Skip to main content

Cyclic Hydrocarbon Decomposition to Carbon Nanoparticles via Spark Discharge

  • Conference paper
  • First Online:
Carbon Nanomaterials in Clean Energy Hydrogen Systems - II

Part of the book series: NATO Science for Peace and Security Series C: Environmental Security ((NAPSC,volume 2))

  • 1174 Accesses

Abstract

A method is proposed for decomposition of cyclic hydrocarbons using spark energy for this purpose. The electrical discharge is between electrodes separated at 0.5 mm one from another. An 8,000 V transformer is employed as spark source operating by 50 Hz. Hydrocarbons are mixed with water in the proportion 1/1 and the process is carried out in an ultrasonic tank with the aim to reduce deposition on the electrode surfaces. Graphenes, nanohorns, carbon bands, and carbon cones of different spatial angle and carbon nanobeams have been obtained. The catalyst (Fe in the considered case) influence has been studied through adding ferrocene to the hydrocarbon-water mixture (proportion 1/1/0.2 wt%) during synthesis. The presence of Fe stimulates particle growth but does not change particle type. The synthesized nanohorns and spheres show tendency to order in parallel one to another due to the high electrical field between the spark discharges. The carbon beams are in agglomerates with a direction almost radial to the agglomerate centre.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sano N (2005) Separated syntheses of Gd-hybridized single-wall carbon nanohorns, single-wall nanotubes and multi-wall nanostructures by arc discharge in water with support of gas injection, Letters to the Editor. Carbon 43:447–453

    Article  Google Scholar 

  2. Sano N, Nakano J, Kanki T (2004) Synthesis of single-walled carbon nanotubes with nanohorns by arc in liquid nitrogen, Letters to the Editor. Carbon 42:667–691

    Article  Google Scholar 

  3. Ishigami M, Cumings J, Zettl A, Chen S (2000) A simple method for the continuous production of carbon nanotubes. J Chem Phys Lett 319:457–459

    Article  CAS  Google Scholar 

  4. Wang H, Chhowalla M, Sano N, Jia S, Amaratunga GAJ (2004) Large-scale synthesis of single-walled carbon nanohorns by submerged arc. Nanotechnol 15:546–550

    Article  CAS  Google Scholar 

  5. Sano N (2004) Low-cost synthesis of single-walled carbon nanohorns using the arc in water method with gas injection. J Phys D Appl Phys 37(8):L17–L20

    Article  CAS  Google Scholar 

  6. Lange H, Sioda M, Huczko A, Zhu YQ, Kroto HW, Walton DRM (2003) Nanocarbon production by arc discharge in water. Carbon 41:1617–1623

    Article  CAS  Google Scholar 

  7. Hsin YL, Hwang KC, Chen F-R, Kai J-J (2001) Production and in-situ metal filling of carbon nanotubes in water. Adv Mater 13(11):830–833

    Article  CAS  Google Scholar 

  8. Yamaguchi T, Bandow S, Iijima S (2004) Synthesis of carbon nanohorn particles by simple pulsed arc discharge ignited between pre-heated carbon rods. Chem Phys Lett 389:181–185

    Article  CAS  Google Scholar 

  9. Adelene NJ, Yudasaka M, Bandow S, Kokai F, Takahashi K, Iijima S (2000) Adsorption and catalytic properties of single-wall carbon nanohorns. Chem Phys Lett 328:381–386

    Article  Google Scholar 

  10. Ihara S, Itoh S, Akagi K, Tamura R, Tsukada M (1996) Structure of polygonal defects in graphitic carbon sheets. Phys Rev B 54(20):14713–14719

    Article  CAS  Google Scholar 

  11. Ge M, Sattler K (1994) Observation of fullerene cones. Chem Phys Lett 220:192–196

    Article  CAS  Google Scholar 

  12. Krishnan A, Dujardin E, Treacy NMJ, Hugdahl J, Lynum S, Ebbesen TW (1997) Graphitic cones and the nucleation of curved carbon surfaces. Nature 388:451–454

    Article  CAS  Google Scholar 

  13. Kvaerner’s patent No. PCT/NO98/00093 for production of micro domain particles by use of a plasma process

    Google Scholar 

  14. Burke PJ (2004) AC performance of nanoelectronics: towards a ballistic THz nanotube transistor. Solid State Electron 48:1981–1986

    Article  CAS  Google Scholar 

  15. Bachtold A, Hadley P, Nakanishi T, Dekker C (2001) Logic circuits with carbon nanotube transistors. Science 294(5545):1317–1320

    Article  CAS  Google Scholar 

  16. Mateiu R, Davis ZJ, Madsen DN, Molhave K, Boggild P, Rassmusen A-M, Brorson M, Jacobsen CJH, Boisen A (2004) An approach to a multi-walled carbon nanotube based mass sensor. Microelectron Eng 73–74:670–674

    Article  Google Scholar 

  17. Guo L, Wang R, Xu H, Liang J (2005) Why can the carbon nanotube tips increase resolution and quality of image in biological systems? Physica E 27:240–244

    Article  CAS  Google Scholar 

  18. Liu L, Zhang Y (2004) Multi-wall carbon nanotube as a new infrared detected material. Sensors Actuators A 11:6394–6397

    Google Scholar 

  19. Ionescu R, Espinosa EH, Sotter E, Llobet E, Vilanova X, Correig X, Felten A, Bittencourt C, Van Lier G, Charlier J-C, Pireaux JJ (2006) Oxygen functionalisation of MWNT and their use as gas sensitive thick-film layers. Sensors Actuators B 113:36–46

    Article  Google Scholar 

  20. Sayago I, Terrado E, Lafuente E, Horrillo MC, Maser WK, Benito AM, Navarro R, Urriolabeitia EP, Martinez MT, Gutierrez J (2005) Hydrogen sensors based on carbon nanotubes thin films. Synth Met 148:15–19

    Article  CAS  Google Scholar 

  21. Baughman RH, Cui Ch, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, De Rossi D, Rinzler AG, Jaschinski O, Roth S, Kertesz M (1999) Carbon nanotube actuators. Science 284(5418):1340–1344

    Article  CAS  Google Scholar 

  22. Portet C, Taberna PL, Simon P, Flahaut E (2005) Influence of carbon nanotubes addition on carbon-carbon supercapacitor performances in organic electrolyte. J Power Sources 139:371–378

    Article  CAS  Google Scholar 

  23. Qin X, Durbach S, Wu GT (2004) Electrochemical characterization on RuO2 .x H2O/carbon nanotubes composite electrodes for high energy density supercapacitors, Letters to the Editor. Carbon 42:423–460

    Article  Google Scholar 

  24. Ye J-S, Liu X, Cui HF, Zhang W-D, Sheu F-S, Lim TM (2005) Electrochemical oxidation of multi-walled carbon nanotubes and its application to electrochemical double layer capacitors. Electrochem Commun 7:7249–7255

    Google Scholar 

  25. Chen Q-L, Xue K-H, Shen W, Tao FF, Yin S-Y, Xu W (2004) Fabrication and electrochemical properties of carbon nanotube array electrode for supercapacitors. Electrochim Acta 49:4157–4161

    Article  CAS  Google Scholar 

  26. Fursey GN, Novikov DV, Dyuzhev GA, Kotcheryzhenkov AV, Vassiliev PO (2003) The field emission from carbon nanotubes. Appl Surf Sci 215:135–140

    Article  CAS  Google Scholar 

  27. Wang X, Zhi L, Mullen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8(1):323–327

    Article  CAS  Google Scholar 

  28. Geim AK, Novoselov KS (2007) The rise of grapheme. Nature 6:183–191

    Article  CAS  Google Scholar 

  29. Nomura K, MacDonald AH (2006) Quantum Hall ferromagnetism in graphene. Phys Rev Lett 96:256602.1–256602.4

    Article  Google Scholar 

  30. Jimenez-Soto JM, Cardenas S, Valcarcel M (2009) Evaluation of carbon nanocones/disks as sorbent material for solid-phase extraction. J Chromatogr A 1216:5626–5633

    Article  CAS  Google Scholar 

  31. Qu CQ, Qiao L, Wanga C, Yu SS, Jiang Q, Zheng WT (2010) Density functional theory study of the electronic and field emission properties of nitrogen- and boron-doped carbon nanocones. Phys Lett A 374:782–787

    Article  CAS  Google Scholar 

  32. Shenderova OA, Lawson BL, Areshkin D, Brenner DW (2001) Predicted structure and electronic properties of individual carbon nanocones and nanostructures assembled from nanocones. Nanotechnol 12:191–197

    Article  CAS  Google Scholar 

  33. Harris PJF, Tsang SC, Claridge JB, Green MLM (1994) High-resolution electron microscopy studies of a microporous carbon produced by arc-evaporation. J Chem Soc Faraday Trans 90:2799–2802

    Article  CAS  Google Scholar 

  34. Iijima S, Yudasaka M, Yamada R, Bandow S, Suenage K, Kokai F, Takahashi K (1999) Nano-aggregates of single-walled graphitic carbon nano-horns. Chem Phys Lett 309:165–170

    Article  CAS  Google Scholar 

  35. Murata K, Kaneko K, Kanoh H, Kasuya D, Takahashi K, Kokai F, Yudasaka M, Iijima S (2002) Adsorption mechanism of supercritical hydrogen in internal and interstitial nanospaces of single-wall carbon nanohorn assembly. J Phys Chem B 106:11132–11138

    Article  CAS  Google Scholar 

  36. Tanaka H, Kanoh H, El-Merraoui M, Steele WA, Yudasaka M, Iijima S, Kaneko K (2004) Quantum effects on hydrogen adsorption in internal nanospaces of single-wall carbon nanohorns. J Phys Chem B 108:17457–17465

    Article  CAS  Google Scholar 

  37. Anil Kumar AV, Jobic H, Bhatia SK (2006) Quantum effects on adsorption and diffusion of hydrogen and deuterium in microporous materials. J Phys Chem B 110:16666–16671

    Article  Google Scholar 

  38. Wang Q, Johnson JK, Broughton JQ (1997) Path integral grand canonical Monte Carlo. J Chem Phys 107:5108–5118

    Article  CAS  Google Scholar 

  39. Tverdal X, Yu M, Raaen S, Helgesen G, Knudsen KD (2008) Hydrogen adsorption on carbon nanocone material studied by thermal desorption and photoemission. Appl Surf Sci 255:1906–1910

    Article  Google Scholar 

  40. Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379

    Article  CAS  Google Scholar 

  41. Bekyarova E, Kaneko K, Kasuya D, Murata K, Yudasaka M, Iijima S (2002) Oxidation and porosity evaluation of budlike single-wall carbon nanohorn aggregates. Langmuir 18:4138–4141

    Article  CAS  Google Scholar 

  42. Maeland et al. (2001) US patent No. 6,290,753, B1, Hydrogen storage in carbon material

    Google Scholar 

  43. Heiberg-Andersen H, Skjeltorp AT, Sattler K (2008) Carbon nanocones: a variety of non-crystalline graphite. J Non Cryst Solid 354:5247–5249

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work has been supported by the Bulgarian Science Foundation (contract no DOO2-241/18.12.2008) which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Konstantinova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Konstantinova, M., Koprinarov, N. (2011). Cyclic Hydrocarbon Decomposition to Carbon Nanoparticles via Spark Discharge. In: Zaginaichenko, S., Schur, D., Skorokhod, V., Veziroglu, A., İbrahimoğlu, B. (eds) Carbon Nanomaterials in Clean Energy Hydrogen Systems - II. NATO Science for Peace and Security Series C: Environmental Security, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0899-0_9

Download citation

Publish with us

Policies and ethics