Skip to main content

Numerical methods for bifurcation problems

  • Conference paper
Instabilities and Nonequilibrium Structures IX

Abstract

Most physical systems are governed by evolution equations of the general form

$$ \frac{{\partial \Psi }}{{\partial t}} = L\Psi + W(\Psi ) $$
((1))

where L is the Laplacian operator and W represents some combination of multiplicative and nonlinear terms. Some examples are:

$$ \frac{{\partial U}}{{\partial t}} = - (U\cdot\nabla )U - \nabla P + \nu {\nabla ^2}U(Navier - Stokes) $$
((2))
$$ \frac{{\partial A}}{{\partial t}} = \mu A - {\left| A \right|^2}A + {\nabla ^2}A(Ginzburg - Landau) $$
((3))
$$ - i\frac{{\partial \Psi }}{{\partial t}} = \left[ {\frac{1}{2}{\nabla ^2} + \mu - V(x)a{{\left| \Psi \right|}^2}} \right]\Psi $$
((4))

(Nonlinear Schrödinger) as well as many other systems, such as the usual Schrödinger equation, reaction-diffusion equations, and the complex Ginzburg-Landau equation. Although the physical system evolves according to the time-dependent equations (1), valuable insight may be gained by studying the closely related equations

$$ 0 = L\Psi + W(\Psi ) $$
((5))

and

$$ \lambda \psi = L\psi + DW(\Psi )\psi $$
((6))

where DW (Ψ) is the linearization or Jacobian of W evaluated at Ψ. (5) describes the steady states of (1) while (6) describes the eigenmodes of (1) about a steady state Ψ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.K. Mamun & L.S. Tuckerman, Asymmetry and Hopf bifurcation in spherical Couette flow, Phys. Fluids 7, 80 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. L.S. Tuckerman & D. Barkley, Bifurcation analysis for time-steppers, in Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems, ed. by E. Doedel & L.S. Tuckerman (Springer, New York, 2000), p. 452–466.

    Google Scholar 

  3. L.S. Tuckerman, F. Bertagnolio, O. Daube, P. Le Quéré & D. Barkley, Stokes preconditioning for the inverse Arnoldi method, in Continuation Methods for Fluid Dynamics (Notes on Numerical Fluid Mechanics, Vol. 74), pp. 241–255, ed. by D. Henry & A. Bergeon (Vieweg, 2000).

    Google Scholar 

  4. E.P. Gross, Nuovo Cimento 20 454 (1961).

    Article  MATH  Google Scholar 

  5. L.P. Pitaevskii, Vortex lines in an imperfect Bose gas, Zh. Eksp. Teor. Fiz. 40, 646 (1961) [Sov. Phys. JETP 13, 451 (1961)].

    Google Scholar 

  6. S. Bose, Plancks Gesetz und Lichtquantenhypothese, Z. Phys. 26, 178 (1924).

    Article  ADS  MATH  Google Scholar 

  7. A. Einstein, Quantentheorie des einatomigen idealen gases: Zweite Abhandlung, Sitzungber. Preuss. Akad. Wiss. 1925, 3 (1925).

    Google Scholar 

  8. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman & E.A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor, Science 269, 198 (1995).

    Article  ADS  Google Scholar 

  9. K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn & W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett. 75, 3969 (1995).

    Article  ADS  Google Scholar 

  10. C.C. Bradley, C.A. Sackett, J.J. Tollett & R.G. Hulet, Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions, Phys. Rev. Lett. 75, 1687 (1995).

    Article  ADS  Google Scholar 

  11. [11] P.A. Ruprecht, M.J. Holland, K. Burnett, & M. Edwards, Time-dependent solution of the nonlinear Scluödinger equation for Bose-condensed trapped neutral atoms, Phys. Rev. A 51, 4704 (1995).

    Article  ADS  Google Scholar 

  12. M. Ueda & A.J. Leggett, Macroscopic quantum tenneling of a Bose-Einstein condensate with attractive interaction, Phys. Rev. Lett. 80, 1576 (1998).

    Article  ADS  Google Scholar 

  13. C. Huepe, S. Metens, G. Dewel, P. Borckmans & M.E. Brachet, Decay rates in attractive Bose-Einstein condensates, Phys, Rev. Lett. 82, 1616 (1999).

    Article  ADS  Google Scholar 

  14. [14] L.N. Trefethen, N.M. Nachtigal & S.C. Reddy, How fast are nonsymmetric matrix iterations?, SIAM J. Matrix Anal. Appl, 13, 778 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  15. H.A. van der Vorst, Bi-CGSTAB: A fast and srnoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 13, 631 (1992).

    Article  MATH  Google Scholar 

  16. R.B. Lehoucq, D.C Sorensen & C. Yang, ARPACK User’s Guide, Philadelphia, (SIAM, Philadelphia, 1998).

    Book  Google Scholar 

  17. [17] J.L. Roberts, N.R. Claussen, S.L. Cornish, E.A. Donley, E.A. Cornell & C.E. Wieman, Controlled collapse of a Bose-Einstein condensate, Phys. Rev. Lett. 86, 4211 (2001).

    Article  ADS  Google Scholar 

  18. A. Gammal, T. Frederico & L. Tomio, Critical number of atoms for attractive Bose-Einstein condensates with cylindrically symmetrical traps, Phys. Rev. A 64 055602 (2001).

    Article  ADS  Google Scholar 

  19. C. Huepe, L.S. Tuckerman, S. Metens & M.E. Brachet, Decay rates in non-isotropic attractive Bose-Einstein condensates, to be submitted to Phys, Rev. A (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Tuckerman, L.S., Huepe, C., Brachet, ME. (2004). Numerical methods for bifurcation problems. In: Descalzi, O., Martínez, J., Rica, S. (eds) Instabilities and Nonequilibrium Structures IX. Nonlinear Phenomena and Complex Systems, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0991-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0991-1_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3760-0

  • Online ISBN: 978-94-007-0991-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics