Skip to main content

Protection for Natural Gas Installations Against the Corrosive Effect of Mercury by a Chemical Nickel Coating

  • Conference paper
  • First Online:
Integrity of Pipelines Transporting Hydrocarbons

Part of the book series: NATO Science for Peace and Security Series C: Environmental Security ((NAPSC,volume 1))

  • 1279 Accesses

Abstract

Aluminium in contact with mercury is degraded by amalgamation. This phenomenon is of interest in LNG (Liquefaction of Natural Gas) operations. Where the mercury – either contained in natural gas or from other sources – may be introduced into the system and come into contact with equipment made of aluminium or aluminium alloys (for example, cryogenic exchangers, LNG storage tanks and cargo tanks). Various methods to remove mercury from gas streams are used to trap mercury upstream installations in question by the means of specific absorbers. However, this trapping is not total, and corrosion by mercury even with the state of traces always threatens. In this context, and for the intention of preserving these installations even in the presence of corrosive metal, we recommended a solution which consists in applying a metal chemical nickel coating using the sodium hypophosphite like reducer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.Y. Martin, J. Pigourier, LNG process selection, no easy task, Hydrocarbon Engineering, Axens, 2004

    Google Scholar 

  2. J.M. Van de Graaf, P. Barend, Large-capacity LNG trains, the shell parallel mixed refrigerant process, Business Briefing: Instrumentation & Processing, LNG Review, 2005

    Google Scholar 

  3. T. Goto, A. Furuta, K. Sato, High efficiency mercury removal absorbent for natural gas liquefaction plant, in 10th international Conference Proceeding, Kuala Lumpur, 1992

    Google Scholar 

  4. J.E. Leeper, Mercury corrosion in liquefied gas plants. Energy Process. Can. 73, 46–51 (1981)

    CAS  Google Scholar 

  5. R. Coade, D. Coldham, The interaction of mercury and aluminium in heat exchangers in a natural gas plants. Int. J. Press. Vessels Pip. 83, 336–342 (2006)

    Article  CAS  Google Scholar 

  6. J.J. English, G. Kobrin, R. Serauskas, Liquid mercury embrittlement of aluminium. Materials Selection and Design, 28, 62–63 (1989)

    CAS  Google Scholar 

  7. L. Lacourcelle, Nickelage chimique; Techniques de l’ingénieur. Edition Technip, traité Matériaux métalliques M5 (M1565), 1–14 (1995)

    Google Scholar 

  8. C. Farés, Amélioration du comportement à la corrosion de l’aluminium en présence du mercure par un dépôt de nickel chimique, Master thesis, E.M.P, Alger, 2002

    Google Scholar 

  9. M.H. Brown, W.W. Binger, R.H. Brown, Mercury and its components, a corrosion hazard, in 8th Annual Conference of National Association of Corrosion Engineers, Glaveston, 1952

    Google Scholar 

  10. F.M. Beard, R.A. Hine, The effect of allowing constituents in aluminium of corrosive attack by mercury. Br. Corros. J. 1, 98–101 (1965)

    CAS  Google Scholar 

  11. R.C. Plumb, M.H. Brown, J.E. Lewis, A radiochemical tracer investigation of the role of mercury in the corrosion of aluminum, Corrosion, 11 (N°6) (1956), p. 277t

    Google Scholar 

  12. E.G. Meek, Aluminium corrosion, Science Note SSR, June 1987

    Google Scholar 

  13. M.R. Pinnel, J.E. Bennett, Reactions between mercury-wetted aluminum and water. J. Mater. Sci. 8, 1189 (1973)

    Article  Google Scholar 

  14. M.R. Pinnel, J.E. Bennett, Voluminous oxidation of aluminum by continuous dissolution in a wetting mercury film. J. Mater. Sci. 7, 1016 (1972)

    Article  CAS  Google Scholar 

  15. J.J. Krupowicz, D.S. Hampton, Cracking of aluminium alloy 5083 in mercuric salt solutions, 1989

    Google Scholar 

  16. W.B. Brooks, The hazards of mercury to metals and alloys in process industries and some little known sources of mercury contamination, Corrosion; 24 N° 10, (1968) p. 335

    Google Scholar 

  17. S.M. Wilhelm, A. McArthur, R.D. Kane, Methods to combat liquid metal embrittlement in cryogenic aluminum heat exchangers, in Proceedings of the 73rd GPA Annual Convention, New Orleans, March 1994, pp. 62–71

    Google Scholar 

  18. P.J.L. Fernandes, R.E. Clegg, D.R.H. Jones, Failure by liquid metal induced embrittlement. Eng. Fail. Anal. 1(1), 51–63 (1994)

    Article  CAS  Google Scholar 

  19. J.J. English, D.J Duquette, Mercury liquid embrittlement failure of 5083-0 aluminum alloy piping, Handbook of Case Histories in Failure Analysis, vol. 2, 1993, pp. 207–213

    Google Scholar 

  20. S.P. Lynch, Metal-induced embrittlement of materials. Mater. Charact. 28, 279–289 (1992)

    Article  CAS  Google Scholar 

  21. P. Gordon, Metal-induced embrittlement of metals-an evaluation of embrittler transport mechanisms. Metall. Trans. A 9A, 267–273 (1978)

    CAS  Google Scholar 

  22. L. Lacourcelle, Revêtements métalliques par voie électrolytique. Techniques de l’Ingénieur M5, 1550 (1990). Edition Technip

    Google Scholar 

  23. Y. Badé, Revêtement métallique par voie électrolytique, Nickelage; Techniques de l’Ingénieur, Edition Technip M5 (M1610), (2000) p. 1–14

    Google Scholar 

  24. J.W. Oswald, Dépôts électrolytiques de nickel épais, Centre d’Information de Nickel

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Fares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Fares, C., Merati, A., Belouchrani, M.A., Britah, A. (2011). Protection for Natural Gas Installations Against the Corrosive Effect of Mercury by a Chemical Nickel Coating. In: Bolzon, G., Boukharouba, T., Gabetta, G., Elboujdaini, M., Mellas, M. (eds) Integrity of Pipelines Transporting Hydrocarbons. NATO Science for Peace and Security Series C: Environmental Security, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0588-3_11

Download citation

Publish with us

Policies and ethics