Skip to main content

A Damage Evolution Approach in Fracture Mechanics of Pipelines

  • Conference paper
  • First Online:
Integrity of Pipelines Transporting Hydrocarbons

Part of the book series: NATO Science for Peace and Security Series C: Environmental Security ((NAPSC,volume 1))

Abstract

The paper concentrates on perspectives of the damage evolution approach in fracture mechanics of oil and gas pipelines. This approach is based on the generalised concept of damage. It is postulated that deformation and fracture processes in solids are determined by some general functional law related to the accumulation of damage. Fracture mechanics parameters are accepted as the controlling parameters for the failure processes. The approach leads to a description of fatigue crack growth, stress corrosion cracking, a correlation between hydrogen redistribution in the vicinity of a crack tip and the stress intensity factor during crack propagation under cyclic loads. The damage evolution approach has been also employed to quantify the shift of the ductile-to-brittle transition temperature of gas pipelines due to physical-mechanical damage of the steel during long-term operation of pipelines. The ductile–brittle transition curve of the steel pipeline shifts to higher temperature which decreases operation margins in both the temperature and pressure. The methodology of the above-mentioned approach and the failure assessment diagram has been employed for the structural integrity analysis including assessment of the ductile-to-brittle transition temperature and allowable sizes of surface longitudinal crack-like defects in gas pipelines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\( {\hbox{a}} \) :

crack size

\( {\hbox{A}} \) :

constant in the damage evolution law

\( {{\hbox{C}}_{\rm{H}}} \) :

hydrogen concentration

\( {\hbox{E}} \) :

Young’s modulus

\( {\hbox{J}} \) :

J-integral

\( {\hbox{K}} \) :

stress intensity factor

\( {{\hbox{K}}_{\rm{mat}}} \) :

fracture toughness

\( {\hbox{m}} \) :

strain hardening exponent

\( {\hbox{n}} \) :

power exponent in the damage evolution law

\( {\hbox{N}} \) :

number of fatigue loading cycles

\( {{\hbox{N}}^{*}}{,}{\hbox{}^{*}} \) :

fixed (or a unit) number of cycles and time, respectively

\( {\hbox{S}}{{\hbox{F}}_{\rm{K}}} \) :

safety factor against fracture

\( {{\hbox{T}}_0} \) :

ductile-to-brittle transition temperature

\( {{\hbox{V}}^{*}}{,}{{\hbox{V}}_0} \) :

coefficients in the Paris and the corrosion crack growth laws, respectively

\( {{\Delta }}{{\hbox{a}}_{\rm{j}}} \) :

crack increment length

\( {{\sigma }} \) :

nominal applied stress

\( {{{\sigma }}_{\rm{Y}}} \) :

yield strength

\( {{{\sigma }}_0} \) :

local strength

\( {{\beta }} \) :

local biaxiality ratio

\( {{\tau }} \) :

time

\( {{\xi }} \) :

controlling parameter

\( {{\Psi }} \) :

continuum parameter

\( {\hbox{i}} \) :

initiation

\( { \max } \) :

maximum

\( {\hbox{scc}} \) :

stress corrosion cracking

References

  1. L.M. Kachanov, Fundamentals of the Fracture Mechanics(Nauka, Moscow, 1974) (in Russian)

    Google Scholar 

  2. Yu.N. Rabotnov, Creep Problems in Structural Members(North-Holland Publishing Company, Amsterdam, 1969)

    Google Scholar 

  3. S. Murakami, Mechanical modelling of material damage. Trans. ASME J. Appl. Mech. 55, 280–286 (1988)

    Article  Google Scholar 

  4. H. Altenbach, A. Zolochevsky, A generalised fatigue limit criterion and a unified theory of low-cycle fatigue damage. Fatigue Fract. Eng. Mater. Struct. 19, 1207–1219 (1996)

    Article  CAS  Google Scholar 

  5. B. Bhattacharya, B. Ellingwood, Continuum damage mechanics analysis of fatigue crack initiation. Int. J. Fatigue 20, 631–639 (1998)

    Article  CAS  Google Scholar 

  6. H. Haken, Advanced Synergetic: Instability Hierarchies of Self-Organizing Systems and Devices(Springer, Berlin/Heidelberg/New York/Tokyo, 1983)

    Google Scholar 

  7. Yu.G. Matvienko, Models and Criteria of Fracture Mechanics(Nauka, Moscow, 2006) (in Russian)

    Google Scholar 

  8. N.M. Grinberg, V.A. Serdyuk, T.I. Malinkina, Structure and Fatigue Strength of Magnesium Alloys(Metallurgia, Chelabinsk, 1991) (in Russian)

    Google Scholar 

  9. L.R. Botvina, Failure Kinetic of Structural Materials(Nauka, Moscow, 1989) (in Russian)

    Google Scholar 

  10. G.P. Cherepanov, Mechanics of Brittle Fracture(McGraw-Hill, New York, 1979)

    Google Scholar 

  11. K.J. Miller, Materials science perspective of metal fatigue resistance. Mater. Sci. Technol. 9, 453–462 (1993)

    CAS  Google Scholar 

  12. Yu.G. Matvienko, M.W. Brown, K.J. Miller, Modelling threshold conditions for cracks under tension/torsion loading, in Mutiaxial Fatigue and Fracture, ed. by E. Macha, W. Bedkowski, T. Lagoda (Elsevier, Oxford, 1999), pp. 3–12

    Google Scholar 

  13. M.N. James, C. Dimitrion, H.D. Chandler, Low cycle fatigue lives of notched components. Fatigue Fract. Eng. Mater. Struct. 12, 213–225 (1989)

    Article  Google Scholar 

  14. C. Ling, X. Zheng, Effects of cold expansion of a hole on fatigue crack initiation location and life of an LY12CZ alloy. Fatigue Fract. Eng. Mater. Struct. 15, 241–247 (1992)

    Article  CAS  Google Scholar 

  15. G. Shatil, E.G. Ellison, D.J. Smith, Elastic-plastic behaviour and uniaxial low cycle fatigue life of notched specimens. Fatigue Fract. Eng. Mater. Struct. 18, 235–245 (1995)

    Article  CAS  Google Scholar 

  16. K. Shiozawa, Y. Tohda, S.-M. Sun, Crack initiation and small fatigue crack growth behaviour of squeeze-cast Al-Si aluminium alloys. Fatigue Fract. Eng. Mater. Struct. 20, 237–247 (1997)

    Article  CAS  Google Scholar 

  17. N.E. Dowling, J.A. Begley, Fatigue crack growth during gross plasticity and the J-integral, in Mechanics of Crack Growth(ASTM STP 590, 1976), pp. 82–103

    Google Scholar 

  18. M. Zheng, H.W. Liu, Fatigue crack growth under general-yielding cyclic loading. J. Eng. Mater. Technol. 108, 201–205 (1986)

    Article  Google Scholar 

  19. U. Lindstedt, B. Karlsson, M. Nystrom, Small fatigue cracks in an austenitic stainless steel. Fatigue Fract. Eng. Mater. Struct. 21, 201–213 (1998)

    Article  Google Scholar 

  20. Y. Wang, J. Pan, A plastic fracture mechanics model for characterisation of multiaxial low-fatigue. Int. J. Fatigue 20, 775–784 (1998)

    Article  CAS  Google Scholar 

  21. F. Berto, P. Lazzarin, Yu.G. Matvienko, J-integral evaluation for U- and V-blunt notches under Mode I loading and materials obeying a power hardening law. Int. J. Fract. 146, 33–51 (2007)

    Article  Google Scholar 

  22. O.N. Romaniv, G.N. Nikiforchin, Corrosion Fracture Mechanics of Structural Alloys(Metallurgia, Moscow, 1986) (in Russian)

    Google Scholar 

  23. S. Wu, L. Chen, M. Liu, Distribution of hydrogen concentration near notch tip under mode I loading. Acta Metall. Sin. 26, A86–A90 (1990)

    CAS  Google Scholar 

  24. Yu.G. Matvienko et al., Hydrogen distribution in the fatigue crack zone and crack kinetic in electrolytic hydrogenated 07X16H6. Physicochem. Mech. Mater. 26(3), 9–14 (1990) (in Russian)

    CAS  Google Scholar 

  25. H. Gao et al., Analysis of crack tip hydrogen distribution under I/II mixed model loads. Fatigue Fract. Eng. Mater. Struct. 17, 1213–1220 (1994)

    Article  CAS  Google Scholar 

  26. Yu.G. Matvienko, Local fracture criterion to describe failure assessment diagrams for a body with a crack/notch. Int. J. Fract. 124, 107–112 (2003)

    Article  Google Scholar 

  27. Yu.G. Matvienko, Erratum: local fracture criterion to describe failure assessment diagrams for a body with a crack/notch. Int. J. Fract. 131, 309 (2005)

    Article  Google Scholar 

  28. Yu.G. Matvienko, Failure assessment diagrams in structural integrity analysis, in Damage and Fracture Mechanics. Failure Analysis of Engineering Materials and Structures, ed. by T. Boukharouba, G. Pluvinage, M. Elboujdaini (Springer, New York, 2009), pp. 173–182

    Google Scholar 

  29. T.-L. Sham, The determination of the elastic T-term using higher order weight functions. Int. J. Fract. 48, 81–102 (1991)

    Article  Google Scholar 

  30. P.S. Leevers, J.C. Radon, Inherent stress biaxiality in various fracture specimen. Int. J. Fract. 19, 311–325 (1982)

    Article  Google Scholar 

  31. A.H. Sherry, C.C. France, M.R. Goldthorpe, Compendium of T-stress solution for two and three dimensional cracked geometries. Fatigue Fract. Eng. Mater. Struct. 18, 141–155 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of the project No. 10-08-00393‐a supported by the Russian Foundation of Basic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Matvienko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Matvienko, Y.G. (2011). A Damage Evolution Approach in Fracture Mechanics of Pipelines. In: Bolzon, G., Boukharouba, T., Gabetta, G., Elboujdaini, M., Mellas, M. (eds) Integrity of Pipelines Transporting Hydrocarbons. NATO Science for Peace and Security Series C: Environmental Security, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0588-3_15

Download citation

Publish with us

Policies and ethics