Skip to main content

Applications: Nanobiosystems, Medicine, and Health

  • Chapter
  • First Online:
Nanotechnology Research Directions for Societal Needs in 2020

Part of the book series: Science Policy Reports ((SCIPOLICY,volume 1))

Abstract

Over the past decade, nanomedicine and nanobiology have undergone radical transformations from fantasy to real science. The days of discussing advances in this area in the context of “nanobots” are over, and systems and nanomaterials have emerged that provide major analytical or therapeutic advantages over conventional molecule-based structures and approaches. We have come to recognize that much of biology is executed at the nanoscale level, therefore providing a rational approach to using the structure and function of engineered nanomaterials at the nano-bio interface for interrogation of disease, diagnosis, treatment, and imaging at levels of sophistication not possible before [1]. Fabrication of a host of nanostructures has been coupled with advanced chemical manipulation in order to impart biological recognition and interaction capabilities. Often, chemical manipulation results in nanomaterials that provide performance enhancement of therapeutics, imaging agents, diagnostics, and materials for tissue engineering and for basic science applications.

*  With contributions from: Barbara A. Baird, Carl Batt, David Grainger, Sanjiv Sam Gambhir, Demir Akin, Otto Zhou, J. Fraser Stoddart, Thomas J. Meade, Piotr Grodzinski, Dorothy Farrell, Harry F. Tibbals, Joseph De Simone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    PSA is a serum biomarker used to screen individuals for prostate cancer and also as a marker for prostate cancer recurrence following primary and secondary prostate cancer intervention [32].

References

  1. A.E. Nel, L. Madler, D. Velegol, T. Xia, E.M.V. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, M. Thompson, Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8(7), 543–557 (2009). doi:10.1038/nmat2442

    Article  CAS  Google Scholar 

  2. European Science Foundation (ESF), Nanomedicine: An ESF – European Medical Research Council Forward Look Report (ESF, Strasbourg, France, 2005), Available online: http://www.esf.org/publications/forward-looks.html

  3. A. Nel, T. Xia, L. Madler, N. Li, Toxic potential of materials at the nanolevel. Science 311(5761), 622–627 (2006). doi:10.1126/science.1114397

    Article  CAS  Google Scholar 

  4. P. Grodzinski, M. Silver, L.K. Molnar, Nanotechnology for cancer diagnostics: promises and challenges. Expert Rev. Mol. Diagn. 6(3), 307–318 (2006)

    Article  CAS  Google Scholar 

  5. F. Alexis, E.M. Pridgen, R. Langer, O.C. Farokhzad, Nanoparticle technologies for cancer therapy. Handb. Exp. Pharmacol. 197, 55–86 (2010)

    Article  CAS  Google Scholar 

  6. S.X. Tang, J. Zhao, J.J. Storhoff, P.J. Norris, R.F. Little, R. Yarchoan, S.L. Stramer, T. Patno, M. Domanus, A. Dhar, C. Mirkin, I.K. Hewlett, Nanoparticle-based biobarcode amplification assay (BCA) for sensitive and early detection of human immunodeficiency type 1 capsid (p24) antigen. J. Acquir. Immune Defic. Syndr. 46(2), 231–237 (2007). doi:10.1097/QAI.0b013e31814a554b

    Article  Google Scholar 

  7. M.E. Davis, J.E. Zuckerman, C.H. Choi, D. Seligson, A. Tolcher, C.A. Alabi, Y. Yen, J.D. Heidel, A. Ribas, Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464(7291), 1067–1070 (2010). doi:10.1038/nature08956

    Article  CAS  Google Scholar 

  8. A.E. Prigodich, D.S. Seferos, M.D. Massich, D.A. Giljohann, B.C. Lane, C.A. Mirkin, Nano-flares for mRNA regulation and detection. ACS Nano 3(8), 2147–2152 (2009). doi:10.1021/nn9003814

    Article  CAS  Google Scholar 

  9. D.S. Seferos, D.A. Giljohann, H.D. Hill, A.E. Prigodich, C.A. Mirkin, Nano-flares: probes for transfection and mRNA detection in living cells. J. Am. Chem. Soc. 129(50), 15477–15479 (2007). doi:10.1021/ja0776529

    Article  CAS  Google Scholar 

  10. D. Zheng, D.S. Seferos, D.A. Giljohann, P.C. Patel, C.A. Mirkin, Aptamer nano-flares for molecular detection in living cells. Nano Lett. 9(9), 3258–3261 (2009). doi:10.1021/nl901517b

    Article  CAS  Google Scholar 

  11. A. De la Zerda, C. Zavaleta, S. Keren, S. Vaithilingham, S. Bodapati, Z. liu, J. Levi, B.R. Smith, T. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B.T. Kuri-Yakub, S.S. Gambhir, Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol. 3(9), 557–562 (2008). doi:10.1038/nnano.2008.231

    Article  CAS  Google Scholar 

  12. S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, S.S. Gambhir, Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 105(15), 5844–5849 (2008). doi:10.1073/pnas.0710575105

    Article  CAS  Google Scholar 

  13. J.L. Major, T.J. Meade, Bioresponsive, cell-penetrating, and multimeric MR contrast agents. Acc. Chem. Res. 42(7), 893–903 (2009). doi:10.1021/ar800245h

    Article  CAS  Google Scholar 

  14. Y. Song, X. Xu, K.W. MacRenaris, X.Q. Zhang, C.A. Mirkin, T.J. Meade, Multimodal gadolinium-enriched DNA-gold nanoparticle conjugates for cellular imaging. Angew. Chem. Int. Ed Engl. 48(48), 9143–9147 (2009)

    Article  CAS  Google Scholar 

  15. C. Zavaleta, A. de la Zerda, Z. Liu, S. Keren, Z. Cheng, M. Schipper, X. Chen, H. Dai, S.S. Gambhir, Noninvasive Raman spectroscopy in living mice for evaluation of tumor targeting with carbon nanotubes. Nano Lett. 8(9), 2800–805 (2008). Available online: http://www.adelazerda.com/NanoLetters_08.pdf

    Article  CAS  Google Scholar 

  16. S. George, S. Pokhrel, T. Xia, B. Gilbert, Z. Ji, M. Schowalter, A. Rosenauer, R. Damoiseaux, K.A. Bradley, L. Madler, A.E. Nel, Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping. ACS Nano 4(1), 15–29 (2010)

    Article  CAS  Google Scholar 

  17. M. Liong, J. Lu, M. Kovochich, T. Xia, S.G. Ruehm, A.E. Nel, F. Tamanoi, J.I. Zink, Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5), 889–896 (2008). doi:10.1021/nn800072t

    Article  CAS  Google Scholar 

  18. J. Lu, M. Liong, S. Sherman, T. Xia, M. Kovochich, A. Nel, J. Zink, F. Tamanoi, Mesoporous silica nanoparticles for cancer therapy: energy-dependent cellular uptake and delivery of pacli­taxel to cancer cells. Nanobiotechnology 3(3), 89–95 (2007). doi:10.1007/s12030-008-9003-3

    Article  CAS  Google Scholar 

  19. J. Lu, M. Liong, Z. Li, J.I. Zink, F. Tamanoi, Biocompatability, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 6(16), 1794–1805 (2010)

    Article  CAS  Google Scholar 

  20. H. Meng, M. Liong, T. Xia, Z. Li, Z. Ji, J.I. Link, A.E. Nel, Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and Pgp siRNA to overcome drug resistance in a cancer cell line. ACS Nano 4(8), 4539–4550 (2010). doi:10.1021/nn100690m

    Article  CAS  Google Scholar 

  21. H. Meng, M. Xie, T. Xia, Y. Zhao, F. Tamanoi, J.F. Stoddart, J.I. Zink, A. Nel, Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves. J. Am. Chem. Soc. 132(36), 12690–12697 (2010). doi:10.1021/ja104501a

    Article  CAS  Google Scholar 

  22. T. Xia, M. Kovochich, M. Liong, H. Meng, S. Kabahie, S. george, J.I. Zink, A. Nel, Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nano­particles and allows safe delivery of siRNA and DNA constructs. ACS Nano 3(10), 3273–3286 (2009)

    Article  CAS  Google Scholar 

  23. D.G. Georganopoulou, L. Chang, J.W. Nam, C.S. Thaxton, E.J. Mufson, W.L. Klein, C.A. Mirkin, Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc. Natl. Acad. Sci. U. S. A. 102(7), 2273–2276 (2004). doi:10.1073/pnas.0409336102

    Article  CAS  Google Scholar 

  24. C.A. Mirkin, C.S. Thaxton, N.L. Rosi, Nanostructures in biodefense and molecular diagnostics. Expert Rev. Mol. Diagn. 4(6), 749–751 (2004)

    Article  Google Scholar 

  25. J.M. Nam, S.I. Stoeva, C.A. Mirkin, Bio-bar-code-based DNA detection with PCR-like sensitivity. J. Am. Chem. Soc. 126(19), 5932–5933 (2004). doi:10.1021/ja049384+

    Article  CAS  Google Scholar 

  26. J.M. Nam, C.S. Thaxton, C.A. Mirkin, Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301(5641), 1884–1886 (2003). doi:10.1126/science.1088755

    Article  CAS  Google Scholar 

  27. S.I. Stoeva, J.S. Lee, C.S. Thaxton, C.A. Mirkin, Multiplexed DNA detection with bio­barcoded nanoparticle probes. Angew. Chem. Int. Ed Engl. 45(20), 3303–3306 (2006). doi:10.1002/anie.200600124

    Article  CAS  Google Scholar 

  28. C.S. Thaxton, H.D. Hill, D.G. Georganopoulou, S.I. Stoeva, C.A. Mirkin, A bio-bar-code assay based upon dithiothreitol-induced oligonucleotide release. Anal. Chem. 77(24), 8174–8178 (2005)

    Article  CAS  Google Scholar 

  29. C.S. Thaxton, N.L. Rosi, C.A. Mirkin, Optically and chemically encoded nanoparticle materials for DNA and protein detection. MRS Bull. 30(5), 376–380 (2005)

    Article  CAS  Google Scholar 

  30. D. Kim, W.L. Daniel, C.A. Mirkin, Microarray-based multiplexed scanometric immunoassay for protein cancer markers using gold nanoparticle probes. Anal. Chem. 81(21), 9183–9187 (2009). doi:10.1021/ac9018389

    Article  CAS  Google Scholar 

  31. T.A. Taton, C.A. Mirkin, R.L. Letsinger, Scanometric DNA array detection with nanoparticle probes. Science 289(5485), 1757–1760 (2000). doi:10.1126/science.289.5485.1757

    Article  CAS  Google Scholar 

  32. C.R. Pound, A.W. Partin, M.A. Eisenberger, D.W. Chan, J.D. Pearson, P.C. Walsh, Natural history of progression after PSA elevation following radical prostatectomy. JAMA 281(17), 1591–1597 (1999)

    Article  CAS  Google Scholar 

  33. G.L. Andriole, R.L. Grubb III, S.S. Buys, D. Chia, T.R. Church, M.N. Fouad, E.P. Gelmann, P.A. Kvale, D.J. Reding, J.L. Weissfeld, L.A. Yokochi, E.D. Crawford, B. O’Brien, J.D. Clapp, J.M. Rathmell, T.L. Riley, R.B. Hayes, B.S. Kramer, G. Izmirlian, A.B. Miller, P.F. Pinsky, P.C. Prorok, J.K. Gohagan, C.D. Berg, Mortality results from a randomized prostate-cancer screening trial. N. Engl. J. Med. 360(13), 1310–1319 (2009)

    Article  CAS  Google Scholar 

  34. F.H. Schroder, J. Hugosson, M.J. Roobol, T.L.J. Tammela, S. Ciatto, V. Nelen, M. Kwiatkowski, M. Lujan, H. Lilja, M. Zappa, L.J. Denis, F. Recker, A. Berenguer, L. Määttänen, C.H. Bangma, G. Aus, A. Villers, X. Rebillard, T. van der Kwast, B.G. Blijenberg, S.M. Moss, H.J. de Koning, A. Auvinen, ERSPC Investigators, Screening and prostate-cancer mortality in a randomized European study. N. Engl. J. Med. 360(13), 1320–1328 (2009)

    Article  Google Scholar 

  35. W.J. Catalona, D.S. Smith, 5-year tumor recurrence rates after anatomical radical retropubic prostatectomy for prostate cancer. J. Urol. 152(5), 1837–1842 (1994)

    CAS  Google Scholar 

  36. T.L. Jang, M. Han, K.A. Roehl, S.A. Hawkins, W.J. Catalona, More favorable tumor features and progression-free survival rates in a longitudinal prostate cancer screening study: PSA era and threshold-specific effects. Urology 67(2), 343–348 (2006). doi:10.1016/j.urology.2005.08.048

    Article  Google Scholar 

  37. J.G. Trapasso, J.B. deKernion, R.B. Smith, F. Dorey, The incidence and significance of detectable levels of serum prostate specific antigen after radical prostatectomy. J. Urol. 152(5), 1821–1825 (1994)

    CAS  Google Scholar 

  38. B.J. Trock, M. Han, S.J. Freedland, E.B. Humphreys, T.L. DeWeese, A.W. Partin, P.C. Walsh, Prostate cancer-specific survival following salvage radiotherapy vs observation in men with biochemical recurrence after radical prostatectomy. JAMA 299(23), 2760–2769 (2008)

    Article  CAS  Google Scholar 

  39. H. Yu, E.P. Diamandis, A.F. Prestigiacomo, T.A. Stamey, Ultrasensitive assay of prostate-specific antigen used for early detection of prostate cancer relapse and estimation of tumor-doubling time after radical prostatectomy. Clin. Chem. 41(3), 430–434 (1995)

    CAS  Google Scholar 

  40. C.S. Thaxton, R. Elghanian, A.D. Thomas, S.I. Stoeva, J.S. Lee, N.D. Smith, A.J. Schaeffer, H. Klocker, W. Horninger, G. Bartsch, C.A. Mirkin, Nanoparticle-based bio-barcode assay redefines “undetectable” PSA and biochemical recurrence after radical prostatectomy. Proc. Natl. Acad. Sci. U. S. A. 106(44), 18437–18442 (2009). doi:10.1073/pnas.0904719106

    Article  CAS  Google Scholar 

  41. A.K. Lytton-Jean, C.A. Mirkin, A thermodynamic investigation into the binding properties of DNA functionalized gold nanoparticle probes and molecular fluorophore probes. J. Am. Chem. Soc. 127(37), 12754–12755 (2005)

    Article  CAS  Google Scholar 

  42. R. Elghanian, J.J. Storhoff, R.C. Mucic, R.L. Letsinger, C.A. Mirkin, Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277(5329), 1078–1081 (1997). doi:10.1126/science.277.5329.1078

    Article  CAS  Google Scholar 

  43. J.J. Storhoff, A.D. Lucas, V. Garimella, Y.P. Bao, U.R. Muller, Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nat. Biotechnol. 22(7), 883–887 (2004)

    Article  CAS  Google Scholar 

  44. J.J. Storhoff, S.S. Marla, P. Bao, S. Hagenow, H. Mehta, A. Lucas, V. Garimella, T. Patno, W. Buckingham, W. Cork, U.R. Muller, Gold nanoparticle-based detection of genomic DNA targets on microarrays using a novel optical detection system. Biosens. Bioelectron. 19(8), 875–883 (2004). doi:10.1016/j.bios.2003.08.014

    Article  CAS  Google Scholar 

  45. D.A. Giljohann, D.S. Seferos, A.E. Prigodich, P.C. Patel, C.A. Mirkin, Gene regulation with polyvalent siRNA-nanoparticle conjugates. J. Am. Chem. Soc. 131(6), 2072–2073 (2009). doi:10.1021/ja808719p

    Article  CAS  Google Scholar 

  46. N.L. Rosi, D.A. Giljohann, C.S. Thaxton, A.K.R. Lytton-Jean, M.S. Han, C.A. Mirkin, Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312(5776), 1027–1030 (2006). doi:10.1126/science.1125559

    Article  CAS  Google Scholar 

  47. D.S. Seferos, A.E. Prigodich, D.A. Giljohann, P.C. Patel, C.A. Mirkin, Polyvalent DNA nano­par­ticle conjugates stabilize nucleic acids. Nano Lett. 9(1), 308–311 (2009). doi:10.1021/nl802958f

    Article  CAS  Google Scholar 

  48. D.S. Seferos, D.A. Giljohann, N.L. Rosi, C.A. Mirkin, Locked nucleic acid-nanoparticle conjugates. Chem. Biochem 8(11), 1230–1232 (2007). doi:10.1002/cbic.200700262

    CAS  Google Scholar 

  49. N. Nerambourg, R. Praho, M.H.V. Werts, D. Thomas, M. Blanchard-Desce, Hydrophilic monolayer-protected gold nanoparticles and their functionalisation with fluorescent chromophores. Int. J. Nanotechnol. 5(6–8), 722–740 (2008). doi:10.1504/IJNT.2008.018693

    Article  CAS  Google Scholar 

  50. T. Meade, Seeing is believing. Acad. Radiol. 8(1), 1–3 (2001)

    Article  CAS  Google Scholar 

  51. D. Neuberger, J. Wong, Suspension for intravenous injection: image analysis of scanning electron micrographs of particles to determine size and volume. PDA J. Pharm. Sci. Technol. 59(3), 187–199 (2005)

    Google Scholar 

  52. L.M. Manus, D.J. Mastarone, E.A. Waters, X.-Q. Zhang, E.A. Schultz-Sikma, K.W. MacRenaris, D. Ho, T.J. Meade, Gd(III)-nanodiamond conjugates for MRI contrast enhancement. Nano Lett. 10(2), 484–489 (2010). doi:10.1021/nl903264h

    Article  CAS  Google Scholar 

  53. C.L. Zavaleta, B.R. Smith, I. Walton, W. Doering, G. Davis, B. Shojaei, M.J. Natan, S.S. Gambhir, Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 106(32), 13511–13516 (2009). doi:10.1073/pnas.0813327106

    Article  CAS  Google Scholar 

  54. S.M. van de Ven, N. Mincu, J. Brunette, G. Ma, M. Khayat, D.M. Ikeda, S.S. Gambhir, Molecular imaging using light-absorbing imaging agents and a clinical optical breast imaging system–a phantom study. Department of Radiology, Stanford University Medical Center, Stanford, CA, USA. Mol Imaging Biol. Apr;13(2):232–238 (2011)

    Google Scholar 

  55. M.E. Davis, The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol. Pharm. 6(3), 659–668 (2009). doi:10.1021/mp900015y

    Article  CAS  Google Scholar 

  56. D.W. Bartlett, M.E. Davis, Physicochemical and biological characterization of targeted, nucleic acid-containing nanoparticles. Bioconjug. Chem. 18(2), 456–468 (2007). doi:10.1021/bc0603539

    Article  CAS  Google Scholar 

  57. S.H. Pun, N.C. Bellocq, A. Liu, G. Jensen, T. Machemer, E. Quijano, T. Schluep, S. Wen, H. Engler, J. Heidel, M.E. Davis, Cyclodextrin-modified polyethylenimine polymers for gene delivery. Bioconjug. Chem. 15(4), 831–840 (2004). doi:10.1021/bc049891g

    Article  CAS  Google Scholar 

  58. D.J. Heidel, J.D. Heidel, J. Yi-Ching Liu, Y. Yen, B. Zhou, B.S.E. Heale, J.J. Rossi, D.W. Bartlett, M.E. Davis, Potent siRNA inhibitors of ribonucleotide reductase subunit RRM2 reduce cell proliferation in vitro and in vivo. Clin. Cancer Res. 13(7), 2207–2215 (2007). doi:10.1158/1078-0432.CCR-06-2218

    Article  CAS  Google Scholar 

  59. D.J. Heidel, Z. Yu, J. Yi-Ching Liu, S.M. Rele, Y. Liang, R.K. Zeidan, D.J. Kornbrust, M.E. Davis, Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc. Natl. Acad. Sci. U. S. A. 104(14), 5715–5721 (2007). doi:10.1073/pnas.0701458104

    Article  CAS  Google Scholar 

  60. S. Hu-Lieskovan, J.D. Heidel, D.W. Bartlett, M.W. Davis, T.J. Triche, Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res. 65(19), 8984–8992 (2005). doi:10.1158/0008-5472.CAN-05-0565

    Article  CAS  Google Scholar 

  61. D.W. Bartlett, H. Su, I.J. Hildebrandt, W.A. Weber, M.E. Davis, Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multi­modality in vivo imaging. Proc. Natl. Acad. Sci. U. S. A. 104(39), 15549–15554 (2007). doi:10.1073/pnas.0707461104

    Article  CAS  Google Scholar 

  62. D.W. Bartlett, M.E. Davis, Impact of tumor-specific targeting and dosing schedule on tumor growth inhibition after intravenous administration of siRNA-containing nanoparticles. Biotechnol. Bioeng. 99(4), 975–85 (2008). doi:10.1002/bit.21668

    Article  CAS  Google Scholar 

  63. L.M. Demers, C.A. Mirkin, R.C. Mucic, R.A. Reynolds III, R.L. Letsinger, R. Elghanian, G. Viswanadham, A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal. Chem. 72(22), 5535–5541 (2000)

    Article  CAS  Google Scholar 

  64. D.A. Giljohann, D.S. Seferos, P.C. Patel, J.E. Millstone, N.L. Rosi, C.A. Mirkin, Oligo­nucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. Nano Lett. 7(12), 3818–3821 (2007)

    Article  CAS  Google Scholar 

  65. C.A. Mirkin, R.L. Letsinger, R.C. Mucic, J.J. Storhoff, A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382(6592), 607–609 (1996). doi:10.1038/382607a0

    Article  CAS  Google Scholar 

  66. I. Lebedeva, C.A. Stein, Antisense oligonucleotides: promise and reality. Annu. Rev. Pharmacol. Toxicol. 41, 403–419 (2001)

    Article  CAS  Google Scholar 

  67. G.S. Getz, C.A. Reardon, Nutrition and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 27(12), 2499–2506 (2007)

    Article  CAS  Google Scholar 

  68. R. Josi, S. Jan, Y. Wu, S. MacMahon, Global inequalities in access to cardiovascular health care. J. Am. Coll. Cardiol. 52(23), 1817–1825 (2008)

    Article  Google Scholar 

  69. A.J. Lusis, Atherosclerosis. Nature 407(6801), 233–241 (2000)

    Article  CAS  Google Scholar 

  70. L.G. Spagnoli, E. Bonanno, G. Sangiorgi, A. Mauriello, Role of inflammation in atherosclerosis. J. Nucl. Med. 48(11), 1800–1815 (2007). doi:10.2967/jnumed.107.038661

    Article  Google Scholar 

  71. W.B. Kannel, W.P. Castelli, T. Gordon, P.M. McNamara, Serum cholesterol, lipoproteins, and the risk of coronary heart disease: the Framingham study. Ann. Intern. Med. 74(1), 1–12 (1971)

    CAS  Google Scholar 

  72. W.B. Kannel, P.W.F. Wilson, An update on coronary risk factors. Med. Clin. North Am. 79(5), 951–971 (1995)

    CAS  Google Scholar 

  73. T.C. Andrews, K. Raby, J. Barry, C.L. Naimi, E. Allred, P. Ganz, A.P. Selwyn, Effect of cholesterol reduction on myocardial ischemia in patients with coronary disease. Circulation 95(2), 324–328 (1997)

    CAS  Google Scholar 

  74. C.M. Ballantyne, J.A. Herd, J.K. Dunn, P.H. Jones, J.A. Farmer, A.M. Gotto Jr., Effects of lipid lowering therapy on progression of coronary and carotid artery disease. Curr. Opin. Lipidol. 8(6), 354–361 (1997)

    Article  CAS  Google Scholar 

  75. A. Zambon, J.E. Hokanson, Lipoprotein classes and coronary disease regression. Curr. Opin. Lipidol. 9(4), 329–336 (1998)

    Article  CAS  Google Scholar 

  76. H.B. Brewer, Increasing HDL cholesterol levels. N. Engl. J. Med. 350(15), 1491–1494 (2004)

    Article  CAS  Google Scholar 

  77. E.M. Degoma, R.L. Degoma, D.J. Rader, Beyond high-density lipoprotein cholesterol levels: evaluating high-density lipoprotein function as influenced by novel therapeutic approaches. J. Am. Coll. Cardiol. 51(23), 2199–2211 (2008)

    Article  CAS  Google Scholar 

  78. T. Joy, R.A. Hegele, Is raising HDL a futile strategy for atheroprotection? Nat. Rev. Drug Discovery 7(2), 143–155 (2008)

    Article  CAS  Google Scholar 

  79. P. Conca, G. Franceschini, Synthetic HDL as a new treatment for atherosclerosis regression: has the time come? Nutr. Metab. Cardiovasc. Dis. 18(4), 329–335 (2008)

    Article  CAS  Google Scholar 

  80. A. Kontush, M.J. Chapman, Antiatherogenic small, dense HDL – guardian angel of the arterial wall? Nat. Clin. Pract. Cardiovasc. Med. 3(3), 144–153 (2006). doi:10.1038/ncpcardio0500

    Article  CAS  Google Scholar 

  81. I.M. Singh, M.H. Shishehbor, B.J. Ansell, High-density lipoprotein as a therapeutic target – A systematic review. JAMA 298(7), 786–798 (2007)

    Article  CAS  Google Scholar 

  82. G.F. Watts, P.H.R. Barrett, D.C. Chan, HDL metabolism in context: looking on the bright side. Curr. Opin. Lipidol. 19(4), 395–404 (2008)

    Article  CAS  Google Scholar 

  83. C.S. Thaxton, W.L. Daniel, D.A. Giljohann, A.D. Thomas, C.A. Mirkin, Templated spherical high density lipoprotein nanoparticles. J. Am. Chem. Soc. 131(4), 1384–1385 (2009). doi:10.1021/ja808856z

    Article  CAS  Google Scholar 

  84. Y. Klichko, M. Liong, E. Choi, S. Angelos, A.E. Nel, J.F. Stoddart, F. Tamanoi, J.I. Zink, Mesostructured silica for optical functionality, nanomachines, and drug delivery. J. Am. Ceram. Soc. 92(s1), s2–s10 (2009). doi:10.1111/j.1551-2916.2008.02722.x

    Article  CAS  Google Scholar 

  85. S. Saha, E. Johansson, A.H. Flood, H.-R. Tseng, J.I. Zink, J.F. Stoddart, A photoactive molecular triad as a nanoscale power supply for a supramolecular machine. Chemistry 11(23), 6846–6858 (2005). doi:10.1002/ chem.200500371

    Article  CAS  Google Scholar 

  86. S. Angelos, Y.W. Yang, K. Patel, J.F. Stoddart, J.I. Zink, pH-responsive supramolecular nanovalves based on cucurbit[6]uril pseudorotaxanes. Angew. Chem. Weinheim. Bergstr. Ger. 47(12), 2222–2226 (2008). doi:10.1002/anie.200705211

    CAS  Google Scholar 

  87. N.M. Khashab, M.E. Belowich, A. Trabolsi, D.C. Friedman, C. Valente, Y. Lau, H.A. Khatib, J.I. Zink, J.F. Stoddart, pH-responsive mechanised nanoparticles gated by semirotaxanes. Chem. Commun. Camb. 36, 5371–5373 (2009). doi:10.1039/B910431C

    Article  CAS  Google Scholar 

  88. K. Patel, S. Angelos, W.R. Dichtel, A. Coskun, Y.-W. Yang, J.I. Zink, J.F. Stoddart, Enzyme-responsive snap-top covered silica nanocontainers. J. Am. Chem. Soc. 130(8), 2382–2383 (2008). doi:10.1021/ja0772086

    Article  CAS  Google Scholar 

  89. S.E. Gratton, S.S. Williams, M.E. Napier, P.D. Pohlhaus, Z. Zhou, K.B. Wiles, B.W. Maynor, C. Shen, T. Olafsen, E.T. Samulski, J.M. DeSimone, he pursuit of a scalable nanofabrication platform for use in material and life science applications. Acc. Chem. Res. 41(12), 1685–1695 (2008). doi:10.1021/ar8000348

    Article  CAS  Google Scholar 

  90. L.E. Euluss, J.A. DuPont, S. Gratton, J. DeSimone, Imparting size, shape, and composition control of materials for nanomedicine. Chem. Soc. Rev. 35(11), 1095–1104 (2006). doi:10.1039/B600913C

    Article  CAS  Google Scholar 

  91. R.A. Petros, P.A. Ropp, J.M. DeSimone, Reductively labile PRINT particles for the delivery of doxorubicin to HeLa cells. J. Am. Chem. Soc. 130(15), 5008–5009 (2008)

    Article  CAS  Google Scholar 

  92. I. Elloumi-Hannachi, M. Yamato, T. Okano, Cell sheet engineering: a unique nanotechnology for scaffold-free tissue reconstruction with clinical applications in regenerative medicine. J. Intern. Med. 267(1), 54–70 (2010)

    Article  CAS  Google Scholar 

  93. T. Shimizu, H. Sekine, M. Yamato, T. Okano, Cell sheet-based myocardial tissue engineering: new hope for damaged heart rescue. Curr. Pharm. Des. 15(24), 2807–2814 (2009)

    Article  CAS  Google Scholar 

  94. S. Masuda, T. Shimizu, M. Yamato, T. Okano, Cell sheet engineering for heart tissue repair. Adv. Drug Deliv. Rev. 60, 277–285 (2008)

    Article  CAS  Google Scholar 

  95. C.S. Chen, M. Mrksich, S. Huang, G.M. Whitesides, D.E. Ingber, Micropatterned surfaces for control of cell shape, position, and function. Biotechnol. Prog. 14(3), 356–363 (1998). doi:10.1021/bp980031m

    Article  CAS  Google Scholar 

  96. J. James, E.D. Goluch, H. Hu, C. Liu, M. Mrksich, ubcellular curvature at the perimeter of micropatterned cells influences lamellipodial distribution and cell polarity. Cell Motil. Cytoskeleton 65(11), 841–852 (2008). Available online: http://www.mech.northwestern.edu/medx/web/publications/papers/196.pdf

    Article  Google Scholar 

  97. M. Mrksich, C.S. Chen, Y. Xia, L.E. Dike, D.E. Ingber, G.M. Whitesides, Controlling cell attachment on contoured surfaces with self-assembled monolayers of alkanethiolates on gold. Proc. Natl. Acad. Sci. U. S. A. 93(20), 10775–10778 (1996)

    Article  CAS  Google Scholar 

  98. M. Mrksich, L.E. Dike, J. Tien, D.E. Ingber, G.M. Whitesides, Using microcontact printing to pattern the attachment of mammalian cells to self-assembled monolayers of alkanethiolates on transparent films of gold and silver. Exp. Cell Res. 235(2), 305–313 (1997)

    Article  CAS  Google Scholar 

  99. M. Mrksich, G.M. Whitesides, Using self-assembled monolayers to understand the interactions of man-made surfaces with proteins and cells. Annu. Rev. Biophys. Biomol. Struct. 25, 55–78 (1996)

    Article  CAS  Google Scholar 

  100. S. Heydarkhan-Hagvall, C.H. Choi, J. Dunn, S. Heydarkhan, K. Schenke-Layland, W.R. MacLellan, R.E. Beygui, Influence of systematically varied nano-scale topography on cell morphology and adhesion. Cell Commun. Adhes. 14(5), 181–194 (2007)

    Article  CAS  Google Scholar 

  101. J.H. Silver, J.C. Lin, F. Lim, V.A. Tegoulia, M.K. Chaudhury, S.L. Cooper, Surface properties and hemocompatibility of alkyl-siloxane monolayers supported on silicone rubber: effect of alkyl chain length and ionic functionality. Biomaterials 20(17), 1533–1543 (1999). doi:10.1016/S0142-9612(98)00173-2

    Article  CAS  Google Scholar 

  102. A.J. Torres, L. Vasudevan, D. Holowka, B.A. Baird, Focal adhesion proteins connect IgE receptors to the cytoskeleton as revealed by micropatterned ligand arrays. Proc. Natl. Acad. Sci. U. S. A. 105(45), 17238–17244 (2008). doi:10.1073/pnas.0802138105

    Article  CAS  Google Scholar 

  103. D.W. Hobson, Commercialization of nanotechnology Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1(2), 189–202 (2009). doi:10.1002/wnan.28

    Article  Google Scholar 

  104. J. Shendure, R.D. Mitra, C. Varma, G.M. Church, Advanced sequencing technologies: methods and goals. Nat. Rev. Genet. 5(5), 335–344 (2004). doi:10.1038/nrg1325

    Article  CAS  Google Scholar 

  105. D. Gibson, G.A. Benders, C. Andrews-Pfannkoch, E.A. Denisova, H. Baden-Tillson, J. Zaveri, T.B. Stockwell, A. Brownley, D.W. Thomas, M.A. Algire, C. Merryman, L. Young, V.N. Noskov, J.I. Glass, J.C. Venter, C.A. Hutchison III, H.O. Smith, Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Sci. Signal. 319(5867), 1215–1220 (2008)

    CAS  Google Scholar 

  106. C. Noren, S. Anthony-Cahill, M. Griffith, P. Schultz, A general method for site-specific incorporation of unnatural amino acids into proteins. Science 244(4901), 182–188 (1989). doi:10.1126/science.2649980

    Article  CAS  Google Scholar 

  107. C. Gauchet, G. Labadie, C. Poulter, Regio- and chemoselective covalent immobilization of proteins through unnatural amino acids. J. Am. Chem. Soc. 128(29), 9274–9275 (2006)

    Article  CAS  Google Scholar 

  108. R. Baum, Drexler and Smalley make the case for and against ‘molecular assemblers. Chem. Eng. News 81(48), 37–42 (2003). Available online: http://pubs.acs.org/cen/coverstory/8148/8148counterpoint.html

    Google Scholar 

  109. H.F. Tibbals, Medical Nanotechnology and Nanomedicine (CRC Press, Boca Raton, 2010)

    Book  Google Scholar 

  110. F. Hu, K.W. MacRenaris, E.A. Waters, E.A. Schultz-Sikma, A.L. Eckermann, T.J. Meade, Highly dispersible, superparamagnetic magnetite nanoflowers for magnetic resonance imaging. Chem. Commun. Camb. 46(1), 73–75 (2010). doi:10.1039/b916562b

    Article  CAS  Google Scholar 

  111. R.M. Shah, N.A. Shah, M.M. Del Rosario Lim, C. Hsieh, G. Nuber, S.I. Stupp, Supra­molecular design of self-assembling nanofibers for cartilage regeneration. Proc. Natl. Acad. Sci. 107(8), 3293–3298 (2010)

    Article  CAS  Google Scholar 

  112. V.M. Tysseling-Mattiace, V. Sahni, K.L. Niece, D. Birch, C. Czeisler, M.G. Fehlings, S.I. Stupp, J.A. Kessler, Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J. Neurosci. 28(14), 3814–3823 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chad A. Mirkin .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business B.V.

About this chapter

Cite this chapter

Mirkin, C.A., Nel, A., Thaxton, C.S. (2011). Applications: Nanobiosystems, Medicine, and Health. In: Nanotechnology Research Directions for Societal Needs in 2020. Science Policy Reports, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1168-6_8

Download citation

Publish with us

Policies and ethics