Skip to main content

Propagation of acoustic waves in elastic materials with randomly distributed dislocations

  • Conference paper
Instabilities and Nonequilibrium Structures IX

Part of the book series: Nonlinear Phenomena and Complex Systems ((NOPH,volume 9))

  • 226 Accesses

Abstract

A number of phenomena, related to plastic deformation, the brittle to ductile transition in materials, and continuous melting, are intimetely related to dislocation behaviour. Yet, the amount of quantitative experimental information on the physics of dislocations is surprisingly small. It is proposed that acoustic waves may be used as an effective non intrusive probe of the properties of dislocations. To this end, a precise understanding of the wave-dislocation interaction must be achieved. A formalism is derived, and, in two dimensions, an expression for the scattering amplitude of an anti-plane shear wave by a screw dislocation is worked out, as are expressions for the effective wave velocity and attenuation length for the coherent portion of the same wave, travelling through a random array of screw dislocations, using a multiple scattering formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. P. Hirth and J. Lothe, Theory of Dislocations, 2nd Ed. (Wiley, 1982).

    Google Scholar 

  2. For a review of these issues, see N. M. Ghoniem, “Computational Methods For Mesoscopic, Inhomogeneous Plastic Deformation”, in Materials Instabilities edited by J. Martínez-Mardoues, D. Walgraef and C. Wörner (World Scientific, 2000). For the current theory of plasticity see J. Lubliner, Plasticity Theory (Macmillan, New York, 1990); R. Hill, The Mathematical Theory of Plasticity (Clarendon Press, Oxford, 1960).

    Google Scholar 

  3. S. G. Roberts, “Modeling Brittle-Ductile Transitions” in Multiscale Phenomena in Plasticity: from Experiments to Phenomenology, Modeling and Materials Engineering, edited by J. Lepinoux, D. Maziere and V. Pontikis (Kluwer, 2000).

    Google Scholar 

  4. See W. D. Callister, “Materials Science and Engineering, An Introduction”, (Wiley, 2000).

    Google Scholar 

  5. [5] J. R. Rice and R. Thomson, Phil. Mag. 29, 73 (1973); L. L. Fischer and G. E. Beltz, J. Mech. Phys. Solids 49, 635 (2001) and references therein.

    Article  ADS  Google Scholar 

  6. S. J. Zhou et al., Phys. Rev. Lett. 78, 479, (1997).

    Article  ADS  Google Scholar 

  7. [7] V.V. Waghrnare, E. Kaxiras and M.S. Duesbery, Phys. Stat. Soli. B 217, 545 (2000); A. Valladares, J. A. White and A. P. Sutton, Phys. Rev. Lett. 81, 4903 (1998).

    Article  ADS  Google Scholar 

  8. J. G. Dash, Rev. Mod. Phys. 71, 1737 (1999).

    Article  ADS  Google Scholar 

  9. F. A. Lindemann, Z. Phys. 11, 609 (1910); M. Born, J. Chem Phys. 7, 591 (1939); W. Shockley, in L’Etat Solide, Proceedings of the ge Conseil de Physique, ed. by R. Stoops (Institut International de Physique, Solvay, Brussels, 1952).

    MATH  Google Scholar 

  10. J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973); D. R. Nelson and B. I. Halperin, Phys. Rev. B 21, 5312 (1980); A. P. Young, Phys. Rev. B 19, 1855 (1979).

    Article  ADS  Google Scholar 

  11. R. Arias and F. Lund, Defect Diff. Forum 150-151, 66 (1997); F. Lund Phys. Rev. Lett. 69, 3084 (1992). For a different point of view see L. Burakovsky and D. L. Preston, Phys. Rev. E 63, 067402 (2001).

    Google Scholar 

  12. K. Chen, T. Kaplan and M. Mostoller, Phys. Rev. Lett. 74, 4019 (1995); results compatible with the existence of an hexatic phase have been observed in colloidal suspensions by R. E. Kusner, J. A. Mann and A. J. Dahm, Phys. Rev. B 51, 5746 (1995).

    Article  ADS  Google Scholar 

  13. Z. H. Jin et al. Phys. Rev. Lett., 87, 055703–1 (2001); J. Daeges, H. Gleiter and J. H. Perepezko, Phys. Lett. A 119, 79 (1986); L. A. Stern, S. H. Kirby and W. B. Durham, Science 273, 1843 (1996).

    Article  ADS  Google Scholar 

  14. K. Aki and P. G. Richards, Quantitative Seismology. Theory and Methods, (Freeman, 1980).

    Google Scholar 

  15. M.-C. Miguel et al., Nature 410, 667 (2001).

    Article  ADS  Google Scholar 

  16. See P. Feltham, Philos. Mag. A 49, 727 (1984) and references therein. The string model was first introduced phenomenologically by J. Koehler in Imperfections in Nearly Perfect Crystals, edited by R. Smoluchowsky (Wiley, 1952).

    Article  ADS  Google Scholar 

  17. F. Lund, J. Mater. Res. 3, 280–297 (1988).

    Article  ADS  Google Scholar 

  18. L.D. Landau and E. M. Lifshitz, Theory of Elasticity, Butterworth-Heinemann, Third Edition (1986).

    Google Scholar 

  19. T. Mura, Phil. Mag. 8, 843 (1988).

    Article  ADS  Google Scholar 

  20. A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE/IOP, 1997).

    Google Scholar 

  21. F. Lund, “Sound Vortex Interaction in infinite Media”, to appear in Sound — Flow Interaction, edited by Y. Auregan, A. Maurel, V. Pagncux and J.F. Pinton (Lectures Notes in Physics, Springer-Verlag); M. BafIico, D. Boyer and F. Lund, Phys. Rev. Lett., 80 2590 (1998). D. Boyer, M. Baffico and F. Lund, Phys. Fluids., 11 3819 (1999). D. Boyer and F. Lund, Phys. Fluids., 11 3829 (1999). D. Boyer and F. Lund, Phys. Rev. E, 61 1491 (2000).

    Google Scholar 

  22. A. Tourin, M. Fink and A. Derode, Waves Random Media 10 R31 (2000); B. Velicky, Sound in granular matter: a case of wave propagation in random media., http://parthe.lpthe.jussieu.fr/DEA/velicky.html (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. L. L. Foldy, Phys. Rev. 67, 107 (1945); M. Lax, Rev. Mod. Phys. 23 287 (1951); M. Lax, Phys. Rev. 85, 621 (1952). V. Twersky, Proc. Am. Math. Soc. Symp. Stochas. Proc. Math. Phys. Eng., 16 84 (1964).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. A. Migliori and J. L. Sarrao, Resonant Ultrasound Spectroscopy, Applications to Physics, Materials Measurements, and Nondestructive Evaluation (Wiley, 1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Maurel, A., Mercier, JF., Lund, F. (2004). Propagation of acoustic waves in elastic materials with randomly distributed dislocations. In: Descalzi, O., Martínez, J., Rica, S. (eds) Instabilities and Nonequilibrium Structures IX. Nonlinear Phenomena and Complex Systems, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0991-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0991-1_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3760-0

  • Online ISBN: 978-94-007-0991-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics