Skip to main content

POSFET I—The Touch Sensing Device

  • Chapter
Robotic Tactile Sensing

Abstract

This chapter presents POSFET devices that can detect contact parameters such as dynamic contact forces and/or temperature variations. Unlike the conventional arrangements where transducer and electronics are separate entities, a POSFET is an “integral sensing unit” comprising of transducer, i.e. P(VDF-TrFE) piezoelectric polymer film, and the electronic unit, i.e. MOS transistor. These novel and integral sensing units are obtained by depositing a P(VDF-TrFE) piezoelectric polymer film on the gate area of MOSFET devices. Accordingly they are termed as POSFET (Piezoelectric-Oxide-Semiconductor-Field-Effect-Transistors) touch sensing devices or simply POSFETs. These devices differ from the extended gates based sensors, discussed in the previous chapter, in terms of the location of piezoelectric material vis-a-vis MOS device. Such difference are described later in this chapter. The structure, working principle, fabrication process, and the experimental evaluation of the POSFETs are presented in following sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Ishiwara, Current status of ferroelectric-gate Si transistors and challenge to ferroelectric-gate CNT transistors. Curr. Appl. Phys. 9, S2–S6 (2009)

    Article  Google Scholar 

  2. H.S. Nalwa, Ferroelectric Polymers: Chemistry, Physics, and Applications (Marcel Dekker, Inc., New York, 1995)

    Google Scholar 

  3. R.S. Dahiya, M. Valle, L. Lorenzelli, SPICE model of lossy piezoelectric polymers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(2), 387–396 (2009)

    Article  Google Scholar 

  4. R.S. Dahiya, G. Metta, M. Valle, L. Lorenzelli, A. Adami, Piezoelectric oxide semiconductor field effect transistor touch sensing devices. Appl. Phys. Lett. 95(3), 034105 (2009)

    Article  Google Scholar 

  5. A.J. Lovinger, Ferroelectric polymers. Science 220(4602), 1115–1121 (1983)

    Article  Google Scholar 

  6. A. Vinogradov, Piezoelectricity in polymers, in Encyclopedia of Smart Materials, vols. 1–2, ed. by M. Schwartz (Wiley, New York, 2002), pp. 780–792

    Google Scholar 

  7. R.G. Swartz, J.D. Plummer, Integrated silicon-PVF2 acoustic transducer arrays. IEEE Trans. Electron Devices 26(12), 1920–1932 (1979)

    Article  Google Scholar 

  8. E.S. Kolesar, R.R. Reston, D.G. Ford, R.C. Fitch, Multiplexed piezoelectric polymer tactile sensor. J. Robot. Syst. 9(1), 37–63 (1992)

    Article  Google Scholar 

  9. J.V. der Spiegel, A. Fiorillo, Method of manufacturing ferroelectric MOSFET sensors. U.S. Patent 5,254,504 (1993)

    Google Scholar 

  10. E.S. Kolesar, C.S. Dyson, Object imaging with a piezoelectric robotic tactile sensor. J. Microelectromech. Syst. 4(2), 87–96 (1995)

    Article  Google Scholar 

  11. R.S. Dahiya, M. Valle, G. Metta, L. Lorenzelli, POSFET based tactile sensor arrays, in IEEE ICECS’07: The 14th International Conference on Electronics, Circuits and Systems, Marrakech, Morocco (2007), pp. 1075–1078

    Chapter  Google Scholar 

  12. B. Razavi, Design of Analog CMOS Integrated Circuits (McGraw-Hill, New York, 2000)

    Google Scholar 

  13. R.S. Dahiya, M. Valle, G. Metta, L. Lorenzelli, A. Adami, Design and fabrication of POSFET devices for tactile sensing, in Proceedings of TRANSDUCERS 2009—The 15th IEEE International Conference on Solid-State Sensors, Actuators and Microsystems (2009), pp. 1881–1884

    Chapter  Google Scholar 

  14. G.S. May, S.M. Sze, Fundamentals of Semiconductor Fabrication (Wiley, New York, 2003)

    Google Scholar 

  15. R.C. Jaeger, Introduction to Microelectronic Fabrication. Modular Series on Solid State Devices, vol. 5 (Prentice Hall, New York, 2001)

    Google Scholar 

  16. S. Martinoia, N. Rosso, M. Grattarola, L. Lorenzelli, B. Margesin, M. Zen, Development of ISFET array-based microsystems for bioelectrochemical measurements of cell populations. Biosens. Bioelectron. 16(9), 1043–1050 (2001)

    Article  Google Scholar 

  17. R.S. Dahiya, M. Valle, L. Lorenzelli, G. Metta, S. Pedrotti, Deposition processing and characterization of PVDF-TrFE thin films for sensing applications, in Proceedings of IEEE Sensors 2008 (2008), pp. 490–493

    Chapter  Google Scholar 

  18. D. Setiadi, P.P.L. Regtien, P.M. Sarro, Application of VDF/TrFE copolymer for pyroelectric image sensors. Sens. Actuators A, Phys. 41–42, 585–592 (1994)

    Article  Google Scholar 

  19. M. Akcan, C. Topacli, Pyroelectric and dielectric properties of spin-coated thin films of vinylidene fluoride-trifluoroethylene copolymers. Polym. Int. 50, 835–840 (2001)

    Article  Google Scholar 

  20. E. Edqvist, N. Snis, S. Johansson, Gentle dry etching of P(VDF-TrFE) multilayer micro actuator structures by use of an inductive coupled plasma. J. Micromech. Microeng. 18, 1–7 (2008)

    Article  Google Scholar 

  21. M.Z. Sleca, R.D. Briggs, W.D. Hunt, A micromachined poly(vinylidene fluoride-trifluoroethylene) transducer for pulse-echo ultrasound applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 257–262 (1996)

    Article  Google Scholar 

  22. A.S. Fiorillo, J. Van Der Spiegel, P.E. Bloomfield, D. Esmail-Zandi, A PVDF-TrFE based integrated ultrasonic transducer. Sens. Actuators A, Phys. A21–A23, 719–725 (1989)

    Article  Google Scholar 

  23. B. Gross, M. Gerhard, A. Berraissoul, G.M. Sessler, Electron-beam poling of piezoelectric polymer electrets. J. Appl. Phys. 62, 1429–1432 (1987)

    Article  Google Scholar 

  24. D. Setiadi, T.D. Binnie, P.P.L. Regtien, M. Wubbenhorst, Poling of VDF/TrFE copolymers using a step-wise method, in 9th International Symposium on Electrets, Shanghai, China (1996)

    Google Scholar 

  25. C.B. Sawyer, C.H. Tower, Rochelle salt as a dielectric. Phys. Rev. 35(3), 269–273 (1930)

    Article  Google Scholar 

  26. P. Antognetti, G. Massobrio, Semiconductor Device Modeling with Spice (McGraw-Hill, New York, 1993)

    Google Scholar 

  27. A.T. Bradley, R.C. Jaeger, J.C. Suhling, K.J. O’Connor, Piezoresistive characteristics of short-channel MOSFETs on (100) silicon. IEEE Trans. Electron Devices 48(9), 2009–2015 (2001)

    Article  Google Scholar 

  28. R.S. Dahiya, L. Lorenzelli, G. Metta, M. Valle, POSFET devices based tactile sensing arrays, in Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS) (2010), pp. 893–896

    Chapter  Google Scholar 

  29. R.S. Dahiya, Human-inspired tactile sensing, in Learning from Nature: Biologically-Inspired Sensors, ed. by D.H.B. Wicaksono, P. French (Springer, Berlin, 2010), pp. 455–476

    Google Scholar 

  30. R.S. Dahiya, G. Metta, M. Valle, G. Sandini, Tactile sensing—from humans to humanoids. IEEE Trans. Robot. 26(1), 1–20 (2010)

    Article  Google Scholar 

  31. R.S. Johannson, I. Birznieks, First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nat. Neurosci. 7(2), 170–177 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dahiya, R.S., Valle, M. (2013). POSFET I—The Touch Sensing Device. In: Robotic Tactile Sensing. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0579-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0579-1_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0578-4

  • Online ISBN: 978-94-007-0579-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics