Skip to main content

Magnetic Field Induced Biochemical and Growth Changes in Date Palm Seedlings

  • Chapter
  • First Online:
Date Palm Biotechnology

Abstract

The long life cycle of date palm (Phoenix dactylifera L.) makes genetic improvement through traditional breeding methods a tedious endeavor. Biotech­nology offers advanced tools to augment genetic improvement efforts. In vitro selection technique, a major application of plant biotechnology, allows the isolation of mutant cells and the regeneration of plants exhibiting desired new traits. Mutations can be induced chemically and physically through the exposure to various forms of radiation at appropriate levels. Studies indicate that magnetic fields have the ability to induce biochemical and physiological changes including enhanced plant growth and nutritional value. Although the use of magnetic fields in genetic improvement of date palm is in its infancy, necessary relevant information is beginning to accumulate. This chapter reviews research achievements in this area and addresses biological effects resulting from magnetic field exposure in date palm, in anticipation of future application in mutation studies. The impact of both static and alternating magnetic fields on the content of proline, DNA, photosynthetic pigments and elements are discussed. In addition, magnetic field-induced changes in growth para­meters like weight and water content of both shoot and root systems are described. Exploration of magnetic field in in vitro studies of date palm is yet to be realized but encouraged by the regeneration improvements achieved in other plant species. Considering the effectiveness of magnetic field to modify plant systems, the appli­cation of magnetic field to genetically improve date palm merits further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarholt E, Flinn EA, Smith CW (1981) Effect of low frequency magnetic fields on bacterial growth rate. Phys Med Biol 26:613–621

    Article  PubMed  CAS  Google Scholar 

  • Aladjadjiyan A (2002) Study of the influence of magnetic field on some biological characters of Zea mays. J Cent Eur Agric 4:90–94

    Google Scholar 

  • Aladjadjiyan A (2007) The use of physical methods for plant growing stimulation in Bulgaria. J Cent Eur Agric 8:369–380

    Google Scholar 

  • Alexander MP, Doijode SD (1995) Electromagnetic field, a novel tool to increase germination and seedling vigour of conserved onion (Allium cepa L.) and rice (Oryza. sativa L.) seeds with low viability. Plant Genet Res News 104:1–5

    Google Scholar 

  • Alikamanoglu S, Yaycili O, Atak C et al (2007) Effect of magnetic field and gamma radiation on Paulowinia tomentosa tissue culture. Biotechnol Biotechnol Equip 1:49–53

    Google Scholar 

  • Al-Khayri JM (2002) Growth, proline accumulation, and ion content in NaCl-stressed callus cultures of date palm (Phoenix dactylifera L.). In Vitro Cell Dev Biol Plant 38:79–82

    CAS  Google Scholar 

  • Al-Khayri JM (2007) Micropropagation of date palm Phoenix dactylifera L. In: Jain SM, Haggman H (eds.) Protocols for micropropagation of woody trees and fruits. Springer, Berlin, pp 509–526

    Chapter  Google Scholar 

  • Al-Khayri JM, Al-Bahrany AM (2004) Growth, water content, and proline accumulation in drought-stressed callus of date palm. Biol Plant 48:105–108

    Article  CAS  Google Scholar 

  • Al-Yahya A (1995) Biotechnology and date palm development. Nakhlatec date palm consultative group, Wye College, University of London. http://aggie-horticulture.tamu.edu/tisscult/biotech/datepalm.html

  • Antov Y, Barbul A, Mantsur H et al (2005) Electroendocytosis exposure of cells to pulsed low electric fields enhances adsorption and uptake of macromolecules. Biophys J 88:2206–2223

    Article  PubMed  CAS  Google Scholar 

  • Astier PJ, Veesler S, Boistelle R (1998) Protein crystals orientation in a magnetic field. Acta Crystallogr D 54:703–706

    Article  PubMed  CAS  Google Scholar 

  • Atak C, Danilov V, Yurttafl B et al (2000) Effect of magnetic field on Paulownia seeds. Com JINR Dubna 1–14

    Google Scholar 

  • Atak C, Emiroglu O, Alikamanoglu S et al (2003) Stimulation of regeneration by magnetic field in soybean (Glycine max L. Merrill) tissue cultures. J Cell Mol Biol 2:113–119

    Google Scholar 

  • Atak C, Celik O, Olgun A et al (2007) Effect of magnetic field on peroxidase activities of soybean tissue culture. Biotechnol Biotechnol Equip 21:166–171

    CAS  Google Scholar 

  • Ayrapetyan SN, Grigorian KV, Avanesian AS et al (1994) Magnetic fields alter electrical properties of solutions and their physiological effects. Bioelectromagnetics 15:133–142

    Article  PubMed  CAS  Google Scholar 

  • Baran B, Berezyuk O, Golonzhka V (2006) Water systems after magnetic field action. Environ Res Eng Manag 38:19–23

    Google Scholar 

  • Belyavskaya NA (2001) Ultra structure and calcium balance in meristem cells of pea roots exposed to extremely low magnetic fields. Adv Space Res 28:645–650

    Article  PubMed  CAS  Google Scholar 

  • Belyavskaya NA (2004) Biological effects due to weak magnetic field on plants. Adv Space Res 34:1566–1574

    Article  PubMed  CAS  Google Scholar 

  • Belyavskaya NA, Fomicheva VM, Govorun RD et al (1992) Structural-functional organisation of the meristem cells of pea, lentil and flax roots in conditions of screening the geomagnetic field. Biophys Acta 37:657–666

    Google Scholar 

  • Blank M, Goodman R (1997) Do electromagnetic fields interact directly with DNA? Bioelectromagnetics 18:111–115

    Article  PubMed  CAS  Google Scholar 

  • Boe AA, Salunkhe DK (1963) Effect of magnetic fields on tomatoes ripening. Nature 199:91–92

    Article  Google Scholar 

  • Campbell GS (1977) An introduction to environmental biophysics. Springer, New York

    Google Scholar 

  • Carbonell MV, Martinez E, Amaya JM (2000) Stimulation of germination in rice (Oryza sativa L.) by a static magnetic field. Electro Magn Biol 19:121–128

    Article  Google Scholar 

  • Celestino C, Picazo ML, Toribio M (2000) Influence of chronic exposure to an electromagnetic field on germination and early growth of Quercus suber seeds preliminary study. Electro Magn Biol 19:115–120

    Article  Google Scholar 

  • Celik O, Atak C, Rzakulieva A (2008) Stimulation of rapid regeneration by a magnetic field in Paulownia node cultures. J Cent Eur Agric 9:297–304

    Google Scholar 

  • Commoner B, Heise JJ, Townsend J (1956) Light-induced paramagnetism in chloroplasts. Proc Natl Acad Sci USA 42:710–714

    Article  PubMed  CAS  Google Scholar 

  • De Souza A, Garcí D, Sueiro L et al (2006) Pre-sowing magnetic treatments of tomato seeds increase the growth and yield of plants. Bioelectromagnetics 27:247–257

    Article  PubMed  Google Scholar 

  • Dekker C, Ratner M (2001) Electronic properties of DNA. Phys World 14:29–33

    CAS  Google Scholar 

  • Dhawi F, Al-Khayri JM (2008a) Proline accumulation in response to magnetic fields in date palm (Phoenix dactylifera L.). Open Agric J 2:80–83

    Article  CAS  Google Scholar 

  • Dhawi F, Al-Khayri JM (2008b) Magnetic fields induce changes in photosynthetic pigments content in date palm (Phoenix dactylifera L.) seedlings. Open Agric J 2:121–125

    Google Scholar 

  • Dhawi F, Al-Khayri JM (2009a) Magnetic fields-induced modification of DNA content in date palm (Phoenix dactylifera L.). J Agric Sci Technol 2:6–9

    Google Scholar 

  • Dhawi F, Al-Khayri JM (2009b) The effect of magnetic resonance imaging on date palm (Phoenix dactylifera L.) elemental composition. Commun Biometeorol Crop Sci 4:11–18

    Google Scholar 

  • Dhawi F, Al-Khayri JM (2009c) Magnetic field increase weight and water content in date palm (Phoenix dactylifera L.). J Agric Sci Technol 2:23–29

    Google Scholar 

  • Dhawi F, Al-Khayri JM, Essam H (2009) Static magnetic field influence on elements composition in date palm (Phoenix dactylifera L.). Res J Agric Biol Sci 5:161–166

    CAS  Google Scholar 

  • Duarte Diaz CE, Riquenes JA, Sotolongo B et al (1997) Effects of magnetic treatment of irrigation water on the tomato crop. Hortic Abst 69:494

    Google Scholar 

  • Ejraei A (2007) Effect of magnetic field on germination and growth of date palm. Fourth Symposium on Date Palm in Saudi Arabia, King Faisal University, Al-Hassa, 5–8 May. Abstracts. p 231

    Google Scholar 

  • Esitken A, Turan M (2003) Alternating magnetic field effects on yield and plant nutrient element composition of strawberry (Fragaria x ananassa cv. Camarosa). Acta Agric Scand B Soil Plant Sci 54:135–139

    Google Scholar 

  • Evans DA, Sharp WR (1986) Applications of somaclonal variation. Biotechnology 4:528–532

    Article  Google Scholar 

  • Fischer G, Tausz M, Köck M, Grill D (2004) Effects of weak 16 \(\frac{2}{3}\)Hz magnetic fields on growth parameters of young sunflower and wheat seedlings. Bioelectromagnetics 25:638–641

    Article  PubMed  CAS  Google Scholar 

  • Flórez M, Carbonell MV, Martinez E (2005) Exposure of maize seeds to stationary magnetic fields: effects on germination and early growth. Ingen Agrón 59:68–75

    Google Scholar 

  • Frankel RB, Liburdy RP (1996) Biological effects of static magnetic fields. In: Polk C, Postow E (eds.) Handbook of biological effects of electromagnetic fields, 2nd edn. CRC Press, Boca Raton, pp 149–183

    Google Scholar 

  • Ghanati F, Abdolmaleki P, Vaezzadeh M et al (2007) Application of magnetic field and iron in order to change medicinal products of Ocimum basilicum. Environ 27:429–434

    Google Scholar 

  • Goodman R, Blank M (1999) Electromagnetic fields may act directly on DNA. J Cell Biochem 75:369–374

    Article  PubMed  Google Scholar 

  • Goodman R, Blank M (2002) Insights in to electromagnetic interaction mechanisms. J Cell Physiol 192:16–22

    Article  PubMed  CAS  Google Scholar 

  • Goodman EM, Greenebaum B, Marron MT (1995) Effects of electromagnetic fields on molecules and cells. Int Rev Cytol 158:279–338

    Article  PubMed  CAS  Google Scholar 

  • Graziana A, Ranjeva R, Teissie J (1990) External electric fields stimulate the electrogenic calcium/sodium exchange in plant protoplast. Biochemistry 29:8313–8318

    Article  PubMed  CAS  Google Scholar 

  • Grime JP, Mowforth MA (1982) Variation in genome size – an ecological interpretation. Nature 299:151–153

    Article  Google Scholar 

  • Hong FT (1995) Magnetic field effects on biomolecules, cells, and living organisms. Biosystems 36:187–229

    Article  PubMed  CAS  Google Scholar 

  • Ikehata M, Koana T, Suzuki Y et al (1999) Mutagenicity and co-mutagenicity of static magnetic fields detected by bacterial mutation assay. Mutat Res 427:147–156

    Google Scholar 

  • Ikehata M, Yoshie S, Hirota N et al (2009) Effects of static magnetic field on mutagenesis in in vitro. J Phys 156:12–15

    Google Scholar 

  • Jain SM (2001) Tissue culture-derived variation in crop improvement. Euphy 118:153–166

    Article  CAS  Google Scholar 

  • Jain SM (2007) Recent advances in date palm tissue culture and mutagenesis. Acta Hortic 736:205–211

    Google Scholar 

  • Jones RR (2000) Modifying atomic architecture. Sci Spectra 22:52–59

    Google Scholar 

  • Karamanos AJ (1995) The involvement of proline and some metabolites in water stress and their importance as drought resistance indicators. Bulg J Plant Physiol 21:98–110

    CAS  Google Scholar 

  • Kiranmai V (1994) Induction of mutations by magnetic field for the improvement of sunflower. J Appl Phys 75:71–81

    Article  Google Scholar 

  • Koana T, Okada MO, Ikehata M et al (1997) Increase in the mitotic recombination frequency in Drosophila melanogaster by magnetic field exposure and its suppression by vitamin E supplement. Mutat Res 37:55–60

    Google Scholar 

  • Križaj D, Valenči V (1989) The effect of ELF magnetic fields and temperature on differential plant growth. Electromagn Biol Med 8:159–165

    Article  Google Scholar 

  • Kurinobu S, Okazaki Y (1995) Dielectric constant and conductivity of one seed in the germination process. Ann Conf Rec IEEE/IAS 1329–1334

    Google Scholar 

  • Lipiec J, Janas P, Barabasz W et al (2005) Effects of oscillating magnetic field pulses on selected oat sprouts used for food purposes. Acta Agrophys 5:357–365

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Matysik J, Alia PSP, Bhalu B et al (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532

    CAS  Google Scholar 

  • Miyakoshi J, Kitagawa K, Takebe H (1997) Mutation induction by high-density, 50 Hz magnetic fields in human MeWo cells exposed in the DNA synthesis phase. Int J Radiat Biol 71:75–79

    Article  PubMed  CAS  Google Scholar 

  • Monselise E, Parola AH, Kost D (2003) Low-frequency electromagnetic fields induce a stress effect upon higher plants, as evident by the universal stress signal, alanine. Biochem Biophys Res Commun 302:427–434

    Article  Google Scholar 

  • Moulder JE, Foster KR (1995) Biological effects of power-frequency fields as they relate to carcinogenesis. Proc Soc Exp Biol Med 209:309–324

    PubMed  CAS  Google Scholar 

  • Moursy HA, Saker MM (1996) Date palm problems and need for biotechnology. Abstracts Fifth International Conference on Desert Development. Texas Tech University

    Google Scholar 

  • Parola A, Kost K, Katsir G et al (2006) Radical scavengers suppress low frequency EMF enhanced proliferation in cultured cells and stress effects in higher plants. Environ 25:103–111

    Google Scholar 

  • Paul AL, Daugherty CJ, Bihn EA et al (2001) Transgene expression patterns indicate that spaceflight affects stress signal perception and transduction in Arabidopsis. Plant Phys 126:613–621

    Article  CAS  Google Scholar 

  • Paul AL, Schuerger AC, Popp MP et al (2004) Hypobaric biology: Arabidopsis gene expression at low atmospheric pressure. Plant Phys 134:215–223

    Article  CAS  Google Scholar 

  • Pauling L (1979) Diamagnetic anisotropy of the peptide group. Biophysics 76:2293–2294

    CAS  Google Scholar 

  • Penuelas J, Llusia J, Martinez B (2004) Diamagnetic susceptibility and root growth responses to magnetic fields in Lens culinaris, Glycine soja, and Triticum aestivum. Electromagn Biol Med 23:97–112

    Google Scholar 

  • Phirke PS, Patil NN, Umbarkar SP et al (1996) The application of magnetic treatment to seeds: methods and responses. Seed Sci Technol 24:365–373

    Google Scholar 

  • Pietruszewski S (1999a) Influence of pre-sowing magnetic biostimulation on germination and yield of wheat. Int Agrophys 13:241–244

    Google Scholar 

  • Pietruszewski S (1999b) Magnetic biostimulation of wheat seeds. Int Agrophys 13:497–501

    Google Scholar 

  • Pietruszewski S, Wójcik S (2000) Effect of magnetic field on yield and chemical composition of sugar beet roots. Int Agrophys 14:89–92

    Google Scholar 

  • Pingping Z, Ruochun Y, Zhiyou C et al (2007) Genotoxic effects of superconducting static magnetic fields (SMFs) on wheat (Triticum aestivum) pollen mother cells (PMCs). Plasma Sci Technol 9:241–247

    Article  Google Scholar 

  • Podlesny J, Pietruszewski S, Podlsena A (2005) Influence of magnetic stimulation of seeds on the formation of morphological features and yielding of the pea. Int Agrophys 19:61–68

    Google Scholar 

  • Racuciu M, Galugaru GH, Creanga D (2006) Static magnetic field influence on some plant growth. Rom J Phys 51:245–251

    CAS  Google Scholar 

  • Racuciu M, Creanga D, Amoraritei C (2007) Biochemical changes induced by low frequency magnetic field exposure of vegetal organisms. Rom J Phys 52:601–606

    Google Scholar 

  • Racuciu M, Creanga D, Galugaru GH (2008a) The influence of extremely low frequency magnetic field on tree seedlings. Rom J Phys 53:337–342

    Google Scholar 

  • Racuciu M, Creanga D, Horga I (2008b) Plant growth under static magnetic field influence. Rom J Phys 53:353–359

    CAS  Google Scholar 

  • Rakosy-Tican L, Aurori CM, Morariu VV (2005) Influence of near null magnetic field on in vitro growth of potato and wild Solanum species. Bioelectromagnetics 7:548–557

    Article  Google Scholar 

  • Reed DD, Jones EA, Mroz GD et al (1993) Effects of 76 Hz electromagnetic fields on forest ecosystems in northern Michigan: tree growth. Int J Biometeorol 37:229–234

    Article  Google Scholar 

  • Reina FG, Pascual LA (2001) Influence of a stationary magnetic field on water relations in lettuce seeds, Part I: Theoretical considerations. Bioelectromagnetics 22:589–595

    Article  PubMed  CAS  Google Scholar 

  • Reina FG, Pascual LA, Fundora IA (2001) Influence of a stationary magnetic field on water relations in lettuce seeds, Part II: Experimental results. Bioelectromagnetics 22:596–602

    Article  PubMed  CAS  Google Scholar 

  • Rochalska M (2005) Influence of frequent magnetic field on chlorophyll content in leaves of sugar beet plants. Nukleonika 50:25–28

    Google Scholar 

  • Rybinski W, Patyna H, Przewozny T (1993) Mutagenic effect of laser and chemical mutagens in barley (Hordeum vulgare L.). Rom Genet Pol 34:337–343

    Google Scholar 

  • Sahebjamei H, Abdolmaleki P, Ghanati F (2007) Effects of magnetic field on the antioxidant enzyme activities of suspension-cultured tobacco cells. Bioelectromagnetics 28:42–47

    Article  PubMed  CAS  Google Scholar 

  • Samy CG (1998) Magnetic seed treatment influence on flowering, siliqua and seed characters of cauliflower. Orissa J Hortic 26:68–69

    Google Scholar 

  • Sandu DD, Goiceanu C, Ispas A et al (2005) A preliminary study on ultra high frequency electromagnetic fields effect on black locust chlorophylls. Acta Biol Hung 56:109–117

    Article  PubMed  CAS  Google Scholar 

  • Scaiano JC, Cozens FL, McLean J (1994) Model of the rationalization of magnetic field effects in vivo. Application radical pair mechanism biological systems. Photochem Photobiol 59:585–589

    PubMed  CAS  Google Scholar 

  • Sharaf El-Deen S (2003) Improvement of some characters of edible mushroom with magnetic field. Bull NRC Egypt 28:709–717

    Google Scholar 

  • Stadtman ER (1993) Oxidation of free amino acids and amino acid residues in proteins by radiolysis catalyzed reactions. Annu Rev Biochem 62:797–821

    Article  PubMed  CAS  Google Scholar 

  • Stange BC, Rowland RE, Rapley BI et al (2002) ELF Magnetic fields increase amino acid uptake into Vicia faba L. roots and alter ion movement across the plasma membrane. Bioelectromagnetics 23:347–354

    Article  PubMed  CAS  Google Scholar 

  • Stein GS, Lian JB (1992) Regulation of cell cycle and growth control. Bioelectromagn Suppl 1:247–265

    Article  Google Scholar 

  • Strzalka K, Kostecka-Guga A, Latowski D (2003) Carotenoids and environmental stress in plants: significance of carotenoid-mediated modulation of membrane physical properties. Russ J Plant Phys 50:168–173

    Article  CAS  Google Scholar 

  • Taia KW, Al-Zahrani SH, Kotbi MA (2007) The effect of static magnetic forces on water contents and photosynthetic pigments in sweet basil Ocimum basilicum L. (Lamiaceae). Saudi J Biol Sci 14:103–107

    Google Scholar 

  • Vasilevski G (2003) Perspectives of the application of biophysical methods in sustainable agriculture. Bulg J Plant Physiol Spec Iss 2003:179–186

    Google Scholar 

  • Vizcaino V (2003) Biological effects of low frequency electromagnetic fields. Radiobiology 3:44–46

    Google Scholar 

  • Watanabe Y, Nakagawa M, Miyakoshi Y (1997) Enhancement of lipid peroxidation in the liver of mice exposed to magnetic fields. Ind Health 35:285–290

    Article  PubMed  CAS  Google Scholar 

  • Wojcik S (1995) Effect of the pre-sowing magnetic biostimulation of the buckwheat seeds on the yield and chemical composition of buckwheat grain. Curr Adv Buckw Res 93:667–674

    Google Scholar 

  • Worczak M, Wadelton K, Davis JC et al (2006) Effects of high magnetic fields on in vitro transcription. In: Torbet J, Rivoirard S, Beaugnon E (eds.) Proceedings of the 2nd international workshop on materials analysis and processing in magnetic fields. Grenoble, France, pp 67–70

    Google Scholar 

  • Yano A, Ohashi Y, Hirasaki T et al (2004) Effects of a 60 Hz magnetic field on photosynthetic CO2 uptake and early growth of radish seedlings. Bioelectromagnetics 25:572–581

    Article  PubMed  CAS  Google Scholar 

  • Yaycili O, Alikamanoglu S (2005) The effect of magnetic field on Paulownia tissue cultures. Plant Cell Tissue Org Cult 83:109–114

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Al-Khayri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dhawi, F., Al-Khayri, J.M. (2011). Magnetic Field Induced Biochemical and Growth Changes in Date Palm Seedlings. In: Jain, S., Al-Khayri, J., Johnson, D. (eds) Date Palm Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1318-5_15

Download citation

Publish with us

Policies and ethics