Skip to main content

Part of the book series: NATO Science Series ((ASHT,volume 61))

  • 268 Accesses

Abstract

Second-order optical nonlinearities are increasingly important for a number of applications including second-harmonic generation, optical rectification, and self-phase modulation using the second-order cascade effect. Implementation of any second-order nonlinearity generally requires phase-matching, which may be quite difficult to achieve in a solid-state medium lacking linear birefringence. In such cases phase-matching must be engineered into the material in some way, either during the material growth stage, or post-growth in the form of a quasi-phase-matching grating. Semiconductor materials such as gallium arsenide are attractive for nonlinear optical applications because they have a fundamental bandgap in the region of the optical part of the electromagnetic spectrum, so that near-resonant excitation can be achieved, resulting in high nonlinear responses; in addition semiconductors support mature fabrication technologies which can be used to make devices in waveguide form, which can in principle be integrated with laser sources on the same substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marsh, J. H. (1993) Quantum well intermixing, Semiconductor Science and Technology, 8, 1136–1155.

    Article  ADS  Google Scholar 

  2. Khurgin, J. (1987) Second-order susceptibility of asymmetric coupled quantum-well structures, Appl. Phys. Lett., 51, 2100–2102.

    Article  ADS  Google Scholar 

  3. Khurgin, J. (1988) Second-order nonlinear effects in asymmetric quantum well structures, Phys. Rev. B, 38, 4056–4066.

    Article  ADS  Google Scholar 

  4. Khurgin, J. (1989) Second-order intersubband nonlinear optical susceptibilities of asymmetric quantum-well structures, J. Opt. Soc. Am. B, 6, 1673–1682.

    Article  ADS  Google Scholar 

  5. Tsang, L., Ahn, D. and Chuang, S. L (1988) Electric field control of optical second harmonic generation in a quantum well, Appl. Phys. Lett., 52, 697–699.

    Article  ADS  Google Scholar 

  6. Tsang, L., Chuang, S. L. and Lee, S. M. (1990) Second-order nonlinear optical susceptibility of a quantum well with an applied electric field, Phys. Rev. B, 41, 5942–5951.

    Article  ADS  Google Scholar 

  7. Harshman, P. J. and Wang, S. (1992) Asymmetric AlGaAs quantum wells for second harmonic generation and quasiphase matching of visible light in surface emitting waveguides, Appl. Phys. Lett., 60, 1277–1279.

    Article  ADS  Google Scholar 

  8. Shimizu, A., Kuwata-Gonokami, M. and Sakaki, H. (1992) Enhanced second-order optical nonlinearity using interband and intraband transition in low-dimensional semiconductors, Appl. Phys. Lett., 61, 399–401.

    Article  ADS  Google Scholar 

  9. Kelaidis, C., Hutchings, D. C. and Arnold, J. M. (1994) Asymmetric two-step GaAlAs quantum well for cascaded second-order processes, IEEE J. Quant. Elec., 30, 2998–3005.

    Article  ADS  Google Scholar 

  10. Atanasov, R., Bassani, F. and Agranovich, V. M. (1994) Second-order nonlinear optical susceptibility of asymmetric quantum wells, Phys. Rev. B, 50, 7809–7819.

    Article  ADS  Google Scholar 

  11. Fiore, A., Rosencher, E., Vinter, B., Weill, D. and Berger, V. (1995) Second-order susceptibility of biased quantum-wells in the interband regime, Phys. Rev. B, 51, 13192–13197.

    Article  ADS  Google Scholar 

  12. Huang, Y. Wang,, C. and Lien, C. (1995) Electric-field enhancement and extinguishment of optical second harmonic generation in asymmetric coupled quantum-wells, IEEE J. Quantum Electron., 31, 1717–1725.

    Article  ADS  Google Scholar 

  13. Janz, S., Chatenoud, F. and Normandin, R. (1994) Quasi-phase-matched second-harmonic generation from asymmetric coupled quantum-wells, Optics Lett., 19, 622–624.

    Article  ADS  Google Scholar 

  14. Qu, X. H., Ruda, H., Janz, S. and Spring-Thorpe, A. J. Enhancement of second-harmonic generation at 1.06 µm using a quasi-ohase-matched AlGaAs/GaAs asymmetric quantum-well structure, Appl. Phys. Lett., 65, 3176–3178 (1994).

    Article  ADS  Google Scholar 

  15. Fiore, A., Rosencher, E., Berger, V. and Nagle, J. (1995) Electric-field induced interband second harmonic generation in GaAs/AlGaAs quantum wells Appl. Phys. Lett., 67, 3765–3767.

    Article  ADS  Google Scholar 

  16. Berger, V. (1997) Quantum engineering of optical nonlinearities NATO ASI Advanced photonics with second-order optically nonlinear processes, Sozopol, Bulgaria.

    Google Scholar 

  17. Shen, Y. R. (1984) The principles of nonlinear optics, Wiley Interscience, New York.

    Google Scholar 

  18. Bloembergen, N. (1965) Nonlinear optics, Benjamin, New York.

    Google Scholar 

  19. Butcher, P. and Cotter, D. (1990) Elements of nonlinear optics, Cambridge University Press.

    Google Scholar 

  20. Kane, E. O. (1955) Band structure of indium antimonide, J. Chem. Solids, 1, 249–261.

    Article  ADS  Google Scholar 

  21. Harrison, W. A. (1970) Solid state theory, McGraw-Hill.

    Google Scholar 

  22. Bastard, G. (1988) Wave mechanics applied to semiconductor heterostructures, Hal-sted Press.

    Google Scholar 

  23. Altarelli, M. (1986) Band structure, impurities and excitons in superlattices, Proc. Les Houches Winterschool: Semiconductor superlattices and heterojunctions, G. Allan, G. Bastard, N. Boccara, M. Lanoo and M. Voos eds., pp12–37, Springer, Berlin.

    Google Scholar 

  24. Hutchings D. C. and Arnold, J. M. (1997) Determination of second-order nonlinear coefficients in semiconductors using pseudospin equations for three-level systems, Phys. Rev. B, 56, 4056–4067.

    Article  ADS  Google Scholar 

  25. Luttinger, J. M. and Kohn, W.(1955) Motion of electrons and holes in perturbed periodic fields, Phys. Rev., 97, 869–883.

    Article  ADS  MATH  Google Scholar 

  26. Burt, M. G. (1992) The justification for applying the effective mass approximation to microstructures, Jour. Phys. Cond. Matter., 4, 6651–6690.

    Article  ADS  Google Scholar 

  27. Street, M. W., Whitbread, N. D., Hutchings, D. C., Arnold, J. M., Marsh, J. H., Aitchison, J. S., Kennedy, G. T. and Sibbett, W. (1997) Quantum well intermixing for the control of second-order nonlinear effects in AlGaAs multiple-quantum-well waveguides, Optics Letters, 22, 1600–1603.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Arnold, J.M. (1999). Asymmetric Quantum Wells for Second-Order Optical Nonlinearities. In: Boardman, A.D., Pavlov, L., Tanev, S. (eds) Advanced Photonics with Second-Order Optically Nonlinear Processes. NATO Science Series, vol 61. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0850-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0850-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5316-4

  • Online ISBN: 978-94-007-0850-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics