Publications, London

    Google Scholar 

  9. Nicholls DL, Monserud RA, Dykstra DP (2008) Biomass utilization for bioenergy in the Western United States. Forest Prod J 58(1/2):6–16

    Google Scholar 

  10. McGowan TF, Brown ML, Bulpitt WS, Walsh JL (2009) Biomass and alternate fuel systems: an engineering and economic guide, 1st edn. Wiley-AIChE, Hoboken

    Google Scholar 

  11. Orts WJ, Holtman KM, Seiber JN (2008) Agricultural chemistry and bioenergy. J Agr Food Chem 56(11):3892–3899

    Google Scholar 

  12. Singh BP, Panigrahi MR, Ray HS (2000) Review of biomass as a source of energy for India. Energ Source 22(7):649–658

    Google Scholar 

  13. Solantausta Y, Beckman D, Podesser E, Overend RP, Ostman A (1999) IEA bioenergy feasibility studies. In: Biomass: a growth opportunity in green energy and value-added products. Proceedings of the 4th biomass conference of the Americas, Oakland, 29 Aug–2 Sept 1999, vol 1, pp 463–469

    Google Scholar 

  14. Rosillo-Calle F (2008) Overview of bioenergy. In: The biomass assessment handbook – bioenergy for a sustainable environment. Rosillo-Calle F, de Groot P, Hemstock SL, Woods J (eds) Earthscan Publications, London

    Google Scholar 

  15. Cook J, Beyea J (2000) Bioenergy in the United States: progress and possibilities. Biomass Bioenergy 18(6):441–455

    Google Scholar 

  16. Dalgaard T, Joergensen U, Olesen JE, Jensen ES, Kristensen ES (2006) Looking a biofuels and bioenergy. Science (Washington, DC, USA) 312(5781):1743

    Google Scholar 

  17. Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply, ADA436753

    Google Scholar 

  18. Smeets EMW, Faaij APC, Lewandowski IM, Turkenburg WC (2007) A bottom-up assessment and review of global bio-energy potentials to 2050. Prog Energy Combust Sci 33(1):56–106

    Google Scholar 

  19. Berndes G, Hoogwijk M, van den Broek R (2003) The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenergy 25(1):1–28

    Google Scholar 

  20. The bioenergy cycle. Courtesy of Oakridge National Laboratory. http://bioenergy.ornl.gov/papers/misc/bioenergy_cycle.html

  21. National Aeronautics and Space Administration (2010) Carbon cycle. http://rst.gsfc.nasa.gov/Sect16/carbon_cycle_diagram.jpg Accessed 20 Nov 2010

  22. International Energy Agency (2008) Key world energy statistics. www.iea.org. Accessed 20 Nov 2010

  23. Food and Agriculture Organization (FAO) of the United Nations (2008) Forests and energy key issues. FAO Forestry Paper 154

    Google Scholar 

  24. National Energy Education Development Project (2008) Biomass secondary energy infobook. National Energy Education Development Project, Manassas

    Google Scholar 

  25. Energy Information Administration (2008) Renewable energy trends in consumption and electricity 2006. US Department of Energy, Washington, DC

    Google Scholar 

  26. World Energy Assessment (2000) World energy assessment of the United Nations, UNDP, UNDESA/WEC. UNDP, New York

    Google Scholar 

  27. Bioenergy Research Center (2005). DOE genomics: GTL systems biology for energy and environment. Report No. DOE/SC-0104

    Google Scholar 

  28. Garrett RH, Grisham CM (eds) (1995) Biochemistry. Saunders College Publishing, New York

    Google Scholar 

  29. Sierra R, Smith A, Granda C, Holtzapple MT (2009) Producing fuels and chemicals from lignocellulosic biomass. SBE special section Biofuels. Chemical Engineering Progress S10–S18

    Google Scholar 

  30. Duke JA (1983) Handbook of energy crops. http://www.hort.purdue.edu/newcrop/duke_energy/dukeindex.html

  31. International Energy Agency (IEA) (2007) Potential contribution of bioenergy of the world’s future energy demand. IEA bioenergy. Report No. ExCo: 02

    Google Scholar 

  32. Hoogwijk M, Faaij A, Eickhout B, de Vries B, Turkenburg W (2005) Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios. Biomass Bioenergy 29(4):225–257

    Google Scholar 

  33. Gronowska M, Joshi S, MacLean HL (2009) A review of U.S. and Canadian biomass supply studies. Bioresources 4(1):341–369

    Google Scholar 

  34. Grassi IG (1998) Modern bioenergy in the European Union. Renew Energy 16(1–4):985–990

    Google Scholar 

  35. IEA Bioenergy Task 38 (2010) Greenhouse gas balances of biomass and bioenergy systems. http://www.ieabioenergy-task38.org/countryreports/. Accessed 20 Nov 2010

  36. IEA Bioenergy Task 40 (2010) Sustainable international bioenergy trade: securing supply and demand. http://www.ieabioenergy-task38.org/countryreports/. Accessed 20 Nov 2010

  37. Miah MD, Shin MY (2006) Biomass energy promotion in clean development mechanism (CDM) perspective in Bangladesh. Biomass and Bioenergy 29:67–89

    Google Scholar 

  38. David S, Abatzoglou N (2009) A review of the bioenergy potential of residual materials in Quebec. WIT Trans Ecol Environ 121:211–223, Energy and Sustainability II

    Google Scholar 

  39. Zhang Y, Habibi S, MacLean HL (2007) Environmental and economic evaluation of bioenergy in Ontario, Canada. J Air Waste Manage Assoc 57(8):919–933

    Google Scholar 

  40. Bente PF (1987) Bio-energy progress in China. Energy from Biomass and Wastes, 10th, April 7–11, 1986 Washington DC, USA: 1505–1521

    Google Scholar 

  41. Dai L, Wang G, Su M, Qu F, Liu X (1999) Bioenergy technologies in China: their development and commercialization. In: Biomass: a growth opportunity in green energy and value-added products. Proceedings of the 4th biomass conference of the Americas, Oakland, Calif, 29 Aug–2 Sept 1999, vol 1, pp 193–201

    Google Scholar 

  42. Zhang Y, Zuo Y, Bai Y (2008) Potential use and development strategy of bioenergy in southeast China – the case of Jiangsu province. Fresenius Environ Bull 17(8a):1088–1095

    Google Scholar 

  43. Bush SR (2008) The social science of sustainable bioenergy production in Southeast Asia. Biofuel Bioprod Bior 2(2):126–32

    Google Scholar 

  44. Takeshita T (2009) A strategy for introducing modern bioenergy into developing Asia to avoid dangerous climate change. Appl Energy 86(suppl 1):S222–S32

    Google Scholar 

  45. Mahapatra AK, Mitchell CP (1999) Biofuel consumption, deforestation, and farm level tree growing in rural India. Biomass Bioenergy 17(4):291–303

    Google Scholar 

  46. Ericsson K (2007) Co-firing – a strategy for bioenergy in Poland? Energy (Oxford, UK) 32(10):1838–1847

    Google Scholar 

  47. Asplund DA, Helynen SA (1996) Results on bioenergy use and conversion in the finnish bioenergy research program. In: Biomass for energy and the environment. Proceedings of the 9th European bioenergy conference, Copenhagen, 24–27 June 1996, vol 2, pp 1074–1079

    Google Scholar 

  48. Helynen SA (1997) Bioenergy production and consumption in the years 1992–2010 in Finland. In: Making a business from biomass in energy, environment, chemicals, fibers and materials. Proceedings of the 3rd biomass conference of the Americas, Montreal, 2 Aug 1997, vol 2, pp 1273–1280

    Google Scholar 

  49. Pingoud K, Lehtila A, Savolainen I (1999) Bioenergy and the forest industry in Finland after the adoption of the Kyoto Protocol. Environ Sci Policy 2(2):153–163

    Google Scholar 

  50. Nousiainen I, Aho V-J (1999) Development of production methods, costs, and use of wood fuels in Finland. In: Biomass: a growth opportunity in green energy and value-added products. Proceedings of the 4th biomass conference of the Americas, Oakland, Calif, 29 Aug–2 Sept 1999, vol 1, pp 311–318

    Google Scholar 

  51. Aylott MJ, Casella E, Tubby I, Street NR, Smith P, Taylor G (2008) Yield and spatial supply of bioenergy poplar and willow short-rotation coppice in the UK. New Phytol 178(2):358–370

    Google Scholar 

  52. Coldwell S (2001) Biofuel 1 power from the land: British Biogen’s. TCE Chem Eng 725:29–31

    Google Scholar 

  53. Blume SB, Hauggaard-Nielsen H, Jensen ES (2008) Estimate of Denmark’s biomass resources for production of biofuels til 2020. Afdelingen for Informationsservice Risoe Nationallaboratoriet for Baeredygtig Energi, Danmarks Tekniske Universitet, Roskilde, Den

    Google Scholar 

  54. Holm-Nielsen JB (1997) Sustainable energy systems: Danish experience with biomass-based energy systems and other renewable energy resources. In: Making a business from biomass in energy, environment, chemicals, fibers and materials. Proceedings of the 3rd biomass conference of the Americas, Montreal, 2 Aug 1997, vol 2, pp 1311–1320

    Google Scholar 

  55. Bourque CPA, Buchanan W, Hassan QK (2009) An analysis of habitat suitability and charcoal-yielding characteristics of five exotic tree species intended for bioenergy production in Jamaica. J Biobased Mater Bioenergy 3(1):46–56

    Google Scholar 

  56. Hillring B (1998) National strategies for stimulating the use of bioenergy: policy instruments in Sweden. Biomass Bioenergy 14(5/6):425–437

    Google Scholar 

  57. Islas J, Manzini F, Masera O (2007) A prospective study of bioenergy use in Mexico. Energy (Oxford, UK) 32(12):2306–2320

    Google Scholar 

  58. Pessoa A Jr, Roberto IC, Menossi M, dos Revert SR, Ortega FS, Penna TCV (2005) Perspectives on bioenergy and biotechnology in Brazil. Appl Biochem Biotechnol 121–124:59–70

    Google Scholar 

  59. Revert dos Santos R, Pessoa A Jr, Roberto IC, Menossi M, Ortega FS, Penna TCV (2004) Bioenergy in Brazil: production, application and new developments. Rev Bras Cien Farm 40(Supl. 1):131–133

    Google Scholar 

  60. Yu Y, Bartle J, Li C-Z, Wu H (2009) Mallee biomass as a key bioenergy source in Western Australia: importance of biomass supply chain. Energy Fuels 23(6):3290–3299

    Google Scholar 

  61. van Dam J, Faaij APC, Hilbert J, Petruzzi H, Turkenburg WC (2009) Large-scale bioenergy production from soybeans and switchgrass in Argentina. Renew Sust Energy Rev 13(8): 1710–1733

    Google Scholar 

  62. Tasdemiroglu E (1986) Biomass energy potential in Turkey. Biomass 11(2):81–89

    Google Scholar 

  63. Sims REH (1999) Bioenergy and carbon cycling-the New Zealand way. In: Biomass: a growth opportunity in green energy and value-added products. Proceedings of the 4th biomass conference of the Americas, Oakland, 29 Aug–2 Sept 1999, vol 1, pp 401–405

    Google Scholar 

  64. Junginger M, Faaij A (2005) IEA bioenergy task 40: sustainable international bioenergy trade. Country report for the Netherlands. Report NWS-E-2005-48. ISBN 90-73958-96-2

    Google Scholar 

  65. Hektor B, Ling E (2010) Country report, Sweden. http://bioenergytrade.org/plaintext/downloads/swedishcountryreport2006.pdf, Accessed 10 Apr 2010

  66. Sticklen M (2006) Plant genetic engineering to improve biomass characteristics for biofuels. Curr Opin Biotechnol 17(3):315–319

    Google Scholar 

  67. Paoletti MG, Pimentel D (1996) Genetic engineering in agriculture and the environment. Bioscience 46(9):665–673

    Google Scholar 

  68. Grohmann K, Villet R (1984) Fuels and chemicals from biomass: a role for gene-splicing technology. In: Wise DL (ed) Bioconversion system. CRC, Boca Raton, pp 1–16

    Google Scholar 

  69. Anon (1995) Benefit of genetically engineered woody biomass crops explored. Environ Prog 14(1):F4

    Google Scholar 

  70. Altieri MA (2004) Genetic engineering in agriculture: the myths, environmental risks, and alternatives. Institute for Food and Development Policy, Oakland

    Google Scholar 

  71. Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25:335–361

    Google Scholar 

  72. US Department of Energy (2008) Bioenergy research centers: an overview of science. Report No. DOE/SC-0104, Feb 2008

    Google Scholar 

  73. Mediavilla V, Lehmann J, Meister E, StYunzl H (1997) Biomasseproduktion mit Chinaschilf und einheimischen GrYasern. Agrarforschung 4(7):295–298

    Google Scholar 

  74. Christou M (2001) Giant reed in Europe. In: Kyritsis S, Beenackers AACM, Helm P, Grassi A, Chiaramonti D (eds) Biomass for energy and industry. Proceeding of the First World Conference, Sevilla, Spain, 5–9 June 2000, James & James (Science Publishers), London, pp 2092–2094

    Google Scholar 

  75. Potter L, Bingham MJ, Baker MG, Long SP (1995) The potential of two perennial C4 grasses and a perennial C4 sedge as lignocellulosic fuel crop in N.W. Europe. Crop establishment and yields in E. England. Ann Bot 76:513–520

    Google Scholar 

  76. Scholz V, Pagel R, Ellerbrock R (1998) Comparative studies of the ecological production of annual and perennial energy crops. In: Kopetz H, Weber T, Palz W, Chartier P, Ferrero GL (eds) Biomass for energy and industry. Proceedings of the 10th European conference, WYurzburg, Germany, 8–11 June 1998, C.A.R.M.E.N, Rimpar

    Google Scholar 

  77. Wellie-Stephan O (1998) Development of grasses adapted for production of bioenergy. In: Kopetz H, Weber T, Palz W, Chartier P, Ferrero GL (eds) Biomass for energy and industry. Proceedings of the 10th European conference, WYurzburg, Germany, 8–11 June 1998, C.A.R.M.E.N, Rimpar, pp 1050–1051

    Google Scholar 

  78. Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus European experience with a novel energy crop. Biomass Bioenergy 19:209–227

    Google Scholar 

  79. Elbersen HW, Christian DG, Bacher W, Alexopoulou E, Pignatelli V, van den Berg D (2000) The European switchgrass project. In: Kyritsis S, Beenackers AACM, Helm P, Grassi A, Chiaramonti D (eds) Biomass for energy and industry. Proceedings of the first world conference, Sevilla, Spain, 5–9 June 2000, James & James (Science Publishers), London, pp 202–205

    Google Scholar 

  80. Merlo L, Morgana B, Sardo V, La Loggia F (1998) Experiences with giant reeds and perennial C4 grasses in Sicily. In: Kopetz H, Weber T, Palz W, Chartier P, Ferrero GL (eds) Biomass for energy and industry. Proceedings of the 10th European conference,WYurzburg, Germany, 8–11 June 1998, C.A.R.M.E.N, Rimpar, pp 1006–1008

    Google Scholar 

  81. Sankari HS, Mela JN (1998) Characteristics of reed canary grass (Phalaris aruninacea L.) breeding lines compared at three experimental sites in Finland. In: Kopetz H, Weber T, Palz W, Chartier P, Ferrero GL (eds) Biomass for energy and industry. Proceedings of the 10th European conference,WYurzburg, Germany, 8–11 June 1998, C.A.R.M.E.N, Rimpar, pp 894–896

    Google Scholar 

  82. Allirand JM, Gosse G (1995) An above-ground biomass production model for a common reed (Phragmatis communis Trin.) Stand. Biomass Bioenergy 9(6):441–448

    Google Scholar 

  83. McLaughlin SB, Samson R, Bransby D, Weislogel A (1996) Evaluating physical, chemical, and energetic properties of perennial grasses as biofuels. Proceedings of the bioenergy 96 conference, Nashville, TN, Sept 1996, pp 1–8

    Google Scholar 

  84. Luger E, Wieselburg BLT (2010) Energy crop species in Europe. http://www.blt.bmlf.gv.at/vero/veroeff/0732_Energy_crops_species_e.pdf. Accessed 5 April 2010

  85. South Dakota State University (2007) Composition of herbaceous biomass feedstocks. Report No. SIGNC1-07

    Google Scholar 

  86. Pettersen RC (1984) The chemical composition of wood. Adv Chem Ser 207:57–126

    Google Scholar 

  87. Krull LH, Inglett GE (1980) Analysis of neutral carbohydrates in agricultural residues by gas-liquid chromatography. J Agr Food Chem 28:917–919

    Google Scholar 

  88. Anon (1991) Modern methods of analysis of wood, annual plants and lignins. Proceedings, International Energy Agency Pre-Symposium, New Orleans

    Google Scholar 

  89. Bob Dawson (2010) The Iowa State University biomass project. http://www2.biotech.wisc.edu/jeffries/ref/woodcomp.html. Accessed 20 Nov 2010

  90. Wiselogel AE, Agblevor FA, Johnson DK, Deutch S, Fennell JA, Sanderson MA (1996) Compositional changes during storage of large round switchgrass bales. Bioresour Technol 56:103–109

    Google Scholar 

  91. DOE (U.S. Department of Energy) (2006) Biomass feedstock composition and property database. Department of Energy, Biomass Program. http://www.eere.energy.gov/biomass/progs/search1.cgi

  92. Kim TH, Lee YY (2005) Pretreatment and fractionation of corn stover by ammonia recycle percolation process. Bioresour Technol 96:2007–2013

    Google Scholar 

  93. Esteghlalian A, Hashimoto AG, Fenske JJ, Penner MH (1997) Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass. Bioresour Technol 59:129–136

    Google Scholar 

  94. Ohgren K, Rudolf A, Galbe M, Zacchi G (2006) Fuel ethanol production from steam-pretreated corn stover using SSF at higher dry matter content. Biomass Bioenergy 30:863–869

    Google Scholar 

  95. Mani S, Tabil LG, Sokhansanj S (2006) Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass Bioenergy 30:648–654

    Google Scholar 

  96. Pordesimo LO, Hames BR, Sokhhansanj S, Edens WC (2005) Variation in corn stover composition and energy content with crop maturity. Biomass Bioenergy 28:366–374

    Google Scholar 

  97. Kim S, Holtzapple MT (2005) Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresour Technol 96:1994–2006

    Google Scholar 

  98. Varga E, Klinke HB, Reczey K, Thomsen AB (2004) High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol. Biotechnol Bioeng 88:567–574

    Google Scholar 

  99. Zhu Y, Lee YY, Elander RT (2005) Optimization of dilute-acid pretreatment of corn stover using a high-solids percolation reactor. Appl Biochem Biotechnol 121–124:1045–1054

    Google Scholar 

  100. Ohgren K, Galbe M, Zacchi G (2005) Optimization of steam pretreatment of SO2-impregnated corn stover for fuel ethanol production. Appl Biochem Biotechnol 121–124:1055–1068

    Google Scholar 

  101. Chang VS, Kaar WE, Burr B, Holtzapple MT (2001) Simultaneous saccharification and fermentation of lime-treated biomass. Biotechnol Lett 23:1327–1333

    Google Scholar 

  102. Kaar WE, Holtzapple MT (2000) Using lime pretreatment to facilitate the enzyme hydrolysis of corn stover. Biomass Bioenergy 18:189–199

    Google Scholar 

  103. Um BH, Karim N, Henk LL (2003) Effect of sulfuric and phosphoric acid pretreatments on enzymatic hydrolysis of corn stover. Appl Biochem Biotechnol 105–108:115–125

    Google Scholar 

  104. Johnson DK, Adam P, Ashley P, Chum H, Deutch S, Fennell J, Wiselogel A (1993) Study of compositional change in biomass feedstocks upon storage (results). International energy agency/Bioenergy agreement Task IX activity 5. Storage and drying of woody biomass workshop, pp 28–52

    Google Scholar 

  105. Jurgens MH (1997) Animal feeding and nutrition, 8th edn. Kendall/Hunt Publishing Company, Dubuque

    Google Scholar 

  106. Gupta BS, Johnson DE, Hinds FC, Minor HC (1970) Forage potential of soybean straw. Agron J 65:538–541

    Google Scholar 

  107. Hongzhang C, Liying L (2007) Unpolluted fractionation of wheat straw by steam explosion and ethanol extraction. Bioresour Technol 98:666–676

    Google Scholar 

  108. Thygesen A, Thomsen AB, Schmidt AS, Jorgensen H, Ahring BK, Olsson L (2003) Production of cellulose and hemicellulose-degrading enzymes by filamentous fungi cultivated on wet-oxidised wheat straw. Enzyme Microb Technol 32:606–615

    Google Scholar 

  109. Sun XF, Sun RC, Fowler P, Baird MS (2005) Extraction and characterization of original lignin and hemicelluloses from wheat straw. J Agr Food Chem 53:860–870

    Google Scholar 

  110. Bjerre AB, Olesen AB, Fernqvist T, Ploger A, Schmidt AS (1995) Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnol Bioeng 49:568–577

    Google Scholar 

  111. Pan X, Sano Y (2005) Fractionation of wheat straw by atmospheric acetic acid process. Bioresour Technol 96:1256–1263

    Google Scholar 

  112. Dale BE, Leong CK, Pham KT, Esquivel VM, Rios I, Latimer VM (1996) Hydrolysis of lignocellulosics at low enzyme levels: application of the AFEX process. Bioresour Technol 56:111–116

    Google Scholar 

  113. Sun Y, Cheng JJ (2005) Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresour Technol 96:1599–1606

    Google Scholar 

  114. Christian DG, Riche AB, Yates NE (2002) The yield and composition of switchgrass and coastal panic grass grown as a biofuel in Southern England. Bioresour Technol 83:115–124

    Google Scholar 

  115. Alizadeh H, Teymouri F, Gilbert TI, Dale BE (2005) Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Appl Biochem Biotechnol 121–124:1133–1142

    Google Scholar 

  116. Lemus R, Brummer EC, Moore KJ, Molstad NE, Burras CL, Barker MF (2002) Biomass yield and quality of 20 switchgrass populations in southern Iowa, USA. Bioresour Technol 23:433–720

    Google Scholar 

  117. Lee DK, Owens VN (2005) Biomass production potential of native warm-season grass monocultures and mixtures. 2005 Agronomy abstracts. ASA, Madison

    Google Scholar 

  118. Owens VN, Lee DK, Boe A (2006) Manure and harvest timing effects on biomass and seed yield of three perennial grasses in South Dakota. The world congress on industrial biotechnology and bioprocessing. Biotechnology Industry Organization, Chicago

    Google Scholar 

  119. Mulkey VR, Owens VN, Lee DK (2006) Management of switchgrass-dominated conservation reserve program lands for biomass production in South Dakota. Crop Sci 46:712–720

    Google Scholar 

  120. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Google Scholar 

  121. Iyer PV, Lee YY (1999) Simultaneous saccharification and extractive fermentation of lignocellulosic materials into lactic acid in a two-zone fermentor-extractor system. Appl Biochem Biotechnol 77–79:409–419

    Google Scholar 

  122. Jefferson PG, McCaughey WP, May K, Woosaree J, McFarlane L (2004) Potential utilization of native prairie grasses from western Canada as ethanol feedstock. Can J Plant Sci 84:1067–1075

    Google Scholar 

  123. Boe A, Lee DK (2007) Genetic variation for biomass production in prairie cordgrass and switchgrass. Crop Sci 47(3):923–934

    Google Scholar 

  124. Velasquez JA, Ferrando F, Farriol X, Salvado J (2003) Binderless fiberboard from steam exploded Miscanthus sinensis. Wood Sci Technol 37:269–278

    Google Scholar 

  125. Lewandowski I, Clifton-Brown JC, Andersson B, Basch G, Christian DG, Jorgensen U, Jones MB, Riche AB, Schwarz KU, Tayebi K, Teixeira F (2003) Environment and harvest time affects the combustion qualities of Miscanthus genotypes. Agron J 95:1274–1280

    Google Scholar 

  126. Kurakake M, Kisaka W, Ouchi K, Komaki T (2001) Pretreatment with ammonia water for enzymatic hydrolysis of corn husk, bagasse, and switchgrass. Appl Biochem Biotechnol 90:251–259

    Google Scholar 

  127. Jung HG, Mertens DR, Payne AJ (1997) Correlation of acid detergent lignin and klason lignin with digestibility of forage dry matter and neutral detergent fiber. J Dairy Sci 80:1622–1628

    Google Scholar 

  128. Alvo P, Savoice P, Tremblay D, Emond JP, Turcotte G (1996) A system approach for evaluation of ethanol production based on forages. Bioresour Technol 56:61–68

    Google Scholar 

  129. Claessens A, Michaul R, Belanger G, Mather DE (2004) Characteristics of timothy genotypes divergently selected for fiber traits. Crop Sci 44:81–88

    Google Scholar 

  130. Gaur S, Reed T (1998) Thermal data for natural and synthetic fuels. Marcel Dekker, http://www.woodgas.com/proximat.htm

  131. Campbell JE, Lobell DB, Genova RC, Field CB (2008) The global potential of bioenergy on abandoned agriculture lands. Environ Sci Technol 42(15):5791–5794

    Google Scholar 

  132. Schroeder P, Herzig R, Bojinov B, Ruttens A, Nehnevajova E, Stamatiadis S, Memon A, Vassilev A, Caviezel M, Vangronsveld J (2008) Bioenergy to save the world producing novel energy plants for growth on abandoned land. Environ Sci Pollut Res Int 15(3):196–204

    Google Scholar 

  133. Gurgel A, Reilly JM, Paltsev S (2007) Potential land use implications of a global biofuel industry. J Agr Food Ind Organ 5(2): article 9

    Google Scholar 

  134. Varvel GE, Vogel KP, Mitchell RB, Follett RF, Kimble JM (2008) Comparison of corn and switchgrass on marginal soils for bioenergy. Biomass Bioenergy 32(1):18–21

    Google Scholar 

  135. Prochnow A, Heiermann M, Plochl M, Linke B, Idler C, Amon T, Hobbs PJ (2009) Bioenergy from permanent grassland–a review: 1. Biogas. Bioresour Technol 100(21):4931–4944

    Google Scholar 

  136. Harper RJ, Sochacki SJ, Smettem KRJ, Robinson N (2009) Bioenergy feedstock potential from short-rotation woody crops in a dryland environment. Energy Fuels 24(1):225–231

    Google Scholar 

  137. Converse AO (2007) Renewable energy in the United States: is there enough land? Appl Biochem Biotechnol 137–140:611–624

    Google Scholar 

  138. Oak Ridge National Laboratory (2006) Major uses of land in the USA. Biomass energy data book, 1st edn. Report No. ORNL/TM-2006/571

    Google Scholar 

  139. Sanderson MA, Hussey MA, Ocumpaugh WR, Tischler CR, Read JC, Reed RL (1995) Evaluation of switchgrass as a sustainable bioenergy crop in Texas. Proceedings – 2nd biomass conference of the Americas: energy, environment, agriculture and industry, Portland, 21–24 Aug 1995, pp 253–260

    Google Scholar 

  140. Sanderson MA, Reed RL, McLaughlin SB, Wullschleger SD, Conger BV, Parrish DJ, Wolf DD, Taliaferro C, Hopkins AA, Ocumpaugh WR, Hussey MA, Read JC, Tischler CR (1996) Switchgrass as a sustainable bioenergy crop. Bioresour Technol 56(1):83–93

    Google Scholar 

  141. Keshwani DR, Cheng JJ (2008) Switchgrass for bioethanol and other value-added applications: a review. Bioresour Technol 100(4):1515–1523

    Google Scholar 

  142. Walsh ME, Graham RL, Ugarte D, Slinsky S, Ray D, Shapouri H (1998) Economic analysis of energy crop production in the U.S. –location, quantities, price, and impacts on traditional agricultural crops. BioEnergy ’98: expanding bioenergy partnerships, Madison, Wisconsin, 4–8 October 1998

    Google Scholar 

  143. Nielsen JBH, Oleskowicz-Popiel P, Seade T (2007) Energy crop potentials for bioenergy in EU 27. 15th European biomass conference and exhibition from research to market deployment, Berlin, Germany, 7–11 May 2007

    Google Scholar 

  144. Solantausta Y, Huotari J (2000) Power production from wood – comparison of the Rankine cycle to concepts using gasification and fast pyrolysis: part3/1–Part3/46. VTT Energy, Espoo

    Google Scholar 

  145. van den Broek R, Teeuwisse S, Healion K, Kent T, van Wijk A, Faaij A, Turkenburg W (2001) Potentials for electricity production from wood in Ireland. Energy (Oxford, UK) 26(11):991–1013

    Google Scholar 

  146. Hakkila P (2001) Wood energy technology program. VTT Symposium, 216 (Puuenergian Teknologiaohjelman Vuosikirja 2001): 11–43

    Google Scholar 

  147. Trossero MA (2010) Wood energy: the way ahead. Food and Agriculture Organization, United Nations. http://www.fao.org/docrep/005/y4450e/y4450e02.htm. Accessed 16 Nov 2010

  148. de Montalembert MR, Clement J (1983) Fuelwood supplies in the developing countries. Food and Agriculture Organization, Rome

    Google Scholar 

  149. Food and Agriculture Organization (1996) Wood energy news. Bangkok, Thailand, Food and Agriculture Organization Regional Office for Asia and the Pacific, 11(2)

    Google Scholar 

  150. Food and Agriculture Organization (1997) The role of wood energy in Europe and OECD. Wood energy today for tomorrow –regional studies. Food and Agriculture Organization, Rome

    Google Scholar 

  151. Lefevre T, Todoc JL, Timilsina GR (1997) The role of wood energy in Asia, wood energy today for tomorrow – regional studies. Food and Agriculture Organization, Rome

    Google Scholar 

  152. Trossero MA, Horta Nogueira LA, Etherington TJ (1998) Wood energy situation and trends, by contribution to the World Energy Council. Food and Agriculture Organization, Rome

    Google Scholar 

  153. Balat M, Acici N, Ersoy G (2005) Turkey’s wood reserves, potential trends and future perspectives of wood use. Energy Explor Exploit 23(1):71–80

    Google Scholar 

  154. de Miranda RC, Sepp S, Ceccon E, Mann S, Singh B (2010) Sustainable production of commercial woodfuel: lessons and guidance from two strategies. The International Bank for Reconstruction and development/The World Bank, Washington DC

    Google Scholar 

  155. World Energy Council (2009) Survey of energy resources 2007 bioenergy. http://www.worldenergy.org/publications/survey_of_energy_resources_2007/bioenergy/default.asp. Accessed 10 Oct 2009

  156. Matthews E (2000) Undying flame: the continuing demand for wood as fuel. http://earthtrends.wri.org/pdf_library/feature/forene_fea_woodfuel_complete.pdf

  157. Killmann W (2007) The global wood energy sector an overview. International conference on wood-based bioenergy, Hannover, Germany 17–19 May 2007

    Google Scholar 

  158. Heinimo J, Pakarinen V, Ojanen V, Kassi T (2007) International bioenergy trade-scenario study on international biomass market in 2020. Lappeenranta University of Technology, Lappeenranta

    Google Scholar 

  159. Junginger M, Bolkesojo T, Bradley D, Dolzan P, Faaij A, Heinimo J, Hektor B, Leistad O, Ling E, Perry M (2008) Developments in international bioenergy trade. Biomass Bioenergy 32(8):717–729

    Google Scholar 

  160. Faaij A (2008) Development of international bio-energy markets and trade. Biomass Bioenergy 32(8):657–659

    Google Scholar 

  161. Tromborg E, Bolkesjo TF, Solberg B (2008) Biomass market and trade in Norway: status and future prospects. Biomass Bioenergy 32(8):660–671

    Google Scholar 

  162. Junginger M, de Wit M, Sikkema R, Faaij A (2008) International bioenergy trade in the Netherlands. Biomass Bioenergy 32(8):672–687

    Google Scholar 

  163. Heinimo J (2008) Methodological aspects on international biofuels trade: international streams and trade of solid and liquid biofuels in Finland. Biomass Bioenergy 32(8):702–716

    Google Scholar 

  164. Slusher JP (2009) Wood fuel for heating. University of Missouri Extension, Columbia

    Google Scholar 

  165. Hirayama Y (2010) What is biomass? Types of biomass and it’s availability why biomass for energy? www.apo-tokyo.org/biomassboiler/.../1_What_is_Biomass.ppt

  166. Energy Information Administration (2008) Biodiesel and ethanol. Monthly Energy Review December 2008, DOE/EIA-0035

    Google Scholar 

  167. Alanne K, Saari A (2004) Sustainable small-scale CHP technologies for buildings: the basis for multi-perspective decision-making. Renew Sust Energy Rev 8:4001–4031

    Google Scholar 

  168. Hawkes AD, Leach MA (2007) Cost-effective operating strategy for residential micro-combined heat and power. Energy 32:711–723

    Google Scholar 

  169. Paepe MD, Herdt PD, Mertens D (2006) Micro-CHP systems for residential applications. Energy Convers Manage 47:3435–3446

    Google Scholar 

  170. Dong L, Liu H, Riffat S (2009) Development of small scale and micro scale biomass fueled CHP systems-a literature review. Appl Therm Eng 29(1–2):2119–2126

    Google Scholar 

  171. Bernotat K, Sandberg T (2004) Biomass fired small-scale CHP in Sweden and the Baltic States: a case study on the potential of clustered dwellings. Biomass Bioenergy 27(6):521–530

    Google Scholar 

  172. Marbe G, Harvey S, Berntsson T (2004) Biofuel gasification combined heat and power—new implementation opportunities resulting from combined supply of process steam and district heating. Energy 29(8):1117–1137

    Google Scholar 

  173. Arbon IM (2002) Worldwide use of biomass in power generation and combined heat and power schemes. Proc Inst Mech Eng A J Pow Energy 216(A1):41–57

    Google Scholar 

  174. Barrio M, Fossum M, Hustad JE (2001) A small-scale stratified downdraft gasifier coupled to a gas engine for combined heat and power production. Progress in thermochemical biomass conversion. 5th Conference, Tyrol, Austria, 17–22 Sept 2001, vol 1, pp 426–440

    Google Scholar 

  175. Bushnell D, Reistad G, Bauer T, Brynjolfsson S, Fox S (1988) System and parameter evaluation of combined-cycle biomass-fueled power plants. Int J Energy Syst 8(1):6–12

    Google Scholar 

  176. Demirbas A, Urkmez A (2006) Biomass-based combined heat and power systems. Energy Sources B 1(3):242–253

    Google Scholar 

  177. Sadhukhan J, Ng KS, Shah N, Simons HJ (2009) Heat integration strategy for economic production of combined heat and power from biomass waste. Energy Fuels 23(10):5106–5120

    Google Scholar 

  178. Lamp P, Reichel A, Funk R (1997) Efficiency of heat and power production from combustion and gasification. Developments in thermochemical biomass conversion vol 2, Blackie, London, UK: 1590–1598

    Google Scholar 

  179. Kramreiter R, Url M, Kotik J, Hofbauer H (2008) Experimental investigation of a 125 kW twin-fire fixed bed gasification pilot plant and comparison to the results of a 2 MW combined heat and power plant (CHP). Fuel Process Technol 89(1):90–102

    Google Scholar 

  180. Gao L, Wu H, Jin H, Yang M (2008) System study of combined cooling, heating and power system for eco-industrial parks. Int J Energy Res 32(12):1107–1118

    Google Scholar 

  181. Kumar A, Demirel Y, Jones DD, Hanna MA (2010) Optimization and economic evaluation of industrial gas production and combined heat and power generation from gasification of corn stover and distillers grains. Bioresour Technol 101(10):3696–3701

    Google Scholar 

  182. Franco A, Giannini N (2004) Perspectives for the use of biomass as fuel in combined cycle power plants. Int J Therm Sci 44(2):163–177

    Google Scholar 

  183. Fryda LE, Panopoulos KD, Kakaras E (2008) Integrated combined heat and power with biomass gasification and SOFC-micro gas turbine. VGB PowerTech 88(4):66–74

    Google Scholar 

  184. Kristensen O (1996) Combined heat and power production based on gasification of straw and woodchips. Biomass for energy and the environment. Proceedings of the 9th European bioenergy conference, Copenhagen, 24–27 June 1996, vol 1, pp 272–277

    Google Scholar 

  185. Savola T, Fogelholm C-J (2006) Increased power to heat ratio of small scale CHP plants using biomass fuels and natural gas. Energy Convers Manage 47(18–19):3105–3118

    Google Scholar 

  186. Liguras DK, Verykios XE (2003) A novel, highly efficient and environmentally friendly process for combined heat and power production from biomass. Proceedings of the 8th international conference on environmental science and technology, Myrina, Lemnos Island, Greece, 8–10 Sept 2003, pp B934–B941

    Google Scholar 

  187. Wang L, Hanna MA, Weller CL, Jones DD (2009) Technical and economical analyses of combined heat and power generation from distillers grains and corn stover in ethanol plants. Energy Convers Manage 50(7):1704–1713

    Google Scholar 

  188. Knoef HAM, Stassen HEM (1996) Development of an integrated small scale combined heat/power fixed bed gasification system fuelled by standard gasifier fuel. Biomass for energy and the environment. Proceedings of the 9th European bioenergy conference, Copenhagen, 24–27 June 1996, vol 1, pp 266–271

    Google Scholar 

  189. Fryda L, Panopoulos KD, Kakaras E (2007) Integrated CHP with auto-thermal biomass gasification and SOFC-MGT. Energy Convers Manage 49(2):281–290

    Google Scholar 

  190. Brammer JG, Bridgwater AV (2001) Study of biomass gasifier-engine systems with integrated drying for combined heat and power. Progress in thermochemical biomass conversion, 5th Conference, Tyrol, Austria, 17–22 Sept 2000, vol 1, pp 307–321

    Google Scholar 

  191. De Kam MJ, Morey RV, Tiffany DG (2009) Biomass integrated gasification combined cycle for heat and power at ethanol plants. Energy Convers Manage 50(7):1682–1690

    Google Scholar 

  192. World Energy Council (2009) Survey of energy resources 2007 bioenergy. http://www.worldenergy.org/publications/survey_of_energy_resources_2007/bioenergy/default.asp

  193. Datta A, Mondal S, Gupta SD (2008) Perspectives for the direct firing of biomass as a supplementary fuel in combined cycle power plants. Int J Energy Res 32(13):1241–1257

    Google Scholar 

  194. Syred C, Fick W, Syred N, Griffiths AJ (2007) Use of biomass in small direct fired systems. New and renewable energy technologies for sustainable development. Evora international conference on new and renewable energy technologies for austainable development, Evora, Portugal, pp 127–151

    Google Scholar 

  195. Huang Y, McIlveen-Wright D, Rezvani S, Wang YD, Hewitt N, Williams BC (2006) Biomass co-firing in a pressurized fluidized bed combustion combined cycle power plant: a techno-environmental assessment based on computational simulations. Fuel Process Technol 87(10):927–934

    Google Scholar 

  196. Zwart R (2003) Technical, economic and environmental potential of cofiring of biomass in natural gas fired turbines and combined cycles. Energy Research Centre of the Netherlands, Petten, pp 1–8

    Google Scholar 

  197. Berndes G, Hansson J, Egeskog A, Johnsson F (2010) Strategies for 2nd generation biofuels in EU – co-firing to stimulate feedstock supply development and process integration to improve energy efficiency and economic competitiveness. Biomass Bioenergy 34(2):227–236

    Google Scholar 

  198. Lau F, Rabovitser J, Bryan B, Stopek D (2001) Biomass gasification co-firing project in Kentucky. Proceedings – 18th annual international Pittsburgh coal conference, pp 389–400

    Google Scholar 

  199. Bain RL (2004) An overview of biomass gasification. AIChE spring national meeting, conference proceedings, New Orleans, LA, United States, 25–29 Apr 2004, pp 375–380

    Google Scholar 

  200. Coombs J (1996) Power from plants: the global implications of new technologies for electricity from biomass. J Chem Technol Biot 65(3):299–300

    Google Scholar 

  201. Zerbin WO (1984) Generating electricity by gasification of biomass. Thermochem Process Biomass, [Evolved Eur Workshop], 1st. Ed Bridgewater AV. Butterworths, London, UK: 297–305

    Google Scholar 

  202. Andries J, De Jong W, Hoppesteyn PDJ, Unal O (1999) Conversion of biomass and biomass-coal mixtures: gasification, hot gas cleaning and gas turbine combustion. VTT Symposium.192 (power production from biomass III): 343–356

    Google Scholar 

  203. Bridgwater AV (1995) The technical and economic feasibility of biomass gasification for power generation. Fuel 74(5):631–653

    Google Scholar 

  204. Henrich E, Raffelt K, Stahl R, Weirich F (2004) Gasification of biomass-agricultural residues to synfuel and power, Forschungszentrum Karlsruhe,ITC-CPV, Karlsruhe, Germany:, B5/1–B5/18

    Google Scholar 

  205. Mann MK, Spath PL (1997) Summary of results from a life cycle assessment of a biomass gasification combined-cycle power system. Making a business from biomass in energy, environment, chemicals, fibers and materials. Proceedings of the 3rd biomass conference of the Americas, Montreal, 2 Aug 1997, vol 2, pp 1533–1542

    Google Scholar 

  206. Rodrigues M, Faaij APC, Walter A (2003) Techno-economic analysis of co-fired biomass integrated gasification/combined cycle systems with inclusion of economies of scale. Energy (Amsterdam, Neth) 28(12):1229–1258

    Google Scholar 

  207. Solantausta Y, Kurkela E (1995) Feasibility of electricity production from biomass by gasification systems. Valtion Teknillinen Tutkimuskeskus, Espoo

    Google Scholar 

  208. Warren TJB, Poulter R, Parfitt RI (1995) Converting biomass to electricity on a farm-sized scale using downdraft gasification and a spark-ignition engine. Bioresour Technol 52(1):95–98

    Google Scholar 

  209. Yanik J, Ebale S, Kruse A, Saglam M, Yueksel M (2007) Biomass gasification in supercritical water: part 1. effect of the nature of biomass. Fuel 86(15):2410–2415

    Google Scholar 

  210. Beenackers AACM, Maniatis K (1997) Gasification technologies for heat and power from biomass. Biomass gasification and pyrolysis: state of the art and future prospects, Conference, Stuttgart, 9–11 Apr 1997, pp 24–52

    Google Scholar 

  211. Fahlen E, Ahlgren EO (2009) Assessment of integration of different biomass gasification alternatives in a district-heating system. Energy (Oxford, UK) 34(12):2184–2195

    Google Scholar 

  212. Polematidis I, Koppar A, Pullammanappallil P, Seaborn S (2008) Biogasification of sugarbeet processing by-products. Zuckerindustrie (Berlin, Germany) 133(5):323–329

    Google Scholar 

  213. Romey I, Adorni M, Wartmann J, Herdin G, Beran R, Sjostrom K, Rosen C (2001) Concept for a decentralised combined heat and power generation unit for biomass gasification. Progress in Thermochemical Biomass Conversion, 5th conference, Tyrol, Austria, 17–22 Sept 2000, vol 1, pp 499–508

    Google Scholar 

  214. van der Meijden CM, Veringa HJ, Vreugdenhil BJ, van der Drift B (2009) Bioenergy II: scale-up of the MILENA biomass gasification process. Int J Chem Reactor Eng 7:A53

    Google Scholar 

  215. Overend RP, Bain RL (2000) The U.S. Department of Energy’s small modular systems project. National Renewable Energy Laboratory (NREL), Golden, CO, USA: Part5/1–Part5/73

    Google Scholar 

  216. Energy Efficiency and Renewable Energy (2010) Biomass co-firing. http://www1.eere.energy.gov/ba/pba/pdfs/bio_co_fire.pdf. Accessed 20 Nov 2010

  217. Babu SP (2006) IEA bioenergy agreement Task 33: thermal gasification of biomass, work shop No. 1: perspectives on biomass gasification. http://www.gastechnology.org/webroot/app/xn/xd.aspx?it=enweb&xd=iea/homepage.xml. Accessed 20 Nov 2010

  218. U.S. Department of Energy (2010) – Energy efficiency and renewable energy biomass program. http://www1.eere.energy.gov/biomass/. Accessed 20 Nov 2010

  219. Hill DT (1984) Methane productivity of the major animal waste types. Trans ASAE 27(2):530–534

    Google Scholar 

  220. Møller HB, Somer SG, Ahring KB (2004) Methane productivity of manure, straw and solid fractions of manure. Biomass Bioenergy 26(5):485–495

    Google Scholar 

  221. Rico JL, García H, Rico C, Tejero I (2007) Characterisation of solid and liquid fractions of dairy manure with regard to their component distribution and methane production. Bioresour Technol 98:971–979

    Google Scholar 

  222. Krich K, Augenstein D, Batmale JP, Benemann J, Rutledge B, Salour D (2005) Biomethane from dairy waste a sourcebook for the production and use of renewable natural gas in California. http://www.thefuelman.com/Documents/Biomethanesourcebook.pdf. Accessed 20 Nov 2010

  223. Demirbas A (2006) Biogas potential of manure and straw mixture. Energy Sources A 28(1):71–78

    Google Scholar 

  224. Cuellar AD, Webber ME (2008) Cow power: the energy and emission benefits of converting manure to biogas. Environ Res Lett 3(3):034002

    Google Scholar 

  225. Fulhage CD, Sievers D, Fischer JR (1993) Generating methane gas from manure. University of Missouri Extension. http://extension.missouri.edu/publications/DisplayPub.aspx?P=G1881. Accessed 20 Nov 2010

  226. Lazarus WF (2009) Anaerobic digester technology. The role of extension in energy. In: English BC, Menard J, Jensen K (eds) Proceedings of a conference 30 June–1 July 2009, Little Rock, Arkansas, pp 42–46

    Google Scholar 

  227. Liebrand CB, Ling KC (2009) Cooperative approaches for implementation of dairy manure digester. Agricultural economists rural development rural business-cooperative service, USDA. Report No. 217

    Google Scholar 

  228. Appropriate Technology Transfer for Rural Areas (ATTRA) (2006) Anaerobic digestion of animal wastes: factors to consider. National Sustainable Agriculture Information Service. www.attra.ncat.org. Accessed 20 Nov 2010

  229. Bothi KL, Brian SA (2005) Centralized anaerobic digestion options for groups of dairy farms. Cornell University Manure Management Program, Fact Sheet FS-1, May 2005

    Google Scholar 

  230. Lazarus WF, Rudstrom M (2007) The economics of anaerobic digester operation on a Minnesota dairy farm. Rev Agr Econ 29(2) Summer 2007

    Google Scholar 

  231. Leggett J, Graves RE, Lanyon LE (2008) Anaerobic digestion: biogas production and odor reduction from manure. Pennsylvania State University College of Agricultural Sciences, Cooperative Extension. http://server.age.psu.edu/extension/Factsheets/g/G77.pdf. Accessed 20 Nov 2010

  232. Martin JH (2004) A comparison of dairy cattle manure management with and without anaerobic digestion and biogas utilization, AgSTAR program, U.S. Environmental Protection Agency, June 2004

    Google Scholar 

  233. Wright P (2001) Overview of anaerobic digestion systems for dairy farms. Cornell University, Natural Resource, Agriculture and Engineering Service, NRAES-143

    Google Scholar 

  234. Singh SP, Prerna P (2009) Review of recent advances in anaerobic packed-bed biogas reactors. Renew Sust Energy Rev 13(6–7):1569–1575

    Google Scholar 

  235. Martin JH (2008) An evaluation of a covered anaerobic lagoon for flushed dairy cattle manure stabilization and biogas production. EPA Contract No. GS-10F-0036K Work Assignment/Task Order No. 0219

    Google Scholar 

  236. Greer D (2009) Biomethane fuels dairy fleet. Biocycle 50(6):36–39

    Google Scholar 

  237. Martin JH Jr (2005) An evaluation of a mesophilic, modified plug-flow digester for dairy cattle manure. Final report by the Eastern Research Group, Inc., Boston, Massachusetts to the AgSTAR Program, U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  238. Roos K (2005) An evaluation of a mesophilic, modified plug flow anaerobic digester for dairy cattle manure, AgSTAR Program, U.S. Environmental Protection Agency. http://www.epa.gov/agstar/pdf/gordondale_report_final.pdf. Accessed 20 Nov 2010

  239. Martin JH, Roos KF (2007) Comparison of the performance of a conventional and a modified plug-flow digester for scraped dairy manure. International symposium on air quality and waste management for agriculture. Proceedings of the 16–19 Sept 2007 conference, Broomfield, Colorado. Publication date 16 Sept 2007 ASABE Publication number 701P0907

    Google Scholar 

  240. Cournoyer MS, Delisle U, Ferland D, Chaqnon R (1985) A mixed plug flow anaerobic digester for diary manure. ASAE technical paper (United States), Conference: Winter meeting of the American Society of Agricultural Engineers, New Orleans, LA, USA, vol 4562, 11 Dec 1984

    Google Scholar 

  241. Chynoweth DP, Wilkie AC, and Owens JM (1998) Anaerobic treatment of piggery slurry. A paper presented at the pre-conference session: management of feed resources and animal waste for sustainable animal production in Asia-Pacific region beyond 2000 eighth world conference on animal production, Seoul, Korea, 28 June–4 July 1998

    Google Scholar 

  242. Wen Z, Frear C, Chen S (2007) Anaerobic digestion of liquid dairy manure using a sequential continuous-stirred tank reactor system. J Chem Technol Biot 82(8):758–766

    Google Scholar 

  243. Van den Berg L, Kennedy KJ, Samson R (1985) Anaerobic downflow stationary fixed film reactor: performance under steady-state and non-steady conditions. Water Sci Technol 17(1):89–102

    Google Scholar 

  244. Kennedy JL, Droste RL (1985) Startup of anaerobic downflow stationary fixed film (DSFF) reactors. Biotechnol Bioeng 27:1152–1165

    Google Scholar 

  245. Powers WJ, Wilkie AC, Van Horn HH, Nordstedt RA (1997) Effects of hydraulic rentention time on performance and fixed-film anaerobic digesters fed diary manure wastewaters. Trans ASABE 40(5):1449–1455

    Google Scholar 

  246. Bolzonella D, Pavan P, Zanette M, Cecchi F (2007) Two-phase anaerobic digestion of waste activated sludge: effect of an extreme thermophilic prefermentation. Ind Eng Chem Res 46:6650–6655

    Google Scholar 

  247. Roberts R, Le S, Forster CF (1999) A thermophilic/mesophilic dual digestion system for treating waste activated sludge. J Chem Technol Biotechnol 74(5):445–450

    Google Scholar 

  248. Song YC, Kwon JS, Woo JH (2004) Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic- and thermophilic digestion of sewage sludge. Water Res 38(7):1653–1662

    Google Scholar 

  249. Oles J, Dichtl N, Niehoff HH (1997) Full scale experience of two stage thermophilic/mesophilic sludge digestion. Water Sci Technol 36(6–7):449–456

    Google Scholar 

  250. Gavala HN, Yenal U, Skiadas IV, Westermann P, Ahring BK (2003) Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pre-treatment at elevated temperature. Water Res 37(19):4561–4572

    Google Scholar 

  251. Schafer PL, Farrell JK (2000) Performance comparisons for staged and high-temperature anaerobic digestion systems. Proceedings WEFTEC 2000, Anaheim, CA, 14–18 Oct 2000

    Google Scholar 

  252. Bicudo JR, Westerman PW, Oleszkiewicz JA (2001) Anaerobic and aerobic treatment of animal manure – a review. Animal residuals management conference, 2nd, Kansas City, MO, United States, 12–14 Nov 2000, pp 197–232

    Google Scholar 

  253. Dague RR, Pidaparti SR (1992) Anaerobic sequencing batch reactor treatment of swine wastes. Proceedings of the 46th industrial waste conference, pp 751–760

    Google Scholar 

  254. Dague RR, Sung S (1993) Bioconversion of industrial and agricultural wastes by the anaerobic sequencing batch reactor. Energy from Biomass and Wastes16: 1001–1023

    Google Scholar 

  255. Hawkins GL, Raman DR, Burns RT, Yoder RE, Cross TL (2001) Enhancing dairy lagoon performance with high-rate anaerobic digesters. Trans ASAE 44(6):1825–1831

    Google Scholar 

  256. Li X, Zhang RH (2004) Integrated anaerobic and aerobic treatment of dairy wastewater with sequencing batch reactors. Trans ASAE 47(1):235–241

    Google Scholar 

  257. Lo KV, Liao PH (1986) Anaerobic-aerobic biological treatment of screened dairy manure. Biomass 10(3):187–193

    Google Scholar 

  258. Masse DI, Croteau F, Masse L, Danesh S (2004) The effect of scale-up on the digestion of swine manure slurry in psychrophilic anaerobic sequencing batch reactors. Trans ASAE 47(4):1367–1373

    Google Scholar 

  259. Masse DI, Droste RL (2000) Comprehensive model of anaerobic digestion of swine manure slurry in a sequencing batch reactor. Water Res 34(12):3087–106

    Google Scholar 

  260. Masse DI, Lu D, Masse L, Droste RL (2000) Effect of antibiotics on psychrophilic anaerobic digestion of swine manure slurry in sequencing batch reactors. Bioresour Technol 75(3):205–211

    Google Scholar 

  261. Masse DI, Masse L, Croteau F (2003) The effect of temperature fluctuations on psychrophilic anaerobic sequencing batch reactors treating swine manure. Bioresour Technol 89(1):57–62

    Google Scholar 

  262. Ndegwa PM, Hamilton DW, Lalman JA, Cumba HJ (2005) Optimization of anaerobic sequencing batch reactors treating dilute swine slurries. Trans ASAE 48(4):1575–1583

    Google Scholar 

  263. Ndegwa PM, Hamilton DW, Lalman JA, Cumba HJ (2008) Effects of cycle-frequency and temperature on the performance of anaerobic sequencing batch reactors (ASBRs) treating swine waste. Bioresour Technol 99(6):1972–1980

    Google Scholar 

  264. Sakar S, Yetilmezsoy K, Kocak E (2009) Anaerobic digestion technology in poultry and livestock waste treatment – a literature review. Waste Manage Res 27(1):3–18

    Google Scholar 

  265. Zhang R, McGarvey JA, Ma Y, Mitloehner FM (2008) Effects of anaerobic digestion and aerobic treatment on the reduction of gaseous emissions from dairy manure storages. Int J Agr Biol Eng 1(2):15–20

    Google Scholar 

  266. Zhang RH, Tao J, Dugba PN (2000) Evaluation of two-stage anaerobic sequencing batch reactor systems for animal wastewater treatment. Trans ASAE 43(6):1795–1801

    Google Scholar 

  267. Lettinga G (1995) Anaerobic digestion and wastewater treatment systems. Antonie Leeuwenhoek 67(1):3–28

    Google Scholar 

  268. Rajeshwari KV, Balakrishnan M, Kansai A, Lata K, Kishore VVN (2000) State-of-the-art of anaerobic digestion technology for industrial wastewater treatment. Renew Sust Energy Rev 4(2):135–156

    Google Scholar 

  269. McCarty PL (2001) The development of anaerobic treatment and its future. Water Sci Technol 44(8):149–156

    Google Scholar 

  270. Garcia H, Rico C, Garcia PA, Rico JL (2008) Flocculants effect in biomass retention in a UASB reactor treating dairy manure. Bioresour Technol 99(14):6028–6036

    Google Scholar 

  271. Borole AP, Klasson KT, Ridenour W, Holland J, Karim K, Al-Dahhan MH (2006) Methane production in a 100-L upflow bioreactor by anaerobic digestion of farm waste. Appl Biochem Biotechnol 131(1–3):887–896

    Google Scholar 

  272. US Environmental Protection agency (2009) Chapter 1: overview of bioga technology

    Google Scholar 

  273. Krich K, Augenstien D, Batmale JP, Benemann J, Rutledge B, Salour D (2005) Biomethane from dairy waste a sourcebook for the production and use of renewable natural ga in California. http://www.suscon.org/news/biomethane_report/Full_Report.pdf. Accessed 20 Nov 2010

  274. Greene N (2004) Growing energy. How biofuels can help end America’s oil dependence. Natural Resources Defense Council, New York

    Google Scholar 

  275. Schubert C (2006) Can biofuels finally take center stage? Nat Biotechnol 24:777–784

    Google Scholar 

  276. Festel GW (2008) Biofuels – economic aspects. Chem Eng Technol 31(5):715–720

    Google Scholar 

  277. Greer D (2007) Confronting challenges in developing bioenergy and biofuel. Biocycle 49(2):45–48

    Google Scholar 

  278. Anish R, Rao M (2009) Bioethanol from lignocellulosic biomass: part III hydrolysis and fermentation. In: Pandey A (ed) Handbook of plant-based biofuels. CRC, Boca Raton, pp 159–173

    Google Scholar 

  279. Giampietro M, Ulgiati S, Pimentel D (1997) Feasibility of large-scale biofuel production. Bioscience 47(9):587–600

    Google Scholar 

  280. Kojima M, Johnson T (2006) Potential for biofuels for transport in developing countries. Knowledge exchange Series No 4, ESMAP

    Google Scholar 

  281. Dalgaard T, Joergensen U, Olesen JE, Jensen ES, Kristensen ES (2006) Looking a biofuels and bioenergy. Science (Washington, DC, USA) 312(5781):1743–1744

    Google Scholar 

  282. Han K-H, Ko J-H, Yang SH (2007) Optimizing lignocellulosic feedstock for improved biofuel productivity and processing. Biofuels Bioprod Biorefin 1(2):135–146

    Google Scholar 

  283. Agarwal AK (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci 33(3):233–271

    Google Scholar 

  284. Demirbas A (2007) Progress and recent trends in biofuels. Prog Energy Combust Sci 33(1):1–18

    MathSciNet  Google Scholar 

  285. Hamelinck CN, Faaij APC (2006) Outlook for advanced biofuels. Energy Policy 34(17):3268–3283

    Google Scholar 

  286. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489

    Google Scholar 

  287. Somerville C (2006) The billion-ton biofuels vision. Science 312(5778):1277–1278

    Google Scholar 

  288. Knothe G, Van Gerpen J, Krahl J (2005) The biodiesel handbook. American Oil Chemists Society, Urbana

    Google Scholar 

  289. Pahl G (2008) Biodiesel: growing a new energy economy. Chelsea Green Publishing, White River junction

    Google Scholar 

  290. Anon (2005) Converting biomass to biodiesel. Science (Washington, DC, USA) 308(5727):1373

    Google Scholar 

  291. Balat M (2008) Global Trends on the processing of bio-fuels. Int J Green Energy 5(3):212–238

    Google Scholar 

  292. Demirbas A (2009) Progress and recent trends in biodiesel fuels. Energy Convers Manage 50(1):14–34

    Google Scholar 

  293. Frondel M, Peters J (2007) Biodiesel: a new Oildorado? Energy Policy 35(3):1675–1684

    Google Scholar 

  294. Johnston M, Holloway T (2007) A global comparison of national biodiesel production potentials. Environ Sci Technol 41(23):7967–7973

    Google Scholar 

  295. Marchetti JM, Miguel VU, Errazu AF (2007) Possible methods for biodiesel production. Renew Sust Energy Rev 11(6):1300–1311

    Google Scholar 

  296. Pinto AC, Guarieiro LLN, Rezende MJC, Ribeiro NM, Torres EA, Lopes WA, Pereira PAdP, Andrade JBD (2005) Biodiesel: an overview. J Braz Chem Soc 16:1313–1330

    Google Scholar 

  297. Pousa GPAG, Santos ALF, Suarez PAZ (2007) History and policy of biodiesel in Brazil. Energy Policy 35(11):5393–5398

    Google Scholar 

  298. Shahid EM, Jamal Y (2008) A review of biodiesel as vehicular fuel. Renew Sust Energy Rev 12(9):2484–2494

    Google Scholar 

  299. Sharma YC, Singh B, Upadhyay SN (2008) Advancements in development and characterization of biodiesel: a review. Fuel 87(12):2355–7233

    Google Scholar 

  300. Vasudevan P, Briggs M (2008) Biodiesel production—current state of the art and challenges. J Ind Microbiol Biotechnol 35(5):421–430

    Google Scholar 

  301. Boehman AL (2005) Biodiesel production and processing. Fuel Process Technol 86(10):1057–1058

    Google Scholar 

  302. Bournay L, Casanave D, Delfort B, Hillion G, Chodorge JA (2005) New heterogeneous process for biodiesel production: a way to improve the quality and the value of the crude glycerin produced by biodiesel plants. Catal Today 106(1–4):190–192

    Google Scholar 

  303. Bozbas K (2007) Biodiesel as an alternative motor fuel: production and policies in the European Union. Renew Sust Energy Rev 12(2):542–552

    Google Scholar 

  304. Du W, Li W, Sun T, Chen X, Liu D (2008) Perspectives for biotechnological production of biodiesel and impacts. Appl Microbiol Biotechnol 79(3):331–337

    Google Scholar 

  305. Durrett TP, Benning C, Ohlrogge J (2008) Plant triacylglycerols as feedstocks for the production of biofuels. Plant J 54(4):593–607

    Google Scholar 

  306. Grassi G, Palmarocchi M, Koeler J, Trebbi G (1995) Advanced liquid fuel production from biomass for power generation. Proceedings – 2nd biomass conference of the Americas: energy, environment, agriculture and industry, Portland, Oreg, pp 1048–1058

    Google Scholar 

  307. McNeff CV, McNeff LC, Yan B, Nowlan DT, Rasmussen M, Gyberg AE, Krohn BJ, Fedie RL, Hoye TR (2008) A continuous catalytic system for biodiesel production. Appl Catal A 343(1–2):39–48

    Google Scholar 

  308. Van Gerpen J (2005) Biodiesel processing and production. Fuel Process Technol 86(10):1097–1107

    Google Scholar 

  309. West AH, Posarac D, Ellis N (2008) Assessment of four biodiesel production processes using HYSYS.Plant. Bioresour Technol 99(14):6587–6601

    Google Scholar 

  310. Petroleum Club (2009) http://www.globalpetroleumclub.com/. Accessed 20 Nov 2010

  311. Benjumea P, Agudelo J, Agudelo A (2008) Basic properties of palm oil biodiesel-diesel blends. Fuel 87(10–11):2069–2075

    Google Scholar 

  312. Berchmans HJ, Hirata S (2008) Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour Technol 99(6):1716–1721

    Google Scholar 

  313. Bhatti HN, Hanif MA, Qasim M, Ata ur R (2008) Biodiesel production from waste tallow. Fuel 87(13–14):2961–2966

    Google Scholar 

  314. Cao W, Han H, Zhang J (2005) Preparation of biodiesel from soybean oil using supercritical methanol and co-solvent. Fuel 84(4):347–351

    Google Scholar 

  315. Demirbas A (2008) Studies on cottonseed oil biodiesel prepared in non-catalytic SCF conditions. Bioresour Technol 99(5):1125–1130

    Google Scholar 

  316. Deshmukh SK, Patil KI, Jamode AV (2004) Used soya oil. Biodiesel production by transesterification. Chem Eng World 39(12):106–111

    Google Scholar 

  317. dos Santos ICF, de Carvalho SHV, Solleti JI, Ferreira de La Salles W, da Silva T, de La Salles K, Meneghetti SMP (2008) Studies of Terminalia catappa L. oil: characterization and biodiesel production. Bioresour Technol 99(14):6545–6549

    Google Scholar 

  318. Frohlich A, Rice B (2005) Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Ind Crops Prod 21(1):25–31

    Google Scholar 

  319. Frohlich A, Rice B (2005) Evaluation of recovered vegetable oil as a biodiesel feedstock. Irish J Agr Food Res 44(1):129–139

    Google Scholar 

  320. Georgogianni KG, Kontominas MG, Avlonitis D, Gergis V (2006) Transesterification of sunflower seed oil for the production of biodiesel: effect of catalyst concentration and ultrasonication. WSEAS Trans Environ Development 2(2):136–140

    Google Scholar 

  321. Ghadge SV, Raheman H (2005) Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids. Biomass Bioenergy 28(6):601–605

    Google Scholar 

  322. Grassi G (1996) Future perspectives of bioenergy activities in the European Union. Bio-oil production & utilisation. Proceedings of the 2nd EU-Canada workshop on thermal biomass processing, Toronto, 8–9 May 1995, pp 17–21

    Google Scholar 

  323. Ilgen O, Dincer I, Yildiz M, Alptekin E, Boz N, Canakci M, Akin AN (2007) Investigation of biodiesel production from canola oil using Mg-Al hydrotalcite catalysts. TUrk J Chem 31(5):509–514

    Google Scholar 

  324. Issariyakul T, Kulkarni MG, Meher LC, Dalai AK, Bakhshi NN (2008) Biodiesel production from mixtures of canola oil and used cooking oil. Chem Eng J (Amsterdam, Neth) 140(1–3):77–85

    Google Scholar 

  325. Konwer D (2004) Production of diesel fuels from Mesua ferrea L. seed oil. World renewable energy congress VIII: linking the world with renewable energy, 8th, Denver, CO, United States, 29 Aug–3 Sept 2004, pp 48–52

    Google Scholar 

  326. Meena Devi VN, Vijayalakshmi GS, Prasad PN (2007) Bassia oil – a new potential source for biodiesel. Geobios (Jodhpur, India) 34(1):65–67

    Google Scholar 

  327. Melo WC, dos Santos AS, Anna LMMS, Pereira N Jr (2008) Acid and enzymatic hydrolysis of the residue from Castor Bean (Ricinus communis L.) oil extraction for ethanol production: detoxification and biodiesel process integration. J Braz Chem Soc 19(3):418–425

    Google Scholar 

  328. Meneghetti SMP, Meneghetti MR, Serra TM, Barbosa DC, Wolf CR (2007) Biodiesel production from vegetable oil mixtures: cottonseed, soybean, and castor oils. Energy Fuels 21(6):3746–3747

    Google Scholar 

  329. Ramadhas AS, Jayaraj S, Muraleedharan C (2005) Biodiesel production from high FFA rubber seed oil. Fuel 84(4):335–340

    Google Scholar 

  330. Rupilius W, Ahmad S (2007) Palm oil and palm kernel oil as raw materials for basic oleochemicals and biodiesel. Eur J Lipid Sci Technol 109(4):433–439

    Google Scholar 

  331. Sagiroglu A (2008) Conversion of sunflower oil to biodiesel by alcoholysis using immobilized lipase. Artif Cells Blood Substit Biotech 36(2):138–149

    Google Scholar 

  332. Sanchez F, Vasudevan PT (2006) Enzyme catalyzed production of biodiesel from olive oil. Appl Biochem Biotechnol 135(1):1–14

    Google Scholar 

  333. Beer LL, Boyd ES, Peters JW, Posewitz MC (2009) Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol 20(3):264–271

    Google Scholar 

  334. Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44(5):1813–1819

    Google Scholar 

  335. Huesemann MH, Benemann JR (2009) Biofuels from microalgae: review of products, processes and potential, with special focus on Dunaliella sp.. In: Ben-Amotz A, Polle JEW, Subba Rao DV (eds) Alga Dunaliella. Science, New Hampshire, pp 445–474

    Google Scholar 

  336. Tarwadi SJ, Chauhan VD, Khan MMT (1984) Marine algae Sargassum, a renewable source of bioenergy. Energy Research.4B, Renewable Energy Sources: International Progress, Pt. B, pp 109–112

    Google Scholar 

  337. FAO Food outlook series reports the 2004/2005 production (www.fao.org/waicent/portal/statistics_en.asp). Accessed 20 Nov 2010

  338. European biodiesel board (2010). http://www.ebb-eu.org/. Accessed 20 Nov 2010

  339. Malaysian Palm Oil Board (2010). http://www.mpob.gov.my/. Accessed 20 Nov 2010

  340. National Biodiesel Board, USA (2010). http://www.biodiesel.org/. Accessed 20 Nov 2010

  341. Agarwal AK, Bajaj TP (2009) Process optimization of base catalyzed transesterification of Karanja oil for biodiesel production. Int J Oil Gas Coal Technol 2(3):297–310

    Google Scholar 

  342. Ahmad M, Rashid S, Khan MA, Zafar M, Sultana S, Gulzar S (2009) Optimization of base catalyzed transesterification of peanut oil biodiesel. Afr J Biotechnol 8(3):441–446

    Google Scholar 

  343. Akoh CC, Swanson BG (1988) Base catalyzed transesterification of vegetable oils. J Food Process Preserv 12(2):139–149

    Google Scholar 

  344. Anderson JA, Beaton A, Galadima A, Wells RPK (2009) Role of Baria dispersion in BaO/Al2O3 catalysts for transesterification. Catal Lett 131(1–2):213–218

    Google Scholar 

  345. Antunes WM, CdO V, Henriques CA (2008) Transesterification of soybean oil with methanol catalyzed by basic solids. Catal Today 133–135:548–554

    Google Scholar 

  346. Arzamendi G, Arguinarena E, Campo I, Zabala S, Gandia LM (2008) Alkaline and alkaline-earth metals compounds as catalysts for the methanolysis of sunflower oil. Catal Today 133–135:305–313

    Google Scholar 

  347. Azcan N, Danisman A (2007) Alkali catalyzed transesterification of cottonseed oil by microwave irradiation. Fuel 86(17–18):2639–2644

    Google Scholar 

  348. Babu NS, Sree R, Prasad PSS, Lingaiah N (2008) Room-temperature transesterification of edible and nonedible oils using a heterogeneous strong basic mg/la catalyst. Energy Fuels 22(3):1965–1971

    Google Scholar 

  349. Banavali R, Hanlon RT, Jerabek K, Schultz AK (2009) Heterogeneous catalyst and process for the production of biodiesel from high free-fatty acid-containing feedstocks. Chemical Industries (Boca Raton, FL, United States), 123(Catalysis of Organic Reactions), pp 279–289

    Google Scholar 

  350. Banerjee T, Bhattacharya TK, Gupta RK (2009) Process optimization of catalyst removal and characterization of waste water after alkali-catalyzed transesterification of jatropha oil. Int J Green Energy 6(4):392–400

    Google Scholar 

  351. Benjapornkulaphong S, Ngamcharussrivichai C, Bunyakiat K (2009) Al2O3-supported alkali and alkali earth metal oxides for transesterification of palm kernel oil and coconut oil. Chem Eng J (Amsterdam, Neth) 145(3):468–474

    Google Scholar 

  352. Bhatti HN, Hanif MA, Faruq U, Sheikh MA (2008) Acid and base catalyzed transesterification of animal fats to biodiesel. Iran J Chem Chem Eng 27(4):41–48

    Google Scholar 

  353. Bo X, Xiao G, Cui L, Wei R, Gao L (2007) Transesterification of palm oil with methanol to biodiesel over a KF/Al2O3 heterogeneous base catalyst. Energy Fuels 21(6):3109–3112

    Google Scholar 

  354. Boz N, Kara M (2008) Solid base catalyzed transesterification of canola oil. Chem Eng Commun 196(1 & 2):80–92

    Google Scholar 

  355. Campos-Molina MJ, Santamaria-Gonzalez J, Merida-Robles J, Moreno-Tost R, Albuquerque MCG, Bruque-Gamez S, Rodriguez-Castellon E, Jimenez-Lopez A, Maireles-Torres P Base Catalysts Derived from Hydrocalumite for the Transesterification of Sunflower Oil. Energy & Fuels 24(2): 979–984

    Google Scholar 

  356. Cetinkaya M, Karaosmanoglu F (2004) Optimization of base-catalyzed transesterification reaction of used cooking oil. Energy Fuels 18(6):1888–1895

    Google Scholar 

  357. Chand P, Reddy CV, Verkade JG, Wang T, Grewell D (2009) Thermogravimetric quantification of biodiesel produced via alkali catalyzed transesterification of soybean oil. Energy Fuels 23(2):989–992

    Google Scholar 

  358. Chen W, Huang Z, Liu Y, He Q (2007) Preparation and characterization of a novel solid base catalyst hydroxyapatite loaded with strontium. Catal Commun 9(4):516–521

    Google Scholar 

  359. Coker A, Iretski A, White M, Hernandez R, French T (2010) Effect of water on base-catalyzed transesterification of soybean oil with methanol over promoted hydrotalcite catalysts. Abstracts of papers, 239th ACS national meeting, San Francisco, CA, United States. AGRO-108

    Google Scholar 

  360. Cui L, Xiao G, Bo X, Teng G (2007) Transesterification of cottonseed oil to biodiesel by using heterogeneous solid basic catalysts. Energy Fuels 21(6):3740–3743

    Google Scholar 

  361. de Lima da Silva N, Batistella CB, Maciel Filho R, Wolf-Maciel MR (2009) Biodiesel production from castor oil: optimization of alkaline ethanolysis. Energy Fuels 23(11):5636–5642

    Google Scholar 

  362. Demirbas A (2009) Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Convers Manage 50(4):923–927

    Google Scholar 

  363. Dias JM, Alvim-Ferraz MCM, Almeida MF (2008) Comparison of the performance of different homogeneous alkali catalysts during transesterification of waste and virgin oils and evaluation of biodiesel quality. Fuel 87(17–18):3572–3578

    Google Scholar 

  364. Dorado MP, Ballesteros E, Lopez FJ, Mittelbach M (2004) Optimization of alkali-catalyzed transesterification of Brassica carinata oil for biodiesel production. Energy Fuels 18(1):77–83

    Google Scholar 

  365. Fraile JM, Garcia N, Mayoral JA, Pires E, Roldan L (2009) The influence of alkaline metals on the strong basicity of Mg-Al mixed oxides: the case of transesterification reactions. Appl Catal A 364(1–2):87–94

    Google Scholar 

  366. Gao L, Teng G, Lv J, Xiao G (2010) Biodiesel synthesis catalyzed by the KF/Ca-Mg-Al hydrotalcite base catalyst. Energy Fuels 24(1):646–561

    Google Scholar 

  367. Georgogianni KG, Katsoulidis AK, Pomonis PJ, Manos G, Kontominas MG (2009) Transesterification of rapeseed oil for the production of biodiesel using homogeneous and heterogeneous catalysis. Fuel Process Technol 90(7–8):1016–1022

    Google Scholar 

  368. Georgogianni KG, Kontominas MG, Pomonis PJ, Avlonitis D, Gergis V (2008) Alkaline conventional and in situ transesterification of cottonseed oil for the production of biodiesel. Energy Fuels 22(3):2110–2115

    Google Scholar 

  369. Han H, Guan Y (2009) Synthesis of biodiesel from rapeseed oil using K2O/gamma -Al2O3 as nano-solid-base catalyst. Wuhan Univ J Nat Sci 14(1):75–79

    Google Scholar 

  370. Hsieh L-S, Kumar U, Wu JCS (2010) Continuous production of biodiesel in a packed-bed reactor using shell-core structural Ca(C3H7O3)2/CaCO3 catalyst. Chem Eng J 158(2):250–256

    Google Scholar 

  371. Ilgen O, Akin AN (2009) Development of alumina supported alkaline catalysts used for biodiesel production. TUrk J Chem 33(2):281–287

    Google Scholar 

  372. Jindal MK, Jha P (2009) Study of biodiesel from waste soybean oil. J Environ Res Dev 3(4):1134–1139

    Google Scholar 

  373. Jothiramalingam R, Wang MK (2009) Review of recent developments in solid acid, base, and enzyme catalysts (heterogeneous) for biodiesel production via transesterification. Ind Eng Chem Res 48(13):6162–6172

    Google Scholar 

  374. Karonis D, Anastopoulos G, Stournas S (2009) Ethanolysis of vegetable oils: a systematic study using homogeneous alkali catalysts. Preprints of symposia – American Chemical Society, division of fuel chemistry 54(2): 1002–1008

    Google Scholar 

  375. Kawashima A, Matsubara K, Honda K (2008) Development of heterogeneous base catalysts for biodiesel production. Bioresour Technol 99(9):3439–3443

    Google Scholar 

  376. Kim M, Salley SO, Ng KYS (2008) Transesterification of glycerides using a heterogeneous resin catalyst combined with a homogeneous catalyst. Energy Fuels 22(6):3594–3599

    Google Scholar 

  377. Kolaczkowski ST, Asli UA, Davidson MG (2009) A new heterogeneous ZnL2 catalyst on a structured support for biodiesel production. Catal Today 147(suppl 1):S220–S224

    Google Scholar 

  378. Kotwal MS, Niphadkar PS, Deshpande SS, Bokade VV, Joshi PN (2009) Transesterification of sunflower oil catalyzed by flyash-based solid catalysts. Fuel 88(9):1773–1778

    Google Scholar 

  379. Kouzu M, J-s H, Komichi Y, Nakano H, Yamamoto M (2009) A process to transesterify vegetable oil with methanol in the presence of quick lime bit functioning as solid base catalyst. Fuel 88(10):1983–1990

    Google Scholar 

  380. Kouzu M, Kasuno T, Tajika M, Sugimoto Y, Yamanaka S, Hidaka J (2008) Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel 87(12):2798–2806

    Google Scholar 

  381. Kumar D, Ali A (2010) Nanocrystalline lithium ion impregnated calcium oxide as heterogeneous catalyst for transesterification of high moisture containing cotton seed oil. Energy Fuels 24(3):2091–2097

    Google Scholar 

  382. Leclercq E, Finiels A, Moreau C (2001) Transesterification of rapeseed oil in the presence of basic zeolites and related solid catalysts. J Am Oil Chem Soc 78(11):1161–1165

    Google Scholar 

  383. Leung DYC, Wu X, Leung MKH (2010) A review on biodiesel production using catalyzed transesterification. Appl Energy 87(4):1083–1095

    Google Scholar 

  384. Li E, Xu ZP, Rudolph V (2009) MgCoAl-LDH derived heterogeneous catalysts for the ethanol transesterification of canola oil to biodiesel. Appl Catal B 88(1–2):42–49

    Google Scholar 

  385. Liang B, Yan S, Lu H, Wang G, Jiang L (2006) Biodiesel production by transesterification of oil with solid catalyst. Proceedings of international forum on green chemical science & engineering and process systems engineering, Tianjin, China, 8–10 Oct 2006, vol 1, pp 55–59

    Google Scholar 

  386. Liu X, He H, Wang Y, Zhu S, Piao X (2007) Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel 87(2):216–221

    Google Scholar 

  387. Liu X, Piao X, Wang Y, Zhu S (2010) Model study on transesterification of soybean oil to biodiesel with methanol using solid base catalyst. J Phys Chem A 114(11):3750–3755

    Google Scholar 

  388. Liu X, Piao X, Wang Y, Zhu S (2008) Calcium ethoxide as a solid base catalyst for the transesterification of soybean oil to biodiesel. Energy Fuels 22(2):1313–1317

    Google Scholar 

  389. Liu X, Piao X, Wang Y, Zhu S, He H (2008) Calcium methoxide as a solid base catalyst for the transesterification of soybean oil to biodiesel with methanol. Fuel 87(7):1076–1082

    Google Scholar 

  390. Liu Y, Wang L, Yan Y (2009) Biodiesel synthesis combining pre-esterification with alkali catalyzed process from rapeseed oil deodorizer distillate. Fuel Process Technol 90(7–8):857–862

    Google Scholar 

  391. Macala GS, Robertson AW, Johnson CL, Day ZB, Lewis RS, White MG, Iretskii AV, Ford PC (2008) Transesterification catalysts from iron doped hydrotalcite-like precursors: solid bases for biodiesel production. Catal Lett 122(3–4):205–209

    Google Scholar 

  392. Mahamuni NN, Adewuyi YG (2009) Optimization of the synthesis of biodiesel via ultrasound-enhanced base-catalyzed transesterification of soybean oil using a multifrequency ultrasonic reactor. Energy Fuels 23(5):2757–2766

    Google Scholar 

  393. McFarlane J, Birdwell JF, Jr., Tsouris C, Jennings HL (2008) Process intensification in continuous base-catalyzed biodiesel production. AIChE annual meeting, conference proceedings, Philadelphia, PA, United States, 16–21 Nov 2008, pp 765/1–765/8

    Google Scholar 

  394. Murugesan A, Umarani C, Chinnusamy TR, Krishnan M, Subramanian R, Neduzchezhain N (2009) Production and analysis of bio-diesel from non-edible oils-a review. Renew Sust Energy Rev 13(4):825–834

    Google Scholar 

  395. Murugesan A, Umarani C, Subramanian R, Nedunchezhian N (2009) Bio-diesel as an alternative fuel for diesel engines-a review. Renew Sust Energy Rev 13(3):653–662

    Google Scholar 

  396. Ngamcharussrivichai C, Totarat P, Bunyakiat K (2008) Ca and Zn mixed oxide as a heterogeneous base catalyst for transesterification of palm kernel oil. Appl Catal A 341(1–2):77–85

    Google Scholar 

  397. Om Tapanes NC, Gomes Aranda DA, de Mesquita Carneiro JW, Ceva Antunes OA (2008) Transesterification of Jatropha curcas oil glycerides: theoretical and experimental studies of biodiesel reaction. Fuel 87(10–11):2286–2295

    Google Scholar 

  398. Patil PD, Deng S (2009) Transesterification of camelina sativa oil using heterogeneous metal oxide catalysts. Energy Fuels 23(9):4619–4624

    Google Scholar 

  399. Pena R, Romero R, Luz Martinez S, Ramos MJ, Martinez A, Natividad R (2009) Transesterification of castor oil: effect of catalyst and co-solvent. Ind Eng Chem Res 48(3):1186–1189

    Google Scholar 

  400. Phan AN, Phan TM (2008) Biodiesel production from waste cooking oils. Fuel 87(17–18):3490–3496

    Google Scholar 

  401. Queiroz RM, Pires LHO, de Souza RCP, Zamian JR, Souza AG, da Rocha Filho GN, da Costa CEF (2009) Thermal characterization of hydrotalcite used in the transesterification of soybean oil. J Therm Anal Calorim 97(1):163–166

    Google Scholar 

  402. Rashid U, Anwar F (2008) Production of biodiesel through base-catalyzed transesterification of safflower oil using an optimized protocol. Energy Fuels 22(2):1306–12

    Google Scholar 

  403. Rashid U, Anwar F (2008) Production of biodiesel through optimized alkaline-catalyzed transesterification of rapeseed oil. Fuel 87(3):265–273

    Google Scholar 

  404. Rashid U, Anwar F, Moser BR, Ashraf S (2008) Production of sunflower oil methyl esters by optimized alkali-catalyzed methanolysis. Biomass Bioenergy 32(12):1202–1205

    Google Scholar 

  405. Ren Q, Yan J, Qiu T, Lai C, Fan X (2008) Alkali-catalyzed transesterification of soybean oil for biodiesel production by means of ultrasonication. Huaxue Yu Shengwu Gongcheng 25(11):15–8, 21

    Google Scholar 

  406. Singh V, Solanki K, Gupta MN (2008) Process optimization for biodiesel production. Recent Pat Biotechnol 2(2):130–143

    Google Scholar 

  407. Sree R, Babu NS, Prasad PSS, Lingaiah N (2009) Transesterification of edible and non-edible oils over basic solid Mg/Zr catalysts. Fuel Process Technol 90(1):152–157

    Google Scholar 

  408. Tantirungrotechai J, Chotmongkolsap P, Pohmakotr M (2009) Synthesis, characterization, and activity in transesterification of mesoporous Mg-Al mixed-metal oxides. Microporous Mesoporous Mater 128(1–3):41–47

    Google Scholar 

  409. Teng G, Gao L, Xiao G, Liu H (2009) Transesterification of soybean oil to biodiesel over heterogeneous solid base catalyst. Energy Fuels 23(9):4630–4634

    Google Scholar 

  410. Ullah F, Nosheen A, Hussain I, Bano A (2009) Base catalyzed transesterification of wild apricot kernel oil for biodiesel production. Afr J Biotechnol 8(14):3289–3293

    Google Scholar 

  411. Vyas AP, Subrahmanyam N, Patel PA (2009) Production of biodiesel through transesterification of Jatropha oil using KNO3/Al2O3 solid catalyst. Fuel 88(4):625–628

    Google Scholar 

  412. Wan T, Yu P, Wang S, Luo Y (2009) Application of sodium aluminate as a heterogeneous base catalyst for biodiesel production from soybean oil. Energy Fuels 23(2):1089–1092

    Google Scholar 

  413. Wang R, Yang S, Yin S, Song B, Bhadury PS, Xue W, Tao S, Jia Z, Liu D, Gao L (2008) Development of solid base catalyst X/Y/MgO/gamma -Al2O3 for optimization of preparation of biodiesel from Jatropha curcas L. seed oil. Front Chem Eng Chin 2(4):468–472

    Google Scholar 

  414. Xie W, Peng H, Chen L (2006) Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst. Appl Catal A 300(1):67–74

    Google Scholar 

  415. Xu YX, Hanna MA (2009) Synthesis and characterization of hazelnut oil-based biodiesel. Ind Crops Prod 29(2–3):473–479

    Google Scholar 

  416. Zhang Y, Stanciulescu M, Ikura M (2009) Rapid transesterification of soybean oil with phase transfer catalysts. Appl Catal A 366(1):176–183

    Google Scholar 

  417. Chung K-H, Park B-G (2009) Esterification of oleic acid in soybean oil on zeolite catalysts with different acidity. J Ind Eng Chem (Amsterdam, Neth) 15(3):388–392

    Google Scholar 

  418. Facioli NL, Barrera-Arellano D (2002) Optimization of direct acid esterification process of soybean oil deodorizer distillate. Grasas Aceites (Sevilla, Spain) 53(2):206–212

    Google Scholar 

  419. Fan X, Burton R, Austic G (2009) Preparation and characterization of biodiesel produced from recycled canola oil. Open Fuels Energy Sci J 2:113–118

    Google Scholar 

  420. Furuta S, Matsuhashi H, Arata K (2004) Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure. Catal Commun 5(12):721–723

    Google Scholar 

  421. Gan M, Pan D, Ma L, Yue E, Hong J (2009) The kinetics of the esterification of free fatty acids in waste cooking oil using Fe2(SO4)3/C catalyst. Chin J Chem Eng 17(1):83–87

    Google Scholar 

  422. Giri BY, Devi BLAP, Lingaiah N, Prasad PSS, Prasad RBN (2009) Preparation of biodiesel from high FFA rice bran oil using solid acid catalyst. J Lipid Sci Technol 41(3):98–101

    Google Scholar 

  423. Hao X, Yoshida A, Nishikido J (2004) Hf[N(SO2C8F17)2]4 as a highly active and recyclable Lewis acid catalyst for direct esterification of methacrylic acid with methanol in a fluorous biphase system. Green Chem 6(11):566–569

    Google Scholar 

  424. Hou X, Qi Y, Qiao X, Wang G, Qin Z, Wang J (2007) Lewis acid-catalyzed transesterification and esterification of high free fatty acid oil in subcritical methanol. Korean J Chem Eng 24(2):311–313

    Google Scholar 

  425. Jansri S, Prateepchaikul G, Ratanawilai SB (2007) Acid-catalyzed esterification: a technique for reducing high free fatty acid in mixed crude palm oil. Kasetsart J Nat Sci 41(3):555–560

    Google Scholar 

  426. Kralova I, Sjoblom J (2010) Biofuels-renewable energy sources: a review. J Dispers Sci Technol 31(3):409–425

    Google Scholar 

  427. Li L, Lv P, Luo W, Wang Z, Yuan Z (2010) Esterification of high FFA tung oil with solid acid catalyst in fixed bed reactor. Biomass Bioenergy 34(4):496–499

    Google Scholar 

  428. Lin VSY, Nieweg JA, Kern C, Trewyn BG, Pruski M, Wiench JW (2006) Environmentally friendly nanoporous oxide catalysts for biodiesel synthesis. Abstracts of papers, 232nd ACS national meeting, San Francisco, CA, United States, 10–14 Sept 2006: FUEL-032

    Google Scholar 

  429. Liu B, Zhao Z (2007) Biodiesel production by direct methanolysis of oleaginous microbial biomass. J Chem Technol Biotechnol 82(8):775–780

    Google Scholar 

  430. Marchetti JM, Errazu AF (2008) Comparison of different heterogeneous catalysts and different alcohols for the esterification reaction of oleic acid. Fuel 87(15–16):3477–3480

    Google Scholar 

  431. Marchetti JM, Errazu AF (2008) Esterification of free fatty acids using sulfuric acid as catalyst in the presence of triglycerides. Biomass Bioenergy 32(9):892–895

    Google Scholar 

  432. Ni J, Meunier FC (2007) Esterification of free fatty acids in sunflower oil over solid acid catalysts using batch and fixed bed-reactors. Appl Catal A 333(1):122–130

    Google Scholar 

  433. Park J-Y, Wang Z-M, Kim D-K, Lee J-S (2010) Effects of water on the esterification of free fatty acids by acid catalysts. Renew Energy 35(3):614–618

    Google Scholar 

  434. Pereira AT, Oliveira KA, Monteiro RS, Aranda DAG, Santos RTP, Joao RR (2007) The production of biodiesel from the esterification of free fatty acids of palm oil by using niobic acid as a solid acid catalyst. Stud Surf Sci Catal 172:189–192 (Science and Technology in Catalysis 2006)

    Google Scholar 

  435. Peterson GR, Scarrah WP (1984) Rapeseed oil transesterification by heterogeneous catalysis. J Am Oil Chem Soc 61(10):1593–1597

    Google Scholar 

  436. Pietre MK, Almeida LCP, Landers R, Vinhas RCG, Luna FJ (2010) H3PO4- and H2SO4-treated niobic acid as heterogeneous catalyst for methyl ester production. Reaction kinetics. Mech Catal 99(2):269–280

    Google Scholar 

  437. Prateepchaikul G, Somnuk K, Allen M (2009) Design and testing of continuous acid-catalyzed esterification reactor for high free fatty acid mixed crude palm oil. Fuel Process Technol 90(6):784–789

    Google Scholar 

  438. Satyanarayana M, Muraleedharan C (2009) Biodiesel production from vegetable oils: a comparative optimization study. J Biobased Mater Bioenergy 3(4):335–341

    Google Scholar 

  439. Segura R (1988) Preparation of fatty acid methyl esters by direct transesterification of lipids with aluminum chloride-methanol. J Chromatogr 441(1):99–113

    Google Scholar 

  440. Shivayogimath CB, Sunita G, Manoj KB (2009) Role of solid acid catalysts in bio diesel production. J Environ Sci Eng 51(3):207–212

    Google Scholar 

  441. Shu Q, Yang B, Yuan H, Qing S, Zhu G (2007) Synthesis of biodiesel from soybean oil and methanol catalyzed by beta zeolite modified with La3+. Catal Commun 8(12):2159–2165

    Google Scholar 

  442. Smidrkal J, Filip V (1994) Esterification of rapeseed oil fatty acids with monohydroxy alcohols. Revue Francaise des Corps Gras 41(1–2):9–12

    Google Scholar 

  443. Soriano NU Jr, Venditti R, Argyropoulos DS (2009) Biodiesel synthesis via homogeneous Lewis acid-catalyzed transesterification. Fuel 88(3):560–565

    Google Scholar 

  444. Y-z W, Y-p L, C-g L (2008) Kinetics of the esterification of low-concentration naphthenic acids and methanol in oils with or without SnO as a catalyst. Energy Fuels 22(4):2203–2206

    Google Scholar 

  445. Xu L, Li W, Hu J, Yang X, Guo Y (2009) Biodiesel production from soybean oil catalyzed by multifunctionalized Ta2O5/SiO2-[H3PW12O40/R] (R = Me or Ph) hybrid catalyst. Appl Catal B 90(3–4):587–594

    Google Scholar 

  446. Xu L, Wang Y, Yang X, Hu J, Li W, Guo Y (2009) Simultaneous esterification and transesterification of soybean oil with methanol catalyzed by mesoporous Ta2O5/SiO2-[H3PW12O40/R] (R = Me or Ph) hybrid catalysts. Green Chem 11(3):314–317

    Google Scholar 

  447. Yan S, Salley SO, Ng KYS (2009) Simultaneous transesterification and esterification of unrefined or waste oils over ZnO-La2O3 catalysts. Appl Catal A 353(2):203–212

    Google Scholar 

  448. Zaccheria F, Brini S, Psaro R, Scotti N, Ravasio N (2009) Esterification of acidic oils over a versatile amorphous solid catalyst. ChemSusChem 2(6):535–537

    Google Scholar 

  449. Zhang J, Jiang L (2008) Acid-catalyzed esterification of Zanthoxylum bungeanum seed oil with high free fatty acids for biodiesel production. Bioresour Technol 99(18):8995–8998

    MathSciNet  Google Scholar 

  450. Abigor RD, Uadia PO, Foglia TA, Haas MJ, Jones KC, Okpefa E, Obibuzor JU, Bafor ME (2000) Lipase-catalysed production of biodiesel fuel from some Nigerian lauric oils. Biochem Soc Trans 28(6):979–981

    Google Scholar 

  451. Al-Zuhair S (2005) Production of biodiesel by lipase-catalyzed transesterification of vegetable oils: a kinetics study. Biotechnol Prog 21(5):1442–1448

    Google Scholar 

  452. Bajaj A, Lohan P, Jha PN, Mehrotra R (2009) Biodiesel production through lipase catalyzed transesterification: an overview. J Mol Catal B Enzym 62(1):9–14

    Google Scholar 

  453. Chang C, Chen J-H, Chang C-mJ WuT-T, Shieh C-J (2009) Optimization of lipase-catalyzed biodiesel by isopropanolysis in a continuous packed-bed reactor using response surface methodology. New Biotechnol 26(3–4):187–192

    Google Scholar 

  454. Chen J-P, Chang S-C (2002) Biodiesel production by immobilized whole cell biocatalyst. Abstracts of papers, 224th ACS national meeting, Boston, MA, United States, 18–22 August 2002: BTEC-029

    Google Scholar 

  455. Chen X, Du W, Liu D, Ding F (2008) Lipase-mediated methanolysis of soybean oils for biodiesel production. J Chem Technol Biotechnol 83(1):71–76

    Google Scholar 

  456. Chen Y, Lu J, Bo X, Pengmei LV, Chang J, Fu Y, Wang X (2008) Lipase-catalyzed synthesis of biodiesel from acid oil in fixed bed reactor. Res J Biotechnol 3(2):5–12

    Google Scholar 

  457. Chen Y, Xiao B, Chang J, Fu Y, Lv P, Wang X (2009) Synthesis of biodiesel from waste cooking oil using immobilized lipase in fixed bed reactor. Energy Convers Manage 50(3):668–673

    Google Scholar 

  458. Dalla Rosa C, Morandim MB, Ninow JL, Oliveira D, Treichel H, Oliveira JV (2008) Lipase-catalyzed production of fatty acid ethyl esters from soybean oil in compressed propane. J Supercrit Fluids 47(1):49–53

    Google Scholar 

  459. Dalla Rosa C, Morandim MB, Ninow JL, Oliveira D, Treichel H, Oliveira JV (2009) Continuous lipase-catalyzed production of fatty acid ethyl esters from soybean oil in compressed fluids. Bioresour Technol 100(23):5818–26

    Google Scholar 

  460. Dizge N, Aydiner C, Imer DY, Bayramoglu M, Tanriseven A, Keskinler B (2009) Biodiesel production from sunflower, soybean, and waste cooking oils by transesterification using lipase immobilized onto a novel microporous polymer. Bioresour Technol 100(6):1983–1991

    Google Scholar 

  461. Du W, Xu Y, Liu D (2003) Lipase-catalyzed transesterification of soya bean oil for biodiesel production during continuous batch operation. Biotechnol Appl Biochem 38(2):103–106

    Google Scholar 

  462. Fu B, Vasudevan PT (2010) Effect of solvent-co-solvent mixtures on lipase-catalyzed transesterification of Canola Oil. Energy Fuels 24(9):4646–4651

    Google Scholar 

  463. Fu B, Vasudevan PT (2009) Effect of organic solvents on enzyme-catalyzed synthesis of biodiesel. Energy Fuels 23(8):4105–4111

    Google Scholar 

  464. Haas MJ, Piazza GJ, Foglia TA (2002) Enzymatic approaches to the production of biodiesel fuels. In: Gardner HW, Kuo TM (eds) Lipid biotechnology. CRC, Boca Raton, pp 587–598

    Google Scholar 

  465. Haldar SK, Nag A (2008) Utilization of three non-edible vegetable oils for the production of biodiesel catalysed by enzyme. Open Chem Eng J 2:79–83

    Google Scholar 

  466. Halim SFA, Harun Kamaruddin A (2008) Catalytic studies of lipase on FAME production from waste cooking palm oil in a tert-butanol system. Process Biochem (Amsterdam, Neth) 43(12):1436–1439

    Google Scholar 

  467. Han J, Silcock P, Bell M, Birch J (2010) Lipase-catalyzed production of biodiesel from tallow. J ASTM Int 7(1):1l–20

    Google Scholar 

  468. Hsu A-F, Jones K, Foglia TA, Marmer WN (2002) Immobilized lipase-catalyzed production of alkyl esters of restaurant grease as biodiesel. Biotechnol Appl Biochem 36(3):181–186

    Google Scholar 

  469. F-h H, J-y Z, W-l L, C-s L (2006) Review of heterogeneous catalysts used in biodiesel production. Brassica 8(1–4):37–45

    Google Scholar 

  470. Huang Y, Yan Y (2008) Lipase-catalyzed biodiesel production with methyl acetate as acyl acceptor. Z Naturforsch C J Biosci 63(3–4):297–302

    Google Scholar 

  471. Huang Y, Zheng H, Yan Y (2010) Optimization of lipase-catalyzed transesterification of lard for biodiesel production using response surface methodology. Appl Biochem Biotechnol 160(2):504–515

    Google Scholar 

  472. Jeong G-T, Park D-H (2008) Lipase-catalyzed transesterification of rapeseed oil for biodiesel production with tert-butanol. Appl Biochem Biotechnol 148(1–3):131–139

    Google Scholar 

  473. Kabasakal BV, Caglar A (2010) Improvement of immobilized lipase-catalyzed methanolysis of tributyrin using methyl acetate. Energy Fuels 24(2):1269–1273

    Google Scholar 

  474. Kumari V, Shah S, Gupta MN (2007) Preparation of biodiesel by lipase-catalyzed transesterification of high free fatty acid containing oil from madhuca indica. Energy Fuels 21(1):368–372

    Google Scholar 

  475. Lai C-C, Zullaikah S, Vali SR, Ju Y-H (2005) Lipase-catalyzed production of biodiesel from rice bran oil. J Chem Technol Biotechnol 80(3):331–337

    Google Scholar 

  476. Lara Pizarro AV, Park EY (2003) Lipase-catalyzed production of biodiesel fuel from vegetable oils contained in waste activated bleaching earth. Process Biochem (Oxford, UK) 38(7):1077–1082

    Google Scholar 

  477. Li L, Du W, Liu D, Wang L, Li Z (2006) Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium. J Mol Catal B Enzym 43(1–4):58–62

    Google Scholar 

  478. Nelson LA, Foglia TA, Marmer WN (1996) Lipase-catalyzed production of biodiesel. J Am Oil Chem Soc 73(9):1191–1195

    Google Scholar 

  479. Nie K, Xie F, Wang F, Tan T (2006) Lipase catalyzed methanolysis to produce biodiesel: optimization of the biodiesel production. J Mol Catal B Enzym 43(1–4):142–147

    Google Scholar 

  480. Ognjanovic ND, Saponjic SV, Bezbradica DI, Knezevic ZD (2008) Lipase catalyzed biodiesel synthesis with differential acyl acceptors. Acta Periodica Technologica 39:161–169

    Google Scholar 

  481. Prasad RBN, Rao BVSK (2009) Lipase catalyzed preparation of biodiesel. In: Pandey A (ed) Handbook of plant-based biofuels. CRC, Boca Raton, pp 199–212

    Google Scholar 

  482. Rodrigues RC, Volpato G, Wada K, Ayub MAZ (2009) Improved enzyme stability in lipase-catalyzed synthesis of fatty acid ethyl ester from soybean oil. Appl Biochem Biotechnol 152(3):394–404

    Google Scholar 

  483. Royon D, Daz M, Ellenrieder G, Locatelli S (2007) Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresour Technol 98(3):648–653

    Google Scholar 

  484. Schlepuetz M, Buthe A, Brenneis R, Ansorge-Schumacher MB (2008) Lipase-catalysed synthesis of ester oils from biodiesel by-products. Biocatal Biotransform 26(3):220–227

    Google Scholar 

  485. Shah S, Gupta MN (2007) Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system. Process Biochem (Amsterdam, Neth) 42(3):409–414

    Google Scholar 

  486. Shah S, Sharma S, Gupta MN (2004) Biodiesel preparation by lipase-catalyzed transesterification of Jatropha oil. Energy Fuels 18(1):154–159

    Google Scholar 

  487. Shieh CJ, Liao HF, Lee CC (2003) Optimization of lipase-catalyzed biodiesel by response surface methodology. Bioresour Technol 88(2):103–106

    Google Scholar 

  488. Su E, Wei D (2008) Improvement in lipase-catalyzed methanolysis of triacylglycerols for biodiesel production using a solvent engineering method. J Mol Catal B Enzym 55(3–4):118–125

    Google Scholar 

  489. Sun T, Du W, Liu D (2009) Prospective and impacts of whole cell mediated alcoholysis of renewable oils for biodiesel production. Biofuels. Bioprod Bioref 3(6):633–639

    Google Scholar 

  490. Talukder MMR, Wu JC, Fen NM, Melissa YLS (2010) Two-step lipase catalysis for production of biodiesel. Biochem Eng J 49(2):207–212

    Google Scholar 

  491. Ting W-J, Huang C-M, Giridhar N, Wu W-T (2008) An enzymatic/acid-catalyzed hybrid process for biodiesel production from soybean oil. J China Inst Chem Eng 39(3):203–210

    Google Scholar 

  492. Vieira APdA, da Silva MAP, Langone MAP (2006) Biodiesel production via esterification reactions catalyzed by lipase. Latin Am Appl Res 36(4):283–288

    Google Scholar 

  493. Wang L, Du W, Liu D, Li L, Dai N (2006) Lipase-catalyzed biodiesel production from soybean oil deodorizer distillate with absorbent present in tert-butanol system. J Mol Catal B Enzym 43(1–4):29–32

    Google Scholar 

  494. Wang Y, Zhang L (2009) Ectoine improves yield of biodiesel catalyzed by immobilized lipase. J Mol Catal B Enzym 62(1):91–96

    Google Scholar 

  495. Winayanuwattikun P, Kaewpiboon C, Piriyakananon K, Tantong S, Thakernkarnkit W, Chulalaksananukul W, Yongvanich T (2008) Potential plant oil feedstock for lipase-catalyzed biodiesel production in Thailand. Biomass Bioenergy 32(12):1279–1286

    Google Scholar 

  496. Yamada H, Sorimachi Y, Tagawa T (2007) Operation optimization of lipase-catalyzed biodiesel production. J Chem Eng Jpn 40(7):571–574

    Google Scholar 

  497. Yamada H, Tagawa T (2006) Operation optimization of the lipase-catalyzed biodiesel production. AIChE annual meeting, conference proceedings, Philadelphia, PA, United States, 16–21 Nov 2008, pp 363a/1–363a/6

    Google Scholar 

  498. Yang KS, Sohn J-H, Kim HK (2009) Catalytic properties of a lipase from Photobacterium lipolyticum for biodiesel production containing a high methanol concentration. J Biosci Bioeng 107(6):599–604

    Google Scholar 

  499. Zheng Y, Quan J, Ning X, Zhu L-M, Jiang B, He Z-Y (2009) Lipase-catalyzed transesterification of soybean oil for biodiesel production in tert-amyl alcohol. World J Microbiol Biotechnol 25(1):41–46

    Google Scholar 

  500. Howell S (2008) Biodiesel blends. Environ Sci Technol 42(9):3119

    Google Scholar 

  501. Garba UM, Alhassan M, Kovo AS (2006) A review of advances and quality assessment of biofuels. Leonardo Journal of Sciences. http://ljs.academicdirect.org/A09/167_178.htm. Accessed 20 Nov 2010

  502. Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA, Domiguez-Espinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22(9):477–485

    Google Scholar 

  503. Fitzpatrick SW (2006) The biofine technology: a “bio-refinery” concept based on thermochemical conversion of cellulosic biomass. ACS Symp Ser 921:271–287 (Feedstocks for the Future)

    Google Scholar 

  504. Hayes DJ (2009) An examination of biorefining processes, catalysts and challenges. Catal Today 145(1–2):138–151

    MathSciNet  Google Scholar 

  505. Huang H-J, Ramaswamy S, Tschirner UW, Ramarao BV (2008) A review of separation technologies in current and future biorefineries. Sep Purif Technol 62(1):1–21

    Google Scholar 

  506. MacLachlan R, Pye EK (2007) Biorefining the future. Can Chem New 59(8):12–15

    Google Scholar 

  507. Pye EK (2005) Biorefining; a major opportunity for the sugar cane industry. Int Sugar J 107(1276):222–4, 6,8,30,53

    Google Scholar 

  508. Stocker M (2008) Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Angew Chem Int Ed 47(48):9200–9211

    Google Scholar 

  509. Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microbiol Biotechnol 64(2):137–145

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tushar K. Ghosh .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ghosh, T.K., Prelas, M.A. (2011). Bioenergy. In: Energy Resources and Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1402-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1402-1_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1401-4

  • Online ISBN: 978-94-007-1402-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics