Skip to main content

Part of the book series: NATO Science Series ((ASHT,volume 61))

Abstract

Fermi resonance is a phenomenon which takes place in vibrational or electronic spectra of molecules. For example, let a molecule have two vibrational modes with frequencies ωa and ωb. If the second order resonance condition 2ω α ≃ ω b is fulfilled, then the ħωb, transition in infrared spectrum can be split into two lines of comparable intensity and the second line cannot be explained as a result of interaction of light with the vibrational a mode because the transitions with excitation of two ħω a quanta are forbidden due to well-known nn±1 selection rule for harmonic oscillator. E. Fermi explained [1]–[2] this experimental observation as a result of nonlinear resonance interaction of two vibrational modes with each other. Since that time the notion of Fermi resonance has been generalized to the processes with participation of different types of quanta (e.g., ω12≃ω3, ω12≃ω3−ω4, and so on) and to electronic types of excitations as well. Further generalizations were suggested for Fermi resonance interactions of collective modes in molecular crystals and other macroscopic systems, so that Fermi resonance phenomenon became a part of not only molecular physics but solid state physics also (see, e.g., review articles [3]–[5]). Recent progress in molecular beam deposition method permitted one to obtain molecular multilayer structures [6] analogous to inorganic superlattice and quantum well structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fermi, E. (1931) Zs.f. Phys. 71, 250; (1932) Memoire Acad, d’ltalia 3 (1), Fis., 239.

    Article  ADS  Google Scholar 

  2. Fermi, E. and Rasetti, F. Zs.f. Phys. 71, 682.

    Google Scholar 

  3. Agranovich, V.M. (1983) Biphonons and Fermi Resonance in Vibrational Spectra Crystals, in V.M. Agranovich and R.M. Hochstrasser (eds.) Spectroscopy and Excitation Dynamics of Condensed Molecular Systems, North-Holland, Amsterdam, p. 83.

    Google Scholar 

  4. Agranovich, V.M. and Lalov, I.I. (1985) Uspekhi Fiz. Nauk. 146, 267 [(1985) Sov. Phys. Uspekhi 28, 484].

    Article  Google Scholar 

  5. Agranovich, V.M. and Dubovsky, O.A. (1988) Phonon Multimode Spectra: Biphonons and Triphonons in Crystals with Defects, in R.J. Elliott and I.P. Ipatova (eds), Optical Properties of Mixed Crystals, North-Holland, Amsterdam, 297.

    Chapter  Google Scholar 

  6. See for instance: So, F.F., Forest, S.R., Shi, Y.Q. and Steier, W.H. (1990) Appl. Phys. Lett. 65, 674; Karl, N. Sato, N. (1992) Mol. Cryst. Liq. Cryst. 218, 79; Akimichi, H., Inoshita, T., Hotta, S., Noge, H. and Sakaki, H. (1993) Appl. Phys. Lett. 71, 2098; Nonaka, T., Mori, Y. Nogai, N., Nakagawa, Y., Saeda, M., Takahagi, T. and Ishitani, A. (1994) Thin Solid Films 239, 214; Haskal, E.I., Shen, Z., Burrows, P.E. and Forrest, S.R. (1995) Phys. Rev. B51, 4449; Umbach, E., Seidel, C., Taborski, J., Li, R. and Soukopp, A. (1995) phys. stat. sol.(b) 192, 389.

    Article  ADS  Google Scholar 

  7. Agranovich, V.M. (1993) Physica Scripta T49, 699; (1995) Nonlinear Optics 9, 87.

    Article  ADS  Google Scholar 

  8. Karamzin, Y.N. and Sukhorukov, A.P. (1975) Zh. Exp. Teor. Fiz. 68, 834 [(1976) Sov. Phys. JETP 41,414].

    Google Scholar 

  9. De Salvo, R., Hagan, D.J., Sheik-Bahae, M., Stegeman, G.I. and Vanherzeele, H. (1992) Opt. Lett. 17, 28.

    Article  ADS  Google Scholar 

  10. Hayata, K. and Koshiba, M. (1993) Phys. Rev. Lett. 71, 3275.

    Article  ADS  Google Scholar 

  11. Schiek, R. (1993) J. Opt. Soc. Am B10, 1848.

    ADS  Google Scholar 

  12. Guo, Q. (1993) Quantum Optics 5, 133.

    Article  ADS  Google Scholar 

  13. Werner, M.J. and Drummond, P.D. (1993) J. Opt. Soc. Am. B10, 2390.

    ADS  Google Scholar 

  14. Menyuk, C.R., Schiek, R. and Torner, L. (1994) J. Opt. Soc. Am. B11, 2434.

    ADS  Google Scholar 

  15. Buryak, A.V. and Kivshar, Y.S. (1995) Phys. Lett. A197, 407.

    MathSciNet  ADS  Google Scholar 

  16. Buryak, A.V. and Kivshar, Y.S. (1995) Phys. Rev. A51, R41.

    ADS  Google Scholar 

  17. Buryak, A.V., Kivshar, Y.S. and Steblina, V.V. (1995) Phys. Rev. A52, 1670.

    ADS  Google Scholar 

  18. Steblina, V.V., Kivshar, Y.S., Lisak, M. and Malomed, B.A. (1995) Opt. Commun. 118, 345.

    Article  ADS  Google Scholar 

  19. Agranovich, V.M., Darmanyan, S.A., Kamchatnov, A.M., Leskova, T.A. and Boardman, A.D. (1997) Phys. Rev. E55, 1894.

    ADS  Google Scholar 

  20. Newell, A.C. and Moloney, J.V. (1992) Nonlinear Optics, Addison-Wesley, Redwood City.

    Google Scholar 

  21. Agranovich, V.M. and Dubovsky, O.A. (1993) Chem. Phys. Lett. 210, 458.

    Article  ADS  Google Scholar 

  22. Agranovich, V.M. and Page, J.B. (1993) Phys. Lett. A183, 395.

    ADS  Google Scholar 

  23. Agranovich, V.M. and Kamchatnov, A.M. (1994) Pis’ma Zh. Exp. Teor. Fiz. 59, 397 [(1997) JETP Lett. 59, 425].

    Google Scholar 

  24. Agranovich, V.M., Dubovsky, O.A. and Kamchatnov, A.M. (1995) Chem. Phys. 198, 245.

    Article  Google Scholar 

  25. Agranovich, V.M., Dubovsky, O.A. and Kamchatnov, A.M. (1994) J. Phys. Chem. 98, 13607.

    Article  Google Scholar 

  26. Anderson, D. (1987) Phys. Rev. A27, 3135.

    ADS  Google Scholar 

  27. Agranovich, V.M., Darmanyan, S.A., Dubovsky, O.A., Kamchatnov, A.M., Ogievetsky, E.I. Reineker, P. and Neidlinger. Th. (1996) Phys. Rev. B53, 15451.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Agranovich, V.M., Kamchatnov, A.M. (1999). Fermi Resonance Nonlinear Waves and Solitons in Organic Superlattices. In: Boardman, A.D., Pavlov, L., Tanev, S. (eds) Advanced Photonics with Second-Order Optically Nonlinear Processes. NATO Science Series, vol 61. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0850-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0850-1_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5316-4

  • Online ISBN: 978-94-007-0850-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics