Skip to main content

Recent Advances in Sequencing Technology

  • Chapter
  • First Online:
Detection of Non-Amplified Genomic DNA

Part of the book series: Soft and Biological Matter ((SOBIMA))

  • 1118 Accesses

Abstract

As we celebrate the tenth anniversary of the sequencing of the first human genome, we recognize the remarkable technological innovation that now provides the ability to resequence thousands of human genomes a year. While the current methods of choice utilize amplification-based methods and the corresponding challenges of sample preparation that accompany these methods, new technologies that do not require amplification have emerged. Single-molecule sequencing methods have the potential to dramatically shape the next 10 years of technological progress driven by the continuing interest of driving the cost of whole genome sequencing below the $1000 cost threshold. Yet while whole genome sequencing remains of interest, sequencing technologies also enable new approaches for genome exploration and experimentation including direct RNA sequencing, complete transcript sequencing and real time methods for both nucleic acid and enzyme kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maxam, A.M., Gilbert, W.: A new method for sequencing DNA. Proc. Natl. Acad. Sci. U.S.A. 74, 560–564 (1977)

    Article  ADS  Google Scholar 

  2. Sanger, F., Nicklen, S., Coulson, A.R.: DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. U.S.A. 74, 463–467 (1977)

    Article  Google Scholar 

  3. Prober, J.M., Trainor, G.L., Dam, R.I., Hobbs, F.W., Robertson, C.W., Zagursky, R.I., Cocuzza, A.J., Jensen, M.A., Baumeister, K.: A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides. Science 238, 336–341 (1987)

    Article  ADS  Google Scholar 

  4. Blattner, F.R., et al.: Escherichia coli K-12. Science 277, 1453–1462 (1997)

    Article  Google Scholar 

  5. International Human Genome Sequencing Consortium, Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., et al.: Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001)

    Article  ADS  Google Scholar 

  6. Venter, C.J., Adams, M.D., Myers, E.W., et al.: The sequencing of the human genome. Science 291, 1304–1351 (1991)

    Article  ADS  Google Scholar 

  7. International Human Genome Sequencing Consortium: Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004)

    Article  ADS  Google Scholar 

  8. Margulies, M., Egholm, M., Altman, W.E., et al.: Genome sequencing in microfabricated high-density picolitre reactors. Science 437, 376–380 (2005)

    Google Scholar 

  9. Wheeler, A., Srinivasan, M., Egholm, M., Shen, Y., Chen, L., McGuire, A., He, W., Chen, Y.-J., Makhijani, V., et al.: The complete genome of an individual by massively parallel DNA sequencing. Nature 452, 872–876 (2008)

    Article  ADS  Google Scholar 

  10. Rothberg, J.M., Hinz, W., Rearick, T.M., et al.: An integrated semiconductor device enabling non-optical genome sequencing. Nature 475, 348–352 (2011)

    Article  Google Scholar 

  11. Li, R., Zhu, H., Ruan, J., Qian, W., Fang, X., et al.: de novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 20, 265–272 (2010)

    Article  Google Scholar 

  12. Nagarajan, N., Pop, M.: Sequencing and genome assembly using next-generation technologies. Methods Mol. Biol. 673, 1–17 (2010)

    Article  Google Scholar 

  13. Morin, R., Bainbridge, M., Fejes, A., Hirst, M., Krzywinski, M., Pugh, T., McDonald, H., Varhol, R., Jones, S., Marra, M.: Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. Biotechniques 45, 81–94 (2008)

    Article  Google Scholar 

  14. Cloonan, N., Forrest, A.R., Kolle, G., Gardiner, B.B., Faulkner, G.J., Brown, M.K., et al.: Stem cell transcriptome profiling via massive-mRNA sequencing. Nat. Methods 5, 613–617 (2008)

    Article  Google Scholar 

  15. Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., Wang, X., Bodeau, J., Tuch, B.B., Siddiqui, A., Lao, K., Surani, M.A.: mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6(5), 377–82 (2009)

    Article  Google Scholar 

  16. Zhao, X.D., Han, X., Chew, J.L., Liu, J., Chiu, K.P., Choo, A., Orlov, Y.L., Sung, W.K., Shahab, A., Kuznetsov, V.A., Bourque, G., Oh, S., Ruan, Y., Ng, H.H., Wei, C.L.: Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell 1, 286–98 (2007)

    Article  Google Scholar 

  17. Adli, M., Zhu, J., Bernstein, B.E.: Genome-wide chromatin maps derived from limited numbers of hematopoietic progenitors. Nat. Methods 7, 615–8 (2010), Epub Jul 11 2010

    Article  Google Scholar 

  18. Kennedy, B.A., Deatherage, D.E., Gu, F., Tang, B., Chan, M.W., et al.: ChIP-seq defined genome-wide map of TGFβ/SMAD4 targets: implications with clinical outcome of ovarian cancer. PLoS One 6, e22806 (2011). E pub 2011 Jul 25 (2011)

    Article  Google Scholar 

  19. Sam, L.T., Lipson, D., Raz, T., Cao, X., Thompson, J.F., Milos, P.M., Robinson, D., Chinnaiyan, A.M., Kumar-Sinha, C., Maher, C.A.: A comparison of single molecule and amplification based sequencing of cancer transcriptomes. Plos One 6, e17305 (2011)

    Article  ADS  Google Scholar 

  20. Funatsu, T., Harada, Y., Tokunaga, M., Saito, K., Yanagida, T.: Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374, 555–559 (1994)

    Article  ADS  Google Scholar 

  21. Aston, C., Mishra, B., Schwartz, D.C.: Optical mapping and its potential for large-scale sequencing projects. Trend. Biotech. 17, 297–302 (1999)

    Article  Google Scholar 

  22. Krivanek, O.L., Chisholm, M.F., Nicolosi, V., Pennycook, T.J., Corbin, G.J., et al.: Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464, 571–574 (2010)

    Article  ADS  Google Scholar 

  23. Braslavsky, I., Herbert, B., Kartalov, E., Quake, S.R.: Sequence information can be obtained from single DNA molecules. Proc. Natl. Acad. Sci. U.S.A. 100, 3960–4 (2003)

    Article  ADS  Google Scholar 

  24. Harris, T.D., Buzby, P.R., Babcock, H., Beer, E., Bowers, J., Braslavsky, I., et al.: Single-molecule DNA sequencing of a viral genome. Science 320, 106–109 (2008)

    Article  ADS  Google Scholar 

  25. Thompson, J.F., Reifenberger, J.G., Giladi, E., Kerouac, K., Gill, J., et al.: Single-step capture and sequencing of natural DNA for detection of BRCA1 mutations. Genome Res.. doi:10.1101/gr.122192.111. Published in Advance July 15, 2011

  26. Giladi, E., Healy, J., Myers, G., Hart, C., Kapranov, P., Lipson, D., et al.: Error tolerant indexing and alignment of short reads with covering template families. J. Comput. Biol. 17, 1397–1411 (2010)

    Article  MathSciNet  Google Scholar 

  27. Levene, M.J., Korlach, J., Turner, S.W., et al.: Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–6 (2003)

    Article  ADS  Google Scholar 

  28. Pushkarev, D., Neff, N.F., Quake, S.R.: Single-molecule sequencing of an individual human genome. Nat. Biotechnol. 27, 847–852 (2009)

    Article  Google Scholar 

  29. Orlando, L., Ginolhac, A., Raghavan, M., Vilstrup, J., Rasmussen, M., Magnussen, K., Steinmann, K., Kapranov, P., Thompson, J.F., Zazula, G., Froese, D., Shapiro, B., Hofreiter, M., AL-Rasheid, K.A.S., Mundy, J., Gilbert, M.T.P., Willerslev, E.: True single-molecule DNA sequencing of a pleistocene horse bone. Genome Res. 21, 1705–1719 (2011)

    Article  Google Scholar 

  30. Chin, C.S., et al.: The origin of the Haitian cholera outbreak strain. N. Engl. J. Med. 364, 33–42 (2011)

    Article  Google Scholar 

  31. Kanamori-Katayama, M., Itoh, M., Kawaji, H., Lassmann, T., Katayama, S., Kojima, M., Bertin, N., Kaiho, A., Ninomiya, N., Daub, C.O., Carninci, P., Forrest, A.R., Hayashizaki, Y.: Unamplified cap analysis of gene expression on a single-molecule sequencer. Genome Res. 21, 1150–9 (2011)

    Article  Google Scholar 

  32. Kapranov, P., Ozsolak, F., Kim, S.W., Foissac, S., Lipson, D., Hart, C., Roels, S., Borel, C., Antonarakis, S.E., Monaghan, A.P., John, B., Milos, P.M.: Novel class of gene-termini- associated human RNAs suggests a novel RNA copying mechanism. Nature 466, 642–646 (2010)

    Article  ADS  Google Scholar 

  33. Ozsolak, F., Platt, A., Jones, D., Reifenberger, J., Sass, L.E., McInerney, P., Thompson, J.F., Bowers, J., Jarosz, M., Milos, P.: Direct RNA sequencing. Nature 461, 814–818 (2009)

    Article  ADS  Google Scholar 

  34. Plessy, C., Bertin, N., Takahashi, H., Simone, R., Salimullah, M., et al.: Linking promoters to functional transcripts in small samples with nanoCAGE and CAGEscan. Nat. Methods 7, 528–534 (2010)

    Article  Google Scholar 

  35. Asmann, Y.W., Klee, E.W., Thompson, E.A., Perez, E.A., Middha, S., Oberg, A.L., Therneau, T.M., Smith, D.I., Poland, G.A., Wieben, E.D., Kocher, J.P.: 3′ tag digital gene expression profiling of human brain and universal reference RNA using Illumina Genome Analyzer. BMC Genomics 10, 531 (2009)

    Article  Google Scholar 

  36. Wu, Z.J., Meyer, C.A., Choudhury, S., Shipitsin, M., Maruyama, R., et al.: Gene expression profiling of human breast tissue samples using SAGE-Seq. Genome Res. 20, 1730–1739 (2010)

    Article  Google Scholar 

  37. Fullwood, M.J., Wei, C.L., Liu, E.T., Ruan, Y.: Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses. Genome Res. 19, 521–532 (2009)

    Article  Google Scholar 

  38. Lipson, D., Raz, T., Kieu, A., Jones, D.R., Giladi, E., et al.: Quantification of the yeast transcriptome by single-molecule sequencing. Nat. Biotechnol. 27, 652–658 (2009)

    Article  Google Scholar 

  39. Ozsolak, F., Ting, D.T., Wittner, B.S., Brannigan, B.W., Paul, S., et al.: Amplification-free digital gene expression profiling from minute cell quantities. Nat. Methods 7, 619–621 (2010)

    Article  Google Scholar 

  40. Raz, T., Kapranov, P., Lipson, D., Letovsky, S., Milos, P.M., Thompson, J.F.: Protocol dependence of sequencing-based gene expression measurements. PLoS One 6, e19287 (2011)

    Article  Google Scholar 

  41. Oshlack, A., Wakefield, M.J.: Transcript length bias in RNA-seq data confounds systems biology. Biol. Direct 4, 14 (2009)

    Article  Google Scholar 

  42. Dohm, J.C., Lottaz, C., Borodina, T., Himmelbauer, H.: Substantial biases in ultra- short read data sets from high-throughput DNA sequencing. Nucleic Acids Res. 36, e105 (2008)

    Article  Google Scholar 

  43. Aird, D., Ross, M.G., Chen, W.S., Danielsson, M., Fennell, T., Russ, C., Jaffe, D.B., Nusbaum, C., Gnirke, A.: Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol. 12, R18 (2011)

    Article  Google Scholar 

  44. Mamanova, L., Andrews, R.M., James, K.D., Sheridan, E.M., Ellis, P.D., et al.: FRT-seq: amplification-free, strand-specific transcriptome sequencing. Nat. Methods 7, 130–132 (2010)

    Article  Google Scholar 

  45. Hansen, K.D., Brenner, S.E., Dudoit, S.: Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res. 38, e131 (2010)

    Article  Google Scholar 

  46. Oshlack, A., Robinson, M.D., Young, M.D.: From RNA-seq reads to differential expression results. Genome Biol. 11, 220 (2010)

    Article  Google Scholar 

  47. Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., et al.: Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009)

    Article  ADS  Google Scholar 

  48. Kapranov, P., St Laurent, G., Raz, T., Ozsolak, F., Reynolds, C.P., Sorensen, P.H., Reaman, G., Milos, P., Arceci, R.J., Thompson, J.F., Triche, T.J.: The majority of total nuclear- encoded non-ribosomal RNA in a human cell is ‘dark matter’ unannotated RNA. BMC Biol. 8, 149 (2010)

    Article  Google Scholar 

  49. Mader, R.M., et al.: Reverse transcriptase template switching during reverse transcriptase-polymerase chain reaction: artificial generation of deletions in ribonucleotide reductase mRNA. J. Lab. Clin. Med. 137, 422–8 (2001)

    Article  Google Scholar 

  50. Cocquet, J., Chong, A., Zhang, G., Veitia, R.A.: Reverse transcriptase template switching and false alternative transcripts. Genomics 88, 127–31 (2006)

    Article  Google Scholar 

  51. Haddad, F., Qin, A.X., Giger, J.M., Guo, H., Baldwin, K.M.: Potential pitfalls in the accuracy of analysis of natural sense-antisense RNA pairs by reverse transcription-PCR. BMC Biotechnol. 7, 21 (2007)

    Article  Google Scholar 

  52. Ozsolak, F., Kapranov, P., Foissac, S., Kim, S.W., Fishilevich, E., Monaghan, A.P., John, B., Milos, P.M.: Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. Cell 143, 1018–29 (2010)

    Article  Google Scholar 

  53. Malmström, H., Svensson, E.M., Gilbert, M.T., Willerslev, E., Götherström, A., Holmlund, G.: More on contamination: the use of asymmetric molecular behavior to identify authentic ancient human DNA. Mol. Biol. Evol. 24, 998–1004 (2007)

    Article  Google Scholar 

  54. Ginolhac, A., Vilstrup, J., Stenderup, J., Raghavan, M., Rasmussen, M., Stiller, M., Shapiro, B., Zazula, G., Froese, D., Steinmann, K.E., Thompson, J.F., AL-Rasheid, K.A.S., Gilbert, T., Willerslev, E., Orlando, L.: Improving the performance of true-single molecule sequencing for ancient DNA. (2011) (Submitted)

    Google Scholar 

  55. Thompson, J., Lipson, D., Hart, C., Kapranov, P., Letovsky, S., Milos, P., Ozsolak, F., Raz, T., Reifenberger, J., Steinmann, K., Loreille, O., Coble, M.: Sequencing the unsequenceable: applying massively parallel, single-molecule sequencing to badly degraded DNAs. In: Abstracts of the 59th Annual Meeting of The American Society of Human Genetics, Honolulu, 20–20 Oct 2009. http://www.ashg.org/2009meeting/abstracts/fulltext/f21866.htm

  56. Yee, A.J., Raz, T., Amzallag, A., Lipson, D., Giladi, E., Lopez, H., Borger, D.R., Mino-Kenudson, M., Thompson, J.F., Iafrate, A.J., Milos, P., Haber, D.A., Ramaswamy, S.: Single molecule RNA sequencing of formalin-fixed paraffin-embedded tissue derived from patients with lung cancer. J. Clin. Oncol. 29(15_suppl), 10550 (2011), http://www.asco.org/ASCOv2/Meetings/Abstracts?&vmview=abst_detail_view&confID=102&abstractID=78488

    Google Scholar 

  57. Branton, D., Deamer, D.W., Marziali, A., Bayley, H., Benner, S.A., et al.: The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–53 (2008)

    Article  Google Scholar 

  58. Deamer, D.: Nanopore analysis of nucleic acids bound to exonucleases and polymerases. Annu. Rev. Biophys. 39, 79–90 (2010)

    Article  Google Scholar 

  59. Timp, W., Mirsaidov, U.M., Wang, D., Comer, J., Aksimentiev, A., Timp, G.: Nanopore sequencing: electrical measurements of the code of life. IEEE Trans Nanotechnol. 9, 281–294 (2010)

    Article  ADS  Google Scholar 

  60. Kowalczyk, S.W., Blosser, T.R., Dekker, C.: Biomimetic nanopores: learning from and about nature. Trends Biotechnol. 29(12), 607–614 (2011)

    Article  Google Scholar 

  61. Venkatesan, B.M., Bashir, R.: Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol. 6, 615–24 (2011)

    Article  ADS  Google Scholar 

  62. Healy, K.: Nanopore-based single-molecule DNA analysis. Nanomedicine 2, 459–481 (2007)

    Article  Google Scholar 

  63. Kasianowicz, J.J., Brandin, E., Branton, D., Deamer, D.W.: Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. U.S.A. 93, 13770–3 (1996)

    Article  ADS  Google Scholar 

  64. Aksimentiev, A.: Deciphering ionic current signatures of DNA transport through a nanopore. Nanoscale 2, 468–483 (2010)

    Article  ADS  Google Scholar 

  65. Kowalczyk, S.W., Grosberg, A.Y., Rabin, Y., Dekker, C.: Modeling the conductance and DNA blockade of solid-state nanopores. Nanotechnology 22, 315101 (2011)

    Article  ADS  Google Scholar 

  66. Lagerqvist, J., Zwolak, M., Di Ventra, M.: Fast DNA sequencing via transverse electronic transport. Nano Lett. 6, 779–82 (2006)

    Article  ADS  Google Scholar 

  67. Krems, M., Zwolak, M., Pershin, Y.V., Di Ventra, M.: Effect of noise on DNA sequencing via transverse electronic transport. Biophys. J. 97, 1990–6 (2009)

    Article  ADS  Google Scholar 

  68. Chang, S., Huang, S., He, J., Liang, F., Zhang, P., Li, S., Chen, X., Sankey, O., Lindsay, S.: Electronic signatures of all four DNA nucleosides in a tunneling gap. Nano Lett. 10, 1070–5 (2010)

    Article  ADS  Google Scholar 

  69. Tsutsui, M., Taniguchi, M., Yokota, K., Kawai, T.: Identifying single nucleotides by tunnelling current. Nat. Nanotechnol. 5, 286–90 (2010)

    Article  ADS  Google Scholar 

  70. Ivanov, A.P., Instuli, E., McGilvery, C.M., Baldwin, G., McComb, D.W., Albrecht, T., Edel, J.B.: DNA tunneling detector embedded in a nanopore. Nano Lett. 11, 279–85 (2011)

    Article  ADS  Google Scholar 

  71. Bayley, H., Cremer, P.S.: Stochastic sensors inspired by biology. Nature. 413, 226–30 (2001)

    Google Scholar 

  72. Butler, T.Z., Pavlenok, M., Derrington, I.M., Niederweis, M., Gundlach, J.H.: Single-molecule DNA detection with an engineered MspA protein nanopore. Proc. Natl. Acad. Sci. U.S.A. 105, 20647–52 (2008)

    Article  ADS  Google Scholar 

  73. Wendell, D., Jing, P., Geng, J., Subramaniam, V., Lee, T.J., Montemagno, C., Guo, P.: Translocation of double-stranded DNA through membrane-adapted phi29 motor protein nanopores. Nat. Nanotechnol. 4, 765–772 (2009)

    Article  ADS  Google Scholar 

  74. Maglia, G., Restrepo, M.R., Mikhailova, E., Bayley, H.: Enhanced translocation of single DNA molecules through alpha-hemolysin nanopores by manipulation of internal charge. Proc. Natl. Acad. Sci. U.S.A. 105, 19720–5 (2008)

    Article  ADS  Google Scholar 

  75. Stoddart, D., Heron, A.J., Mikhailova, E., Maglia, G., Bayley, H.: Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc. Natl. Acad. Sci. U.S.A. 106, 7702–7 (2009)

    Article  ADS  Google Scholar 

  76. Clarke, J., Wu, H.C., Jayasinghe, L., Patel, A., Reid, S., Bayley, H.: Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 4, 265–70 (2009)

    Article  ADS  Google Scholar 

  77. Derrington, I.M., Butler, T.Z., Collins, M.D., Manrao, E., Pavlenok, M., Niederweis, M., Gundlach, J.H.: Nanopore DNA sequencing with MspA. Proc. Natl. Acad. Sci. U.S.A. 107, 16060–5 (2010)

    Article  ADS  Google Scholar 

  78. Manrao, E.A., Derrington, I.M., Pavlenok, M., Niederweis, M., Gundlach, J.H.: Nucleotide discrimination with DNA immobilized in the MspA nanopore. PLoS One 6, e25723 (2011)

    Article  ADS  Google Scholar 

  79. Kawano, R., Schibel, A.E., Cauley, C., White, H.S.: Controlling the translocation of single-stranded DNA through alpha-hemolysin ion channels using viscosity. Langmuir 25, 1233–7 (2009)

    Article  Google Scholar 

  80. de Zoysa, R.S., Jayawardhana, D.A., Zhao, Q., Wang, D., Armstrong, D.W., Guan, X.: Slowing DNA translocation through nanopores using a solution containing organic salts. J. Phys. Chem. B 113, 13332–6 (2009)

    Article  Google Scholar 

  81. Cockroft, S.L., Chu, J., Amorin, M., Ghadiri, M.R.: A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution. J. Am. Chem. Soc. 130, 818–20 (2008)

    Article  Google Scholar 

  82. Hornblower, B., Coombs, A., Whitaker, R.D., Kolomeisky, A., Picone, S.J., et al.: Single-molecule analysis of DNA-protein complexes using nanopores. Nat. Methods 4, 315–17 (2007)

    Google Scholar 

  83. McNally, B., Singer, A., Yu, Z., Sun, Y., Weng, Z., Meller, A.: Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays. Nano Lett. 10, 2237–44 (2010)

    Article  ADS  Google Scholar 

  84. Healy, K., Schiedt, B., Morrison, A.P.: Solid-state nanopore technologies for nanopore-based DNA analysis. Nanomedicine (Lond.) 2, 875–97 (2007)

    Article  Google Scholar 

  85. Storm, A.J., Storm, C., Chen, J., Zandbergen, H., Joanny, J.-F., Fast, D.C.: Fast DNA translocation through a solid-state nanopore. Nano Lett. 5, 1193–1197 (2005)

    Article  ADS  Google Scholar 

  86. He, Y., Tsutsui, M., Fan, C., Taniguchi, M., Kawai, T.: Controlling DNA translocation through gate modulation of nanopore wall surface charges. ACS Nano 5, 5509–18 (2011)

    Article  Google Scholar 

  87. Wanunu, M., Morrison, W., Rabin, Y., Grosberg, A.Y., Meller, A.: Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nat. Nanotechnol. 5, 160–5 (2009)

    Article  ADS  Google Scholar 

  88. van den Hout, M., Krudde, V., Janssen, X.J., Dekker, N.H.: Distinguishable populations report on the interactions of single DNA molecules with solid-state nanopores. Biophys. J. 99, 3840–8 (2010)

    Article  Google Scholar 

  89. Luan, B., Aksimentiev, A.: Control and reversal of the electrophoretic force on DNA in a charged nanopore. J. Phys. Condens. Matter 22, 454123 (2010)

    Article  ADS  Google Scholar 

  90. Smeets, R.M., Kowalczyk, S.W., Hall, A.R., Dekker, N.H., Dekker, C.: Translocation of RecA-coated double-stranded DNA through solid-state nanopores. Nano Lett. 9, 3089–96 (2009)

    Article  ADS  Google Scholar 

  91. Lu, B., Albertorio, F., Hoogerheide, D.P., Golovchenko, J.A.: Origins and consequences of velocity fluctuations during DNA passage through a nanopore. Biophys. J. 101, 70–9 (2011)

    Article  ADS  Google Scholar 

  92. Trepagnier, E.H., Radenovic, A., Sivak, D., Geissler, P., Liphardt, J.: Controlling DNA capture and propagation through artificial nanopores. Nano Lett. 7, 2824–30 (2007)

    Article  ADS  Google Scholar 

  93. Peng, H., Ling, X.S.: Reverse DNA translocation through a solid-state nanopore by magnetic tweezers. Nanotechnology 20, 185101 (2009)

    Article  ADS  Google Scholar 

  94. Iqbal, S.M., Akin, D., Bashir, R.: Solid-state nanopore channels with DNA selectivity. Nat. Nanotechnol. 2, 243–8 (2007)

    Article  ADS  Google Scholar 

  95. Hall, A.R., Scott, A., Rotem, D., Mehta, K.K., Bayley, H., Dekker, C.: Hybrid pore formation by directed insertion of α-haemolysin into solid-state nanopores. Nat. Nanotechnol. 5, 874–7 (2010)

    Article  ADS  Google Scholar 

  96. Oliver, J., Bready, B., Goldstein, P., Preparata, F.: Biopolymer sequencing by hybridization of probes to form ternary complexes and variable range alignment. US patent application 20090099786 (2008)

    Google Scholar 

  97. Garaj, S., Hubbard, W., Reina, A., Kong, J., Branton, D., Golovchenko, J.A.: Graphene as a subnanometre trans-electrode membrane. Nature 467, 190–3 (2010)

    Article  ADS  Google Scholar 

  98. Merchant, C.A., Healy, K., Wanunu, M., Ray, V., Peterman, N., Bartel, J., Fischbein, M.D., Venta, K., Luo, Z., Johnson, A.T., Drndić, M.: DNA translocation through graphene nanopores. Nano Lett. 10, 2915–21 (2010)

    Article  ADS  Google Scholar 

  99. Schneider, G.F., Kowalczyk, S.W., Calado, V.E., Pandraud, G., Zandbergen, H.W., Vandersypen, L.M., Dekker, C.: DNA translocation through graphene nanopores. Nano Lett. 10, 3163–7 (2010)

    Article  ADS  Google Scholar 

  100. Sathe, C., Zou, X., Leburton, J.P., Schulten, K.: Computational investigation of DNA detection using graphene nanopores. ACS Nano. 11, 8842–51 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrice M. Milos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Thompson, J.F., Ozsolak, F., Milos, P.M. (2012). Recent Advances in Sequencing Technology. In: Spoto, G., Corradini, R. (eds) Detection of Non-Amplified Genomic DNA. Soft and Biological Matter. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1226-3_11

Download citation

Publish with us

Policies and ethics