Skip to main content

Superoxide and Hydroxyl Radical Chemistry in Aqueous Solution

  • Chapter
Active Oxygen in Chemistry

Abstract

This chapter reviews some of the fundamental physical and chemical properties of the OH/O- and HO2/O- 2 radicals in aqueous solutions, their formation by chemical and physical methods, and their reactivity with some organic compounds and metal ions/metal complexes. Whereas the OH radical is the strongest oxidant of the oxy-radicals, the HO2/O- 2 species are not very reactive in the absence of metal catalysts. Their contrasting properties will be illustrated using Cu, Fe, and Mn metal ions/complexes and certain specific organic compounds such as ascorbic acid, a water-soluble α-tocopherol analog (Trolox) and some amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, G. E., Boag, J. W., and Michael, B. D. (1966) Transient Species Produced in Irradiated Water and Aqueous Solutions Containing Oxygen. Proc. Roy. Soc., 5380–5385.

    Google Scholar 

  • Armstrong, R. C., and Swallow, A. J. (1969) Pulse- and Gamma Radiolysis of Aqueous Solutions of Tryptophan. Rad. Res., 40, 563–579.

    CAS  Google Scholar 

  • Arudi, R. L., Sutherland, M. W., and Bielski, B. H. J. (1983) Reaction of HO2/O-2 with α-Tocopherol in Ethanolic Solutions, in Oxy Radicals and Their Scavenger Systems, Vol. I, G. Cohen and R.A. Greenwald, Eds.), Elsevier Science Publishers, Amsterdam, pp. 26–31.

    Google Scholar 

  • Baral, S., Lume-Pereira, C., Janata, C., and Henglein, A. (1986) Chemistry of Colloidal Manganese Oxides 3. Formation in the Reaction of Hydroxyl Radical with Mn2+ ions. J. Phys. Chem., 90, 6025–6028.

    CAS  Google Scholar 

  • Barb, W. G., Baxendale, J. H., George, P., and Hargrave, K. R. (1951a) Reactions of Ferrous and Ferric Ion with Hydrogen Peroxide. Part I: The Ferrous Ion Reaction. Trans. Faraday Soc., 47, 462–500.

    CAS  Google Scholar 

  • Barb, W. G., Baxendale, J. H., George, P., and Hargrave, K. R. (1951b) Reactions of Ferrous and Ferric Ion with Hydrogen Peroxide. Part II: The Ferric Ion Reaction. Trans. Faraday Soc., 47, 591–612.

    CAS  Google Scholar 

  • Barton, J. P., and Packer, J. E. (1970) The Radiolysis of Oxygenated Cysteine Solutions at Neutral pH. The Role of RSSR and O2”. Int. J. Radiat. Phys. Chem., 2, 159–166.

    CAS  Google Scholar 

  • Baxendale, J. H., and Wilson, J. A. (1957) Photolysis of Hydrogen Peroxide at High Light Intensities. Trans. Faraday Soc., 53, 344–356.

    CAS  Google Scholar 

  • Baxendale, J. H. (1962) The Flash Photolysis of Water and Aqueous Solutions. Rad. Res., 312–326.

    Google Scholar 

  • Berdnikov, V. M. (1973) Mechanism of a Hydroxyl Radical Interaction with Ions of Variable Valence. Russ. J. Phys. Chem., 47, 1547–1558.

    Google Scholar 

  • Bielski, B. H. J., and Gebicki, J. M. (1967) Atlas of Electron Spin Resonance Spectra, Academic Press, New York, pp. 292–295, 419, and 643.

    Google Scholar 

  • Bielski, B. H. J., and Chan, P. C. (1977) Enzyme Catalyzed Chain Oxidation of Nicotinamide Adenine Dinucleotide by Superoxide Radicals, in Superoxide and Superoxide Dismutase (A. M. Michelson, J. M. McCord, and I. Fridovich, Eds.), Academic Press, New York, pp. 409–416.

    Google Scholar 

  • Bielski, B. H. J., and Shiue, G. G. (1979) Reaction Rates of Superoxide Radicals with the Essential Amino Acids, Oxygen Free Radicals and Tissue Damage, Ciba Foundation Symposium 65 (new series). Excerpta Medica, pp. 43–56.

    Google Scholar 

  • Bielski, B. H. J., and Gebicki, J. M. (1982) Generation of Superoxide Radical by Photolysis of Oxygenated Ethanol Solutions. J. Am. Chem. Soc., 104, 796–798.

    CAS  Google Scholar 

  • Bielski, B. H. J. (1983) Evaluation of the Reactivity of HO2/O-2 with Compounds of Biological Interest, Oxy Radicals and Their Scavenger System, Vol. 1, Molecular Aspects (G. Cohen and R. A. Greenwald, Eds.), Elsevier Science Publishers, Amsterdam, pp. 1–7.

    Google Scholar 

  • Bielski, B. H. J., Arudi, R. L., and Sutherland, M. W. (1983) A Study of Reactivity of HO2/O-2 with Unsaturated Fatty Acids. J. Biol. Chem., 258 4759–4761.

    CAS  Google Scholar 

  • Bielski, B. H. J. (1985) Fast Kinetic Studies of Dioxygen-Derived Species and Their Metal Complexes. Phil. Trans. R. Soc. Lond., B311, 473–482.

    Google Scholar 

  • Bielski, B. H. J., and Cabelli, D. E. (1986) The Role of Transition Metals in Oxy-Radical Induced Oxidation Processes in Biological Systems, Superoxide and Superoxide Dismutase in Chemistry, Biology and Medicine (G. Rotilio, Ed.), Elsevier Science Publishers, Amsterdam, pp. 3–8.

    Google Scholar 

  • Bielski, B. H. J., Cabelli, D. E., Arudi, R., and Ross, A. B. (1985) Reactivity of HO2/O-2 Radicals in Aqueous Solutions. J. Phys. Chem. Ref. Data, 14, 1041–1100.

    CAS  Google Scholar 

  • Bielski, B. H. J. (1993) A Pulse Radiolysis Study of the Reaction of Ozone with Cl-2 in Aqueous Solutions. Rad. Phys. Chem., 41, 527–30.

    CAS  Google Scholar 

  • Bhattacharyya, S. N., and Kundu, K. P. (1971) The Radiation Chemistry of Aqueous Solutions of Ferric Emylenediaminetetraacetate. Int. J. Radi. Phys. Chem., 3, 1–10.

    CAS  Google Scholar 

  • Bisby, R. H., Ahmed, S., and Cundall, R. B. (1984) Repair of Amino Acid Radicals by a Vitamin E Analogue. Biochem. Biophys. Res. Commun., 119, 245–251.

    CAS  Google Scholar 

  • Borg, D. C., Schaich, K. M., and Forman, A. (1984) Autooxidative Cytotoxicity: Is There Metal-Independent Formation of Hydroxyl Radicals? Are There “Crypto-Hydroxyl” Radicals?, Oxygen Radicals in Chemistry and Biology (W. Bors, M. Saran, and D. Tait, Eds.), Walter de Gruyter, Berlin, pp. 123–129.

    Google Scholar 

  • Boyle, J. W., Ghormley, J. A., Hochanadel, C. J., and Riley, J. F. (1969) Production of Hydrated Electrons by Flash Photolysis of Liquid Water with Light in the First Continuum. J. Phys. Chem., 73, 2886–2890.

    CAS  Google Scholar 

  • Brigelius, R., Spoettl, R., Bors, W., Lengfelder, E, Saran, M., and Weser, U. (1974) Superoxide Dismutase Activity of Low Molecular Weight Cu2+-Chelates Studied by Pulse Radiolysis. FEBS Lett, 47, 72–75.

    CAS  Google Scholar 

  • Buettner, G. R. (1990) Use of Ascorbate as Test for Catalytic Metals in Simple Buffers, in Methods in Enzymology, Vol. 186, (L. Packer, and A. N. Glazer, Eds.), Academic Press Inc. New York, pp. 125–127.

    Google Scholar 

  • Bull, C., McClune, G. J., and Fee, J. A. (1983) The mechanism of Fe-EDTA Catalyzed Superoxide Dismutation. J. Am. Chem. Soc., 105, 5290–5300.

    CAS  Google Scholar 

  • Buxton, G. V. (1969) Pulse Radiolysis of Aqueous Solutions. Some Rates of Reaction of OH and O- and pH Dependence of the Yield of O-3. Trans. Faraday Soc., 65, 2150–2158.

    CAS  Google Scholar 

  • Buxton, G. V., and Sellers, R. M. (1977) The Radiation Chemistry of Metal Ions in Aqueous Solution. Coord. Chem. Rev., 22, 195–274.

    CAS  Google Scholar 

  • Buxton, G. V., Greenstock, C. L., Helman, W. P., and Ross, A. B. (1988) Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (OH/O-) in Aqueous Solutions. J. Phys. Chem. Ref. Data, 17, 513–886.

    CAS  Google Scholar 

  • Cabelli, D. E., and Bielski, B. H. J. (1983) Kinetics and Mechanism for the Oxidation of Ascorbic Acid/Ascorbate by HO2/O-2 Radicals. A Pulse Radiolysis and Stopped-Flow Photolysis Study. J. Phys. Chem., 87, 1809–1812.

    CAS  Google Scholar 

  • Cabelli, D. E., and Bielski, B. H. J. (1984a) Pulse Radiolysis Study of the Kinetics and Mechanisms of the Reactions Between Mn(II) Complexes and HO2/O-2 Radicals. I. Sulfate, Formate and Pyrophosphate. J. Phys. Chem., 88, 3111–3115.

    CAS  Google Scholar 

  • Cabelli, D. E., and Bielski, B. H. J. (1984b) Pulse Radiolysis Study of the Kinetics and Mechanisms of the Reactions Between Mn(II) Complexes and HO2/O-2 Radicals. H. The Phosphate Complex and an Overview. J. Phys. Chem., 88, 6291–6294.

    CAS  Google Scholar 

  • Cabelli, D. E., and Bielski, B. H. J. (1986) Studies of the Reactivity of Trolox with Mn3+/Fe3+ Complexes by Pulse Radiolysis. J. Free Rad. Biol Med., 2, 71–75.

    CAS  Google Scholar 

  • Cabelli, D. E., Bielski, B. H. J., and Holcman, J. (1987) The Interaction Between Copper(II)—Arginine Complexes and HO2/O-2 Radicals. J. Am. Chem. Soc., 109, 3665–3669.

    CAS  Google Scholar 

  • Cabelli, D. E., Rush, J. D., Thomas, M. J., and Bielski, B. H. J. (1989) Kinetics of the Free Radical Induced Reduction of Fe(m)DTPA to Fe(II)(DTPA). A Pulse Radiolysis Study. J. Phys. Chem., 93, 3579–3586.

    CAS  Google Scholar 

  • Cadenas, E., Merenyi, G., and Lind, J. (1989) Pulse Radiolysis Study on the Reactivity of Trolox C Phenoxyl Radical with Superoxide Anion. FEBS Lett., 253, 235–238.

    CAS  Google Scholar 

  • Cudina, I., and Josimovic, L. (1987) The Effect of Oxygen on the Radiolysis of Tyrosine in Aqueous Solutions. Rad. Res., 109, 206–215.

    CAS  Google Scholar 

  • Curnutte, J. T, Karnovsky, M. L., and Babior, B. H. (1976) Manganese-Dependent NADPH Oxidation by Granulocyte Particles. J. Clin. Invest. 57, 1059–1067.

    CAS  Google Scholar 

  • Czapski, G. (1971) Radiation Chemistry of Oxygenated Aqueous Solutions. Ann. Rev. Phys. Chem., 22, 171–208.

    CAS  Google Scholar 

  • Czapski, G., Aronovitch, J., Samuni, A., and Chevion, M. (1983) Oxy Radicals and Their Scavenger Systems, Vol. 1 (G. Cohen and R. A. Greenwald, Eds.), Elsevier Science Publishers, New York, pp. 111–115.

    Google Scholar 

  • Czapski, G., and Goldstein, S. (1986) The SOD Activity Versus Toxicity of Ternary Complexes of Some Copper Complexes with DNA, in Superoxide and Superoxide Dismutase in Chemistry, Biology and Medicine (G. Rotilio, Ed.), Elsevier Scientific Publishers, Amsterdam, pp. 67–68.

    Google Scholar 

  • Czapski, G., and Bielski, B. H. J. (1992) Absorption Spectra of the OH and O-Radicals in Aqueous Solutions. Rad. Phys. Chem., 41, 503–505.

    Google Scholar 

  • Davies, M. J., Form, L. G., and Willson, R. L. (1988) Vitamin E Analogue Trolox c. ESR and Pulse-Radiolysis Studies of Free-Radical Reactions. Biochem. J., 255, 513–522.

    CAS  Google Scholar 

  • Deeble, D. J., Parsons, B. J., Phillips, G. O., Schuchman, H.-P, and von Sonntag, C. (1988) Superoxide Radical Reactions in Aqueous Solutions of Pyragallol and n-Propyl Gallate: The Involvement of Phenoxyl Radicals. A Pulse Radiolysis Study. Int. J. Rad. Biol., 255, 513–522.

    Google Scholar 

  • Dimitrijevic, N. M., and Micic, O. I. (1982) Pulse-Radiolytic Investigation of the Oxidation of Fe(II) and Fe(III) Complexes with 2,2′-bipyridine. J. Chem. Soc. Dalton, 1953–1957.

    Google Scholar 

  • Dixon, W. T., and Norman, R. O. C. (1962) Free Radicals Formed During the Oxidation and Reduction of Peroxides. Nature, 1969, 891–892.

    Google Scholar 

  • Eiben, K., and Fessenden, R. W. (1971) Electron Spin Resonance Studies of Transient Radicals in Aqueous Solutions. J. Phys. Chem., 75, 1186–1201.

    Google Scholar 

  • Elliot, A. J., and Simsons, A. S. (1984) Rate Constants for Reactions of Hydroxyl Radicals as a Function of Temperature. Rad. Phys. Chem., 24, 229–231.

    CAS  Google Scholar 

  • El’piner, I. E. (1964) Ultrasound, Physical Chemistry and Biological Effects, Consultants Bureau, New York.

    Google Scholar 

  • Eyer, P., and Lengfelder, E. (1984) Radical Formation During Autoxidation of 4-Dimethylaminophenol and Some Properties of the Reaction Products. Biochem. Pharmacol, 33, 1005–1013.

    CAS  Google Scholar 

  • Fenton, H. J. H., and Jackson, H. (1899) The Oxidation of Polyhydric Alcohols in Presence of Iron. J. Chem. Soc. (London), 75, 1–11.

    CAS  Google Scholar 

  • Fessenden, R. W., and Verma, N. C. (1978) A Time-Resolved Electron Spin Resonance Study of the Oxidation of Ascorbic Acid by Hydroxyl Radical. Biophys. J., 24, 93–101.

    CAS  Google Scholar 

  • Fielden, E. M., Roberts, P. B., Bray, R. C., Lowe, D. J., Mautner, G. N., Rotilio, G., and Calabrese, L. (1974) The Mechanism of Action of Superoxide Dismutase from Pulse Radiolysis and Electron Paramagnetic Resonance. Evidence That Only Half the Active Sites Function in Catalysis. Biochem. J., 139, 49–60.

    CAS  Google Scholar 

  • Finkelstein, E., Rosen, G. M., and Rauchman, E. J. (1980) Spin Trapping of Superoxide and Hydroxyl Radical: Practical Aspects. Arch. Biochem. Biophys., 220, 1–16.

    Google Scholar 

  • Florence, T. M. (1984) The Production of Hydroxyl Radical from Hydrogen Peroxide. J. Inorg. Biochem., 22, 221–230.

    CAS  Google Scholar 

  • Frimer, A. A. (1982) The Organic Chemistry of Superoxide Anion Radical, in Superoxide Dismutase (L. W. Oberley, Ed.), CRC Press, Boca Raton, FL, pp. 83–125.

    Google Scholar 

  • Fukuzawa, K., and Gebicki, J. M. (1983) Oxidation of α-Tocopherol in Micelles and Liposomes by the Hydroxyl, Perhydroxyl, and Superoxide Radicals. Arch. Biochem. Biophys., 226, 242–251.

    CAS  Google Scholar 

  • Geiger, D. K., and Ferraudi G. (1986) Reductive Addition of OH Radicals to Macrocyclic Complexes. Inorg. Chim. Acta, 117, 139–144.

    CAS  Google Scholar 

  • Getoff, N., and Lehmann, H. (1970) Reactions of Methanol and Carbon Monoxide in Water Photolysis at 184.9 nm. Int. J. Rad. Phys. Chem., 2, 91–96.

    CAS  Google Scholar 

  • Ghormley, J. A., Hochanadel, C. J., Riley, J. F., and Boyle, J. W. (1966) Pulse Radiolysis and Flash Photolysis. Oak Ridge National Lab. Report ORNL-3994, pp. 40–42.

    Google Scholar 

  • Goldstein, S., and Czapski, G. (1983) Mechanisms of the Dismutation of Superoxide Catalyzed by the Copper(II) Phenanthroline Complex and of the Oxidation of the Copper(I) Phenanthroline Complex by Molecular Oxygen in Aqueous Solution. J. Am. Chem. Soc., 105, 7276–7280.

    CAS  Google Scholar 

  • Goldstein, S., and Czapski, G. (1985) Superoxide Dismutase Activity of Some Copper Phenanthroline Complexes and the Mechanism of the Oxidation of Various Cuprous Complexes by H2O2, in Superoxide and Superoxide Dismutase in Chemistry, Biology and Medicine (G. Rotilio, Ed.), Elsevier Scientific Publishers, New York, pp. 64–66.

    Google Scholar 

  • Graham, D. R., Marshall, L. E., Reich, K. A., and Sigman, D. A. (1980) Cleavage of DNA by Coordination Complexes. Superoxide Formation in the Oxidation of 10-Phenanthroline —Cuprous Complexes by Oxygen — Relevance to DNA Cleavage Reaction. J. Am. Chem. Soc., 102, 5419–5421.

    CAS  Google Scholar 

  • Greenwald, R. A. (Ed). (1985) CRC Handbook of Methods for Oxygen Radical Research, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Grodkowski, J., Neta, P., Schlesener, C. J., and Kochi, J. K. (1985) Rates and Mechanisms of Reduction of Tris(phenanthroline)Fe(III) by Various Radicals. Effect of Solvent. J. Phys. Chem., 89, 4373–4378.

    CAS  Google Scholar 

  • Groves, J. T., and Van Der Puy, M. (1974) Sterospecific Aliphatic Hydroxylation by Iron-Based Oxidant. J. Am. Chem. Soc., 96, 5274–5275.

    CAS  Google Scholar 

  • Haber, F., and Weiss, J. (1934) The Catalytic Decomposition of Hydrogen Peroxide by Iron Salts. Proc. R. Soc. (London), A147, 332–351.

    Google Scholar 

  • Halfpenny, E., and Robinson, P. L. (1952) Pernitrous Acid. The Reaction Between Hydrogen Peroxide and Nitrous Acid, and the Properties of an Intermediate Product. J. Chem. Soc., 928–938.

    Google Scholar 

  • Halliwell, B., and Gutteridge, J. M. C. (1985) The Importance of Free Radicals and Catalytic Metal Ions in Human Diseases. Molec. Aspects Med. 8, 89–193.

    CAS  Google Scholar 

  • Hardwick, T. J. (1957) The Rate Constant of the Reaction Between Ferrous Ion and Hydrogen Peroxide in Acid Solution. Can. J. Chem., 35, 428–344.

    CAS  Google Scholar 

  • Hart, E. J., Gordon, S., Fielden, E. M. (1966) Reaction of the Hydrated Electron with Water. J. Phys. Chem., 70, 150–156.

    CAS  Google Scholar 

  • Henglein, A., and Kormann, C. (1985) Scavenging of OH Radicals Produced in the Sonolysis of Water. Int. J. Rad. Biol., 48, 251–259.

    CAS  Google Scholar 

  • Hochanadel, C. J. (1962) Photolysis of Dilute Hydrogen Peroxide Solution in the Presence of Dissolved Hydrogen and Oxygen. Evidence Relating to the Nature of the Hydroxyl Radical and the Hydrogen Atom Produced in the Radiolysis of Water. Rad. Res., 17, 286–301.

    CAS  Google Scholar 

  • Holroyd, R. A., and Bielski, B. H. J. (1978) Photochemical Generation of Superoxide Radicals in Aqueous Solutions. J.Am. Chem. Soc., 100, 5796–5800.

    CAS  Google Scholar 

  • Jayson, G. G., Parsons, B. J., and Swallow, A. J. (1972) Oxidation of Ferrous Ions by Hydroxyl Radicals. J. Chem. Soc Faraday Trans. I., 68, 2053–2058.

    CAS  Google Scholar 

  • Jayson, G. G., Parsons, B. J., and Swallow, A. J. (1973a) Oxidation of Ferrous Ions by Perhydroxyl Radicals. J. Chem. Soc. Faraday Trans. I, 69, 236–242.

    CAS  Google Scholar 

  • Jayson, G. G., Parsons, B. J., and Swallow, A. J. (1973b) Appearance of Sulfatoferric Complexes in the Oxidation of Ferrous Sulfate Solutions. J. Chem. Soc. Faraday Trans. I., 69, 1079–1089.

    CAS  Google Scholar 

  • Johnson, G. R. A., Nazhat, N. B., and Saadalla-Nazhat, R. A. (1985) Reaction of the Aquocopper(I) Ion with Hydrogen Peroxide: Evidence Against Hydroxyl Free Radical Formation. J. Chem. Soc., Chem. Commun., 407–408.

    Google Scholar 

  • Kalyanaraman, B. (1982) Detection of Toxic Free Radicals in Biology and Medicine. Reu. Biochem. Toxicol, 4, 73.

    CAS  Google Scholar 

  • King, P. A., Anderson, V. E., Edwards, J. O., Gustafson, G., Plumb, R. C., and Suggs, J. W. (1992) A Stable Solid That Generates Hydroxyl Radical upon Dissolution in Aqueous Solutions: Reaction with Proteins and Nucleic Acid. J. Am. Chem. Soc., 114, 5430–5432.

    CAS  Google Scholar 

  • Kirschenbaum, L. J., and Meyerstein, D. (1981) A Pulse Radiolysis Study of the MnO2–4- Ion. The Stability of Mn(V) in 0.1 N NaOH. Inorg. Chim. Acta, 53, L99–L100.

    CAS  Google Scholar 

  • Klug-Roth, D., Rabani, J., and Fridovich, I. (1973) Pulse Radiolytic Investigations of Superoxide Catalyzed Disproportionation. Mechanism for Bovine Superoxide Dismutase J. Am. Chem Soc., 95, 2786–2790.

    CAS  Google Scholar 

  • Klug-Roth, D., and Rabani, J. (1976) Pulse Radiolytic Studies on Reaction of Aqueous Superoxide Radicals with Copper(II) Complexes. J. Phys. Chem., 80, 588–591.

    CAS  Google Scholar 

  • Koppenol, W. H., Levine, F., Hatmaker, T. L., Epp, J., and Rush, J. D. (1986) Catalysis of Superoxide Dismutation by Manganese Aminopolycarboxylate Complexes. Arch. Biochem. Biophys., 251, 594–599.

    CAS  Google Scholar 

  • Laroff, G. P., Fessenden, R. W., and Schüler, R. H. (1972) The Electron Spin Resonance Spectra of Radical Intermediates in the Oxidation of Ascorbic Acid and Related Substances. J. Am. Chem Soc., 94, 9062–9073.

    CAS  Google Scholar 

  • Lati, J., and Meyerstein, D. (1978) Oxidation of First-Row Bivalent Transition-Metal Containing Ethylenediaminetetra-Acetate and Nitrilotriacetate Ligands by Free Radicals. J. Chem. Soc. Dalton, 1105–1118.

    Google Scholar 

  • Lee-Ruff, E. (1977) The Organic Chemistry of Superoxide. Chem. Soc Rev., 6, 195–214.

    CAS  Google Scholar 

  • Lippitt, B., McCord, J. M., and Fridovich, I. (1982) The Sonochemical Reduction of Cytochrome c and Its Inhibition by Superoxide Dismutase. J. Biol Chem., 247, 4688–4690.

    Google Scholar 

  • Mahoney, I. R. (1970) Evidence for the Formation of Hydroxyl Radicals in the Isomerization of Pernitrous Acid to Nitric Acid in Aqueous Solution. J. Amer. Chem. Soc., 92, 5262–5263.

    CAS  Google Scholar 

  • Maliyackel, A. C., Waltz, W. L., Lilie, J., and Woods, R. J. (1990) Radiolytic Study of the Reactions of Hydroxyl Radical with Cobalt(III), Iron(II) and Ruthenium(II) Complexes Containing 2,2′-Bipyridyl and Cyano Ligands. Inorg. Chem., 29, 340–348.

    CAS  Google Scholar 

  • Marklund, S. L. (1976) Spectrophotometric Study of Spontaneous Disproportionation of Superoxide Anion Radical and Sensitive Direct Assay for Superoxide Dismutase. J. Biol Chem., 251, 7504–7507.

    CAS  Google Scholar 

  • Marklund, S. L. (1985) Direct Assay with Potassium Superoxide, in CRC Handbook of Methods for Oxygen Radical Research (R. A. Greenwald, Ed.), CRC Press, Boca Raton, FL, pp. 249–255.

    Google Scholar 

  • Marshall, L. E., Graham, D. R., Reich, K. A., and Sigman, D. S. (1981) Cleavage of Deoxyribonucleic Acid by the 1,10-Phenanthroline —Cuprous Complex. Hydrogen Peroxide Requirement and Primary and Secondary Structure Specificity. Biochemistry, 20, 244–250.

    CAS  Google Scholar 

  • McCord, J. M., and Fridovich, I. (1969) Superoxide Dismutase—An Enzymic Function for Erythrocuprein (Hemocuprein). J. Biol. Chem., 244, 6049–6055.

    CAS  Google Scholar 

  • McDowell, M. S., Bakac, A., and Espenson, J. H. (1983) A Convenient Route to Superoxide Ion in Aqueous Solution. Inorg. Chem., 22, 847–848.

    CAS  Google Scholar 

  • Melton, J. D., and Bielski, B. H. J. (1990) Studies of the Kinetic, Spectral and Chemical Properties of Fe(IV) Pyrophosphate by Pulse Radiolysis. Rad Phys. Chem., 36, 725–733.

    CAS  Google Scholar 

  • Mucuni, T., Tatsua, M., and Kamachi, M. (1985) Production of Hydroxyl-Free Radical by Reaction of Hydrogen Peroxide with N-methyl-N’-nitro-N-nitrosoguanidine. Cancer Res., 45, 6442–6445.

    Google Scholar 

  • Monig, J., Chapman, R., and Asmus, K.-D. (1985) Effect of the Protonation State of the Amino Acid Group on the OH Radical Induced Decarboxylation of Amino Acids in Aqueous Solution. J. Phys. Chem., 89, 3139–3144.

    Google Scholar 

  • Motohashi, N., and Mori, I. (1986) Thiol-Induced Hydroxyl Radical Formation and Scavenger Effect of Thiocarbamides on Hydroxyl Radicals. J. Inorg. Biochem., 26, 205–212.

    CAS  Google Scholar 

  • Nadezhdin, A., and Dunford, H. B. (1979a) Oxidation of Nicotinamide Adenine Dinucleotide by Hydroperoxyl Radical. A Flash Photolysis Study. J. Phys. Chem., 83, 1957–1961.

    CAS  Google Scholar 

  • Nadezhdin, A., and Dunford, H. B. (1979b) The Oxidation of Ascorbic Acid and Hydroquinone by Perhydroxyl Radicals. A Flash Photolysis Study. Can. J. Chem., 57, 3017–3022.

    CAS  Google Scholar 

  • Nielsen, S. O., Michael, B. D., and Hart, E. J. (1976) Ultraviolet Absorption Spectra of e-aq, H, OH, D, and OD from Pulse Radiolysis of Aqueous Solutions. J. Phys. Chem., 80(22), 2482–2487.

    CAS  Google Scholar 

  • Nishikimi, M., and Machlin, L. J. (1975) Oxidation of α-Tocopherol Model Compound by Superoxide Anion. Arch. Biochem. Biophys., 170, 684–689.

    CAS  Google Scholar 

  • Nishikimi, M., Yamada, H., and Yagi, K. (1980) Oxidation by Superoxide of Tocopherols Dispersed in Aqueous Media with Deoxycholate. Biochim. Biophys. Acta, 627, 101–108.

    CAS  Google Scholar 

  • Nohl, H., and Jordan, W. (1984) The Biochemical Role of Ubiquinone and Ubisemiquinone-Derivatives in the Generation of Hydroxyl-Radicals from Hydrogen Peroxide, in Oxygen Radicals in Chemistry and Biology (W. Bors, M. Saran, and D. Tait, Eds.), Walter de Gruyter, Berlin, pp. 155–163.

    Google Scholar 

  • Pick-Kaplan, M., and Rabani, J. (1976) Pulse Radiolytic Studies of Aqueous Mn(ClO4)2 Solutions. J. Phys. Chem., 80, 1840–1843.

    CAS  Google Scholar 

  • Que, B. G., Downey, K. M., and So, A. G. (1980) Degradation of Deoxyribonucleic Acid by a 1,10-Phenanthroline-Copper Complex: The Role of Hydroxyl Radicals. Biochemistry, 19, 5987–5991.

    CAS  Google Scholar 

  • Rabani, J., and Matheson, M. S. (1966) The Pulse Radiolysis of Aqueous Solutions of Potassium Ferrocyanide. J. Phys. Chem., 70, 761–769.

    CAS  Google Scholar 

  • Rabani, J. (1968) Pulse Radiolysis of Alkaline Solutions. Adv. Chem. Ser., 81(9), 131–152.

    Google Scholar 

  • Rahhal, S., and Richter, H. W. (1988) Reduction of Hydrogen Peroxide by the Ferrous Iron Chelate of Diethylenetriamme-N,N,N’,N”,N”-pentaacetate. J. Am. Chem. Soc., 110, 3126–3133.

    CAS  Google Scholar 

  • Richmond, R., and Halliwell, B. (1982) Formation of Hydroxyl Radicals from the Paraquat Radical Cation Demonstrated by a Highly Specific Gas Chromatographic Technique. The Role of Superoxide Radical Anion, Hydrogen Peroxide, and Glutathion Reductase. J. Inorg. Biochem., 17, 95–107.

    CAS  Google Scholar 

  • Riesz, P., and Kondo, T. (1992) Free Radical Formation Induced by Ultrasound and Its Biological Implications. Free Radical Biol. Med., 13, 247–270.

    CAS  Google Scholar 

  • Rosen, H., and Klebanoff, S. J. (1977) Formation of Singlet Oxygen by the Myeloperoxidase-Mediated Antimicrobial System. J. Biol. Chem., 252, 4803–4810.

    CAS  Google Scholar 

  • Rowley, D. A., and Halliwell, B. (1982) Superoxide-Dependent Formation of Hydroxyl Radicals in the Presence of Thiol Compounds. FEBS Lett, 138, 33–36.

    CAS  Google Scholar 

  • Rowley, D. A., and Halliwell, B. (1985) Formation of Hydroxyl Radicals from NADH and NADPH in the Presence of Copper Salts. J. Inorg. Biochem., 23, 103–108.

    CAS  Google Scholar 

  • Rush, J. D., and Bielski, B. H. J. (1985) Pulse Radiolytic Studies of the Reactions of HO2/O-2 with Fe(n)/Fe(III) Ions. The Reactivity of HO2/O-2 with Ferric Ions and Its Implication on the Occurrence of the Haber-Weiss Reaction. J. Phys. Chem., 89, 5062–5066.

    CAS  Google Scholar 

  • Rush, J. D., and Bielski, B. H. J. (1986) Pulse Radiolysis Studies of Alkaline (Fe(in) and Fe(VI) Solutions. Observations of Transient Iron Complexes with Intermediate Oxidation States. J. Am. Chem. Soc., 108, 523–525.

    CAS  Google Scholar 

  • Rush, J. D., and Koppenol, W. H. (1986) Oxidizing Intermediates in the Reaction of Ferrous EDTA with Hydrogen Peroxide. J. Biol. Chem., 261, 6730–6733.

    CAS  Google Scholar 

  • Rush, J. D., and Maskos, Z. (1990) Mechanism of Catalase Activity in Aqueous Solutions of Dimanganese(III, IV) Ethylenediamine-N,N’-diacetate. Inorg. Chem., 29, 897–905.

    CAS  Google Scholar 

  • Saito, E., and Bielski, B. H. J. (1961) The Electron Paramagnetic Resonance Spectrum of the HO2 Radical in Aqueous Solution. J. Am. Chem. Soc., 83, 4467.

    CAS  Google Scholar 

  • Sawyer, D. T. (1991) Oxygen Chemistry, Oxford University Press, New York.

    Google Scholar 

  • Sawyer, D. T, and Valentine, J. S. (1981) How Super Is Superoxide? Acc Chem. Res., 14, 393–400.

    CAS  Google Scholar 

  • ScHaich, K. M. (1990) Preparation of Metal-Free Solutions for Studies of Active Oxygen Species, in Methods in Enzymology, Vol. 186 (L. Packer and A. N. Glazer, Eds.), Academic Press, New York, pp. 121–125.

    Google Scholar 

  • Schüler, R. H. (1977) Oxidation of Ascorbic Anion by Electron Transfer to Phenoxy Radicals. Rad. Res., 69, 417–433.

    Google Scholar 

  • Schwarz, H. A. (1962) Determination of Some Rate Constants for the Radical Processes in the Radiation Chemistry of Water. J. Phys. Chem., 66, 255–262.

    CAS  Google Scholar 

  • Schwarz, H. A. (1981) Free Radicals Generated by Radiolysis of Aqueous Solutions. J. Chem. Educ, 58, 101–105.

    CAS  Google Scholar 

  • Sehested, K., Holcman, J., and Hart, E. J. (1983) Rate Constants and Products of the Reaction of e-aq, O-2 and H with Ozone in Aqueous Solutions. J. Phys. Chem., 87, 1951–1954.

    CAS  Google Scholar 

  • Sharma, B. K., and Sahal, K. (1982) 60Co γ-Radiolysis of Iron(III) Nitrilotri-acetate in Aqueous Solutions. Rad. Phys. Chem., 20, 341–346.

    CAS  Google Scholar 

  • Stanbury, D. M. (1989) Reduction Potentials Involving Inorganic Free Radicals in Aqueous Solution. Adv. Inorg. Chem. 33, 69–138.

    CAS  Google Scholar 

  • Stein, J., Fackler, J. P., Jr., McClune, G. J., Fee, J. A., and Chan, L. T. (1979) Superoxide and manganese(III). Reactions of Mn-EDTA and Mn-CyDTA Complexes with O-2. X-ray Structure of KMnEDTA-2H2O. Inorg. Chem., 18, 3511–3519.

    CAS  Google Scholar 

  • Sukhov, N. L., Akinshin, M. A., and Ershov, B. G. (1986) Pulse Radiolysis of Aqueous Solutions of Monovalent Copper. High Energy Chem., 20, 303–306.

    Google Scholar 

  • Tappel, A. L. (1980) Measurement of and Protection from in vivo Lipid Peroxidation, in Free Radicals in Biology, Vol. IV (W. A. Pryor, Ed.), Academic Press, New York, pp. 2–44.

    Google Scholar 

  • Thomas, J. M., and Bielski, B. H. J. (1989) Oxidation and Reaction of Trolox c, a Tocopherol Analogue, in Aqueous Solution. A Pulse-Radiolysis Study. J. Am. Chem. Soc., 111, 3315–3319.

    CAS  Google Scholar 

  • Udenfriend, S., Clark, C. T., Axelrod, J., and Brodie, B. B. (1954) Ascorbic Acid in Aromatic Hydroxylation. I. A Model System for Aromatic Hydroxylation. J. Biol. Chem., 208, 731–740.

    CAS  Google Scholar 

  • Valentine, J. S., Miksztal, A. R., and Sawyer, D. T. (1984) Methods for the Study of Superoxide Chemistry in Nonaqueous Solutions, in Methods in Enzymology, Vol. 186 (L. Packer and A. N. Glazer, Eds.), Academic Press, New York, pp. 171–181.

    Google Scholar 

  • van Steveninck, J., van der Zee, J., and Dubbelman, T. M. A. R. (1985) Site-Specific and Bulk-Phase Generation of Hydroxyl Radicals in the Presence of Cupric Ions and Thiol Compounds. Biochem. J., 232, 309–311.

    Google Scholar 

  • von Sonntag, C. (1987) The Chemical Basis of Radiation Biology, Taylor & Francis Ltd., London.

    Google Scholar 

  • Walling, C. (1975) Fenton’s Reagent Revisited. Acc. Chem. Res., 8, 125–131, and references therein.

    CAS  Google Scholar 

  • Waltz, W. L. (1988) Pulse Radiolysis, in Photoinduced Electron Transfer, Part B (M. A. Fox and M. Chanon, Eds.), Elsevier, New York, pp. 57–109.

    Google Scholar 

  • Wardman, P. (1989) Reduction Potentials of One-Electron Couples Involving Free Radicals in Aqueous Solution. J. Phys. Chem. Ref. Data, 18, 1637–1755.

    CAS  Google Scholar 

  • Weinstein, J., and Bielski, B. H. J. (1979) Kinetics of the Interaction of HO2 and O-2 Radicals with Hydrogen Peroxide. The Haber-Weiss Reaction. J. Am. Chem. Soc., 101, 58–62.

    CAS  Google Scholar 

  • Weinstein, J., and Bielski, B. H. J. (1980) Reactions of Superoxide Radicals with Cu(II) —Histidine Complexes. J. Am. Chem. Soc., 102, 4916–4919.

    CAS  Google Scholar 

  • Weissler, A. (1978) Encyclopedia of Chemical Technology (R. E. Kirk and D. F. Othmer, Eds.), Wiley Interscience, New York.

    Google Scholar 

  • Whitburn, K. D., and Laurence, G. S. (1979) Oxidation of (5,7,7,12,14,14-Hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene) Copper(II) by Radicals Produced by Flash Photolysis and Reactions of the Oxidized Copper Complex, J. Chem. Soc., Dalton Trans., 334–337.

    Google Scholar 

  • Winterbourn, C. C., and Sutton, H. (1984) Hydroxyl Radical Production from Peroxide and Enzymatically Generated Paraquat Radicals: Catalytic Requirements and Oxygen Dependence. Arch. Biochem. Biophys., 235, 116–126.

    CAS  Google Scholar 

  • Winterbourn, C. C., Sutton, H. C., and Vile, G. (1986) Catalysis of the Haber-Weiss Reaction. Studies with Enzymatically and Radiolytically Generated Superoxide, in Superoxide and Superoxide Dismutase in Chemistry, Biology and Medicine (G. Rotilio, Ed.), Elsevier, Amsterdam, pp. 9–18.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Chapman & Hall

About this chapter

Cite this chapter

Bielski, B.H.J., Cabelli, D.E. (1995). Superoxide and Hydroxyl Radical Chemistry in Aqueous Solution. In: Foote, C.S., Valentine, J.S., Greenberg, A., Liebman, J.F. (eds) Active Oxygen in Chemistry. Structure Energetics and Reactivity in Chemistry Series (SEARCH Series), vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0874-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0874-7_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7514-0371-8

  • Online ISBN: 978-94-007-0874-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics