Skip to main content

Hydropower

  • Chapter
  • First Online:
Energy Resources and Systems

Abstract

Among all the renewable energy sources, the contribution of hydropower to the worldwide electricity generation is the highest. A hydropower system can be used to generate a few kilowatt of electricity to about 18,000 MW. Although there are a number of advantages and benefits of using hydropower systems, various environmental issues are restricting their development. These issues include depletion of nutrients in the water body, obstruction of the fish ladder for salmon, and fish shearing in turbines. In this chapter, a general description of a hydropower system and its various components are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U.S. Department of Energy (2010) History of hydropower. http://www1.eere.energy.gov/windandhydro/hydro_history.html. Accessed 16 Nov 2010

  2. Edison Electric Institute (2010) History of the electric power industry. www.eei.org/industry_issues/industry_overview_and_statistics/history#structure. Accessed 16 Nov 2010

  3. Wisconsin Valley Improvement Company (2010) How hydropower works. http://www.wvic.com/hydro-works.htm. Accessed 16 Nov 2010

  4. National Renewable Energy Laboratory (2006) Power technologies energy data book. 4th edition, Aabakken(ed). http://www.nrel.gov/analysis/power_databook/docs/pdf/39728_complete.pdf. Accessed 16 Nov 2010

  5. International Energy Agency (2010) Hydro electricity. www.ieahydro.org. Accessed 16 Nov 2010

  6. Warnick CC (1984) Hydropower engineering. Prentice Hall, Upper Saddle River

    Google Scholar 

  7. Creager WP, Justin JDW (1927) Hydro-electric handbook. Chapman & Hall, London

    Google Scholar 

  8. Gulliver JS, Arndt REA (1991) Hydropower engineering handbook. McGraw-Hill, New York

    Google Scholar 

  9. Honningsvag B, Midttomme GH, Repp K, Vaskinn K, Westeren T (2002) Hydropower in the new millennium. Taylor & Francis, Boca Raton

    Google Scholar 

  10. Fisher RK, March PA, Mathur D, Sotiropoulos F, Franke G (1998) Innovative technologies brighten hydro’s future. Proc XIX IAHR Symp Hydraul Machinery Cavitation 1:2–18

    Google Scholar 

  11. Shchavelev D (1977) Use of water power. Power Tech Eng 11:638–642

    Google Scholar 

  12. Energy Information Administration (March 2007) Electric Power Monthly, National Energy Education Development Project, Intermediate Energy Info book, 2004–2005

    Google Scholar 

  13. Energy Information Administration (2007) International Annual Energy Outlook

    Google Scholar 

  14. World Energy Council (2011) Survey of energy resources hydropower. London, UK. http://www.worldenergy.org/publications/survey_of_energy_resources_2007/hydropower/default.asp. Retrieved May 25, 2011

  15. International Hydropower Association, The contribution of hydropower, UK. http://www.hydropower.org. Accessed May 25, 2011

  16. Wisconsin valley Improvement Company (2010) Facts about hydropower. http://new.wvic.com/index.php?option=com_content&task=view&id=7&Itemid=44. Accessed 16 Nov 2010

  17. Morris GL, Fan J (1998) Reservoir sedimentation handbook: design and management of dams, reservoirs, and watersheds for sustainable use. McGraw Hill, New York

    Google Scholar 

  18. Habitat Division ADF&G (6 Apr 2009) Dam and impoundment construction, Alaska

    Google Scholar 

  19. International Commission on Large Dams. www.iclod-cigb.net. Accessed 6 Apr 2009

  20. Bureau of Reclamation (1987) Design of small dam. A water resource technical publication, US Department of Interior

    Google Scholar 

  21. Tennessee Valley Authority as reported in Combs S (2008) The energy report 2008. Texas Comptroller of Public Account, Austin

    Google Scholar 

  22. Munchener Ruck Munich Re Group (2004) Technology for underwriters 31 Dam construction Part 1: General aspects and concrete dams. Munchen Germany Order # 302–04151

    Google Scholar 

  23. National Inventory of Dams, FEMA. http://www.fema.gov/hazard/damfailure/benefits.shtm

  24. British Dam Society (1991) The embankment dam. In: Proceedings of the 6th conference of the British Dam Society, Nottingham, 12–16 Sept 1990

    Google Scholar 

  25. FEMA (2005) Conduits through embankment dam-best practices for design, construction, problem identification and evaluation, inspection, maintenance, renovation, and repair. L-266, Sept 2005

    Google Scholar 

  26. United States Society of Dams (2007) Strength of materials for embankment dam. A white paper, Denver

    Google Scholar 

  27. Duncan JM, Wright SG (2005) Soil strength and slope stability. Wiley, Somerset

    Google Scholar 

  28. USACE (1970) Engineering and design: stability of earth and rock-fill dams, engineering manual 1110-2-1902. Department of the Army, Corps of Engineers, Washington, DC

    Google Scholar 

  29. Lapin GG (2001) Current trends in concrete dam design. Power Tech Eng 35(7):331–332

    Google Scholar 

  30. Hansen KD, Reinhardt WG (1991) Roller-compacted concrete dam. McGraw Hill, New York

    Google Scholar 

  31. Gordon JL (2001) Hydraulic turbine efficiency. Can J Civ Eng 28(2):238–253

    Article  Google Scholar 

  32. Drtina P, Sallaberger M (1999) Hydraulic turbines – basic principles and state-of-the-art computational fluid dynamics applications. Proc Inst Mech Eng, C: J Mech Eng Sci 213:85–102

    Article  Google Scholar 

  33. Waldrop WR (1992) The autoventing turbine – a new generation of environmentally improved hydroturbines. Proc Am Power Conf 54:445–447

    Google Scholar 

  34. Thake J (2000) The micro-hydro Pelton turbine manual: design, manufacture and Installation for small-scale hydro-power. ITDG Publishing, London

    Google Scholar 

  35. Brekke H (1984) A general study on the design of vertical Pelton turbines. Turboinstitut, Ljubljana, Report No/46/3/Ada

    Google Scholar 

  36. Perrig A, Farhat M, Avellan F, Parkinson E, Garcin H, Bissel C, Valle M, Favre J (2004) Numerical flow analysis in a Pelton turbine bucket. In: Proceedings of 22nd IAHR symposium on hydraulic machinery and systems, Stockholm, 29 June–2 July 2004

    Google Scholar 

  37. Perrig A, Avellan F, Kueny J-L, Farhat M, Parkinson E (2006) Flow in a Pelton turbine bucket: numerical and experimental investigations. ASME Trans J Fluids Eng 128:350–358

    Article  Google Scholar 

  38. Anagnostopoulos J, Papantonis D (2006) Experimental and numerical studies on runner design of Pelton turbines. Hydroenergia, Crieff, 7–9 June 2006

    Google Scholar 

  39. Alexandre P, Francois A, Jean-Louis K, Mohamed F, Etienne P (2006) Flow in a Pelton turbine bucket: numerical and experimental investigations. J Fluids Eng 128:350–358

    Article  Google Scholar 

  40. Zhang Z (2007) Flow interactions in Pelton turbines and the hydraulic efficiency of the turbine system. Proc Inst Mech Eng, A: J Power Energy 221:343–355

    Article  Google Scholar 

  41. Zoppe B, Pellone C, Maitre T, Leroy P (2006) Flow analysis inside a Pelton turbine bucket. J Turbomach 128:500–511

    Article  Google Scholar 

  42. Pelton LA (1880) Water wheel. US Patent 233,692

    Google Scholar 

  43. Dekarz D (10 Oct 2009) Hydropower plants. Institute of Power Engineering and Turbomachinery. www.imiue.polsl.pl/~wwwcte/pliki/angielski_dekarz.ppt

  44. Voith Hydro (10 Oct 2009) Pelton turbines. http://www.voithhydro.com/vh_e_prfmc_pwrful_prdcts_turbines_pelton.htm

  45. Small hydropower systems, DOE/GO-102001-1173, FS217, 2001

    Google Scholar 

  46. Gordon GG (1973) The Turgo impulse turbine. Brochure 5 M/2/73 WY, Water turbine manufacturers, Kendall

    Google Scholar 

  47. Grover RK (1983) Advantages of turgo-impulse turbines in micro-hydel units. Indian J Power River Val Dev 33(1–2):7–8

    Google Scholar 

  48. Rogers S (2005) Development of the Turgo impulse turbine. Turbomachinery 33(9):547–551

    Google Scholar 

  49. The encyclopedia of alternative energy and sustainable living. http://www.daviddarling.info/encyclopedia/T/AE_Turgo_turbine.html Accessed 16 Nov 2010

  50. Choi Y-D, Lim J-I, Kim Y-T, Lee Y-H (2008) Utilizations of renewable fluid energy. J Fluid Sci Technol 3(3):398–409

    Article  Google Scholar 

  51. Costa Pereira NH, Borges JE (1996) Study of the nozzle flow in a cross-flow turbine. Int J Mech Sci 38:283–302

    Article  Google Scholar 

  52. Kelso RM, Lim TT, Perry AE (1996) An experimental study of round jets in cross-flow. J Fluid Mech Digit Arch 306:111–144

    Google Scholar 

  53. Ossberger GmbH Co. (2011) The Ossberger turbine. Bayern, Germany. http://www.ossberger.de/cms/en/hydro/the-ossberger-turbine-for-asynchronous-and-synchronous-water-plants/. Accessed 25 May 2011

  54. Ossberger (10 Oct 2009) Good reasons for the Ossberger turbine. Ossberger GmbH + Co. www.osberger.de

  55. Ossberger (10 Oct 2009) Range of use. Ossberger GmbH + Co. www.osberger.de

  56. Moody LF (1952) Handbook of applied hydraulics, 2nd edn. McGraw-Hill, New York, pp 599–603

    Google Scholar 

  57. Russell GJ, Peterson C, Eberlein DT (2004) Conversion of a propeller turbine to full Kaplan operation at Michigamme falls. HydroVision 2004, HCI Publication: 1–11

    Google Scholar 

  58. Manness J, Doering J (2005) An improved model for predicting the efficiency of hydraulic propeller turbines. Can J Civ Eng 32:789–795

    Article  Google Scholar 

  59. American Society of Mechanical Engineers (1992) Performance test code for hydraulic turbines. Code PTC–18, New York

    Google Scholar 

  60. American Society of Mechanical Engineers (1996) Hydropower mechanical design. Hydro Power Technical Committee, HCI Publications, Kansas City

    Google Scholar 

  61. German standard DIN (1948) Acceptance tests on water turbines. Deutsches Institut Fr Normung, Beuth Vertrieb Publishing, Berlin

    Google Scholar 

  62. Gehrer A, Benigni H, Köstenberger M (2004) Unsteady simulation of the flow through a horizontal-shaft bulb turbine. In: 22nd IAHR Symposium on Hydraulic Machinery and Systems, Stockholm, 29 June–2 July 2004

    Google Scholar 

  63. Keck H, Hegenbarth A, Jerovsek A (1994) Advanced technology of bulb turbines from research to experience at site. In: XVII IAHR Symposium, Beijing

    Google Scholar 

  64. Paine JS, Felton LE (1984) Bulb turbine/generator for the Idaho Falls hydroelectric project. IEEE Transactions PAS 103(9):2405–2409

    Google Scholar 

  65. Magauer PF, Liebminger A (1997) The bulb turbine design of the nineties applied in a brazilian powerplant. Waterpower 1997. In: Mahoney DJ (ed) Proceedings of the international conference on hydropower, pp 1536–1545, Federal Energy Regulatory Commission, Atlanta, 5–8 Aug 1997

    Google Scholar 

  66. Hideki K, Yukio M (2001) Development of vertical type bulb turbine and generator. Turbomachinery 29(6):334–340

    Google Scholar 

  67. Yasuhiko Y, Minoru S, Takayuki O (1999) Vertical bulb turbine generator. Fuji Electric J 72(10):562–565

    Google Scholar 

  68. Arshenevskii NN, Levina SI, Natarius EM (1979) Characteristics of bulb turbines during their operations. Power Tech Eng 13(10):1004–1010

    Google Scholar 

  69. Bulb/pit/S-turbines, Voith-Siemens hydropower generation, Heidenheim

    Google Scholar 

  70. Kydd P (2009) Severn tidal power, Overview and implications of tidal power technologies, Severn tidal power feasibility study

    Google Scholar 

  71. Tube turbine. http://www.bpetudes.com/index.php/eng/accueil/vente_de_turbines/turbine_tube. Accessed 16 Nov 2010

  72. Drtina P, Sick M, Brandt R (1998) Numerical performance prediction for an entire Kaplan turbine. In: XIX IAHR symposium 1998, Singapore

    Google Scholar 

  73. Zarlenga BA (1995) Design considerations for a large Kaplan turbine governor. In: Proceeding of waterpower 1995, pp 1442–1451

    Google Scholar 

  74. Osterwalder J (1967) Model testing for Kaplan turbine design, including studies on efficiency scale effects. Water Power 19:113–116

    Google Scholar 

  75. Tomas L, Traversaz M, Sabourin M (2004) An approach for Kaplan turbine design, hydraulic machinery and systems. In: Proceedings of 22nd IAHR symposium on hydraulic machinery and systems, Stockholm, vol A2(1), pp 1–10

    Google Scholar 

  76. Xiao RF, Wang ZW (2007) Dynamic stress characteristics of Kaplan turbine blades. J Tsinghua Uni (Sci Tech) 47(11):2011–2014

    Google Scholar 

  77. Nilsson H, Davidson L (2000) A numerical comparison of operation in a Kaplan water turbine, focusing on tip clearance flow. In: Proceedings of the 20th IAHR symposium on hydraulic machinery and systems, Charlotte

    Google Scholar 

  78. Skotak A, Obrovsky J (2006) Shape optimization of a Kaplan turbine blade. In: Proceedings 23rd IAHR symposium, Yokohama

    Google Scholar 

  79. Demers A, H Do (1994) Hydraulic design of the Kaplan turbines for the Brisay Project in Canada. In: XVII IAHR symposium, Beijing

    Google Scholar 

  80. Mora P, Tomas L, Couston M, Leroy P (2007) Medium high head Kaplan turbine design: the Yellow River Long Kou project. Int J Hydropower Dams 14(5):134–137

    Google Scholar 

  81. Hydroelectric design center, Portland district, US Army Corps of Engineers. https://www.nwp.usace.army.mil/HDC/edu_genexcit.asp. Accessed 16 Nov 2010

  82. Voith Hydro (10 Oct 2009) Pelton turbines. http://www.voithhydro.com/vh_e_prfmc_pwrful_prdcts_turbines_pelton.htm. Accessed 16 Nov 2010

  83. Gode E, Cuenod R (1989) Numerical flow simulations in Francis turbines. Int Water Power Dam Constr 41:55

    Google Scholar 

  84. de Siervo F, de Leva F (1976) Modern trends in selecting and designing Francis turbines. Int Water Power Dam Constr 28:28–35

    Google Scholar 

  85. Blommaert G, Avellan F, Prenat JE, Boyer A (1999) Active control of Francis turbine operation stability. In: Proceedings of the 3rd ASME/JSME joint fluids engineering conference, San Francisco, 18–23 July 1999

    Google Scholar 

  86. Thierry J, Prenat J (1996) Eustache Francis turbine surge: discussion and data base. In: Proceedings of the 18th IAHR Symposium, Valencia, vol 2, pp 855–864, LMH-CONF-1996-014

    Google Scholar 

  87. Parkinson E (1995) Test case 8: Francis turbine. Turbomachinery workshop ERCOFTAC II

    Google Scholar 

  88. Mazzouji F, Francois M, Tomas L, Paquet F, Couston M, Vuillerod G (2004) Refinements in Francis turbine design. Int J Hydropower Dams 11(1):53–58

    Google Scholar 

  89. http://www.usbr.gov/power/data/fist/fist4_1a/4_1af5.htm. Accessed 16 Nov 2010

  90. Voith-Siemens (2011) Francis turbines, Hydropower generation, Voith-Siemens, Heidenheim. http://www.voithhydro.com/media/t3339e_Francis_72dpi.pdf. Accessed 25 May 2011

  91. Free Flow Power Corporation (2008) Hydrokinetics. http://www.free-flow-power.com/index.php?id=10. Accessed 15 June 2008

  92. St.Onge Environmental Engineering (10 Oct 2009) Turbine selection. http://www.hydro-turbines.com/id73.html . Accessed 16 Nov 2010

  93. Anagnostopoulos JS, Papantonis DE (2007) Optimal sizing of a run-of-river small hydropower plant. Energy Convers Manage 48:2663–2670

    Article  Google Scholar 

  94. Gingold PR (1981) The optimum size of small run-of-river plants. Water Power Dam Construct 33(11):35–39

    Google Scholar 

  95. Fahlbush F (1983) Optimum capacity of a run-of-river plant. Water Power Dam Construct 35(3):45–48

    Google Scholar 

  96. Da Deppo L, Datei C, Fioretto V, Rinaldo A (1984) Capacity and type of units for small run-of-river plants. Water Power Dam Construct 36(10):33–38

    Google Scholar 

  97. Jager H, Bevelhimer M (2007) How run-of-river operation affects hydropower generation and value. Environ Manage 40:1004–1015

    Article  Google Scholar 

  98. Kishor N, Saini RP, Singh SP (2007) A review on hydropower plant models and control. Renewable Sustainable Energy Rev 11:776–796

    Article  Google Scholar 

  99. Kennedy RH (1999) Reservoir design and operation: limnological implications and management opportunities. In: Tundisi J, Straskraba M (eds) Theoretical reservoir ecology and its applications. International Institute of Ecology, Brazilian Academy of Sciences, and Backhuys Publishers, Brazil, pp 1–28

    Google Scholar 

  100. Oliver P (2002) Micro-hydro power: status and prospects. J Power Energy 216(1):31–40

    Google Scholar 

  101. Fraenkel P, Paish O, Bokalders V, Harvey A, Brown A, Edwards R (1991) Micro-hydro power: a guide for development workers. IT Publications Ltd, London

    Google Scholar 

  102. Fulford S, Mosley P, Gill A (2000) Recommendations on the use of micro-hydro power in rural development. J Int Dev 12:975–983

    Article  Google Scholar 

  103. Harvey A (1993) Micro-hydro design manual: a guide to small-scale water power schemes. Intermediate Technology Publications Ltd, London

    Google Scholar 

  104. Paish O (2002) Small hydro power: technology and current status. Renewable Sustainable Energy Rev 6:537–556

    Article  Google Scholar 

  105. Khennas S, Barnett A (2000) Best practices for sustainable development of micro-hydro in developing countries. ESMAP Technical Paper 006, IBRD, World Bank

    Google Scholar 

  106. Monition L, Le Nir M, Roux J (1984) Micro hydro-electric power stations. Wiley, Chichester

    Google Scholar 

  107. Fritz JJ (1984) Small and mini hydropower systems. McGraw Hill, New York

    Google Scholar 

  108. Jog MG (1989) Hydroelectric and pumped storage plants. New Age International India, New Delhi

    Google Scholar 

  109. Dragu C, Sels T, Belmans R (2002) Small hydro power–state of the art and applications. In: IEEE young researchers symposium in electrical power, Leuven

    Google Scholar 

  110. European Small Hydropower Association (2009) Small hydropower. European Renewable Energy Council. http://www.erec.org/renewableenergysources/small-hydropower.html. Accessed 10 Jan 2010

  111. Energy Efficiency and Renewable Energy (2001) Small hydropower system. US Department of Energy DOE/GO-102001-1173 FS217

    Google Scholar 

  112. Idaho National Laboratory (Oct 2009) Hydropower: types of hydropower facilities. http://hydropower.inel.gov/hydrofacts/hydropower_facilities.shtml

  113. Jog MG (1989) Hydroelectric and pumped storage plants. Wiley, New Delhi

    Google Scholar 

  114. Anagnostopoulos JS, Papantonis DE (2007) Pumping station design for a pumped-storage wind-hydro power plant. Energy Convers Manage 48:3009–3017

    Article  Google Scholar 

  115. Anagnostopoulos J, Papantonis DE (2004) Optimum sizing of a pumped-storage plant for the recovery of power rejected by wind farms. In: ERCOFTAC design optimization international conference, NTUA, Athens

    Google Scholar 

  116. Prasad GM, Narang JL, Singh S, Jain A (2007) An overview of 1000 MW Tehri pimped storage scheme (PSP). Water and Energy International 64(1). http://www.indianjournals.com/ijor.aspx?target=ijor:wei&volume=64&issue=1&article=066. Accessed 16 Nov 2010

  117. Gil A, Buil JM (2006) The role of hydro and future pumped-storage plans in Spain. Int J Hydropower Dams 13(3):68–71

    Google Scholar 

  118. Hori M (1990) History and development of pumped-storage power systems. Kagaku Kogaku 54:709–712

    Google Scholar 

  119. Katsaprakakis DA, Christakis DG, Zervos A, Papantonis D, Voutsinas S (2007) Pumped storage systems introduction in isolated power production systems. Renewable Energy 33:467–490

    Article  Google Scholar 

  120. Tietjen JS (2007) Pumped storage hydroelectricity. In: Capehart BL (ed) Encyclopedia of Energy Engineering and Technology. CRC, Boca Raton

    Google Scholar 

  121. Bradshaw DT (2000) Pumped hydroelectric storage (PHS) and compressed air energy storage (CAES). In: Power Engineering Society Summer Meeting, 2000 IEEE, pp 1551–1573

    Google Scholar 

  122. Mansoor SP, Jones DJ, Bradley DA, Aris FC, Jones GR (1999) Stability of a pump storage hydro-power station connected to a power system. In: Power Engineering Society 1999 Winter Meeting, IEEE 641: 646–650

    Google Scholar 

  123. Kim DJ (2005) Method for calculating turbine efficiency of pumped-storage power plant through thermodynamic method. (Doosan Heavy Industries & Construction Co., Ltd., S. Korea) Repub Korean Kongkae Taeho Kongbo, Patent No. 2005008887 A 20050124

    Google Scholar 

  124. Parker SA (1978) Power generation using thermal vapor pumping and hydro-pumped storage (Thermal Gradient Utilization Cycle) (TGUC). Energy Technol 5:786–795

    Google Scholar 

  125. Osadchuk VA, Landau YA, Potashnik SI, Chevychelov VA, Babushkin VM, Artyukh SF (2001) Prospects for development of pumped-storage power plants in the Ukraine. Energetika i Elektrifikatsiya (Kiev): 2–10

    Google Scholar 

  126. Parlane AJ, Whitley GHC (1981) Material selection for the penstocks of the dinorwic pumped storage power station. Mater Supply Energy Demand, Proc Int Conf: 487–513

    Google Scholar 

  127. Tennessee Valley Authority (10 Oct 2009) Hydroelectric power. www.tva.com/power/hydro.htm. Accessed 16 Nov 2010

  128. Hydro Review Worldwide (2009) http://www.hydroworld.com/index.html. Accessed 16 Noc 2010

  129. Fritz JJ (1984) Small and mini hydropower systems. McGraw Hill, New York

    Google Scholar 

  130. Rouse H (1943) Evaluation of boundary roughness. In: Proceedings second hydraulics conference, University of Iowa Studies in Engineering, Bulletin No. 27

    Google Scholar 

  131. von Kármán Th (1930) Mechanische aehnlichkeit und turbulenz. In: Oseen CW, Weibull W (eds) Proceeding of third international congress for applied mechanics, Stockholm, vol 1, pp 79–93

    Google Scholar 

  132. Colebrook CF, White CM (1937) Experiments with fluid-friction in roughened pipes. Proc R Soc Lond 161:367–381

    Article  Google Scholar 

  133. Moody LF (1944) Friction factors for pipe flow. Trans ASME 66:671–678

    Google Scholar 

  134. European Small Hydropower Association (ESHA) (2004) Guide on how to develop a small hydropower plant. ESHA, Brussels

    Google Scholar 

  135. Kirschmer O (1925) Untersuchungen ueber den Gefaelleverlust an Rechen, Dissertation, Hydraulisches Inst. d. Techn. Hochschule Muenchen, Mitteilungen Heft 1

    Google Scholar 

  136. Brookshier PA, Cada GF, Flynn JV, Rinehart BN, Sale MJ, Sommers GL (1999) The use of advanced hydroelectric turbines to improve water quality and fish populations. Report No. ORNL/CP-103292

    Google Scholar 

  137. Brookshier PA, Cada GF, Flynn JV, Rinehart BN, Sale MJ, Sommers GL (1999) Advanced, environmentally friendly hydroelectric turbines for the restoration of fish and water quality. ESD Publication No. 4897

    Google Scholar 

  138. Bernez I, Haury J, Ferreira MT (2002) Downstream effects of a hydroelectric reservoir on aquatic plant assemblages. Sci World J 2:740–750

    Google Scholar 

  139. Cada GF, Kumar KD, Solomon JA, Hildebrand SG (1983) An analysis of dissolved oxygen concentrations in tail waters of hydroelectric dams and the implications for small-scale hydropower development. Water Resour Res 19:1043–1048

    Article  Google Scholar 

  140. Devi R, Tesfahune E, Legesse W, Deboch B, Beyene A (2008) Assessment of siltation and nutrient enrichment of Gilgel Gibe dam, Southwest Ethiopia. Bioresour Technol 99:975–979

    Article  Google Scholar 

  141. Nelson DA, Landine RC (1974) Water quality changes at a hydroelectric dam. Water Pollut Res Can 9:30–44

    Google Scholar 

  142. Coutant CC, Whitney RR (2000) Fish behavior in relation to passage through hydropower turbines. Trans Am Fish Soc 129(2):351–380

    Article  Google Scholar 

  143. Mathur D, Heisey PG, Skalski JR, Kenney DR (2000) Salmonid smolt survival relative to turbine efficiency and entrainment depth in hydroelectric power generation. J Am Water Resour Assoc 36:737–747

    Article  Google Scholar 

  144. Bickford SA, Skalski JR (2000) Reanalysis and interpretation of 25 years of Snake–Columbia River juvenile salmonid survival studies. N Am J Fish Manage 20:53–68

    Article  Google Scholar 

  145. Cada GF (2001) The Development of advanced hydroelectric turbines to improve fish passage survival. Fisheries 26(9):14–23

    Article  Google Scholar 

  146. Odeh M (1999) A summary of environmentally friendly turbine design concepts. Report No. DOE/ID/13741

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tushar K. Ghosh .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ghosh, T.K., Prelas, M.A. (2011). Hydropower. In: Energy Resources and Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1402-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1402-1_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1401-4

  • Online ISBN: 978-94-007-1402-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics