Skip to main content

Dynamic Inner Magnetosphere: A Tutorial and Recent Advances

  • Chapter
  • First Online:
The Dynamic Magnetosphere

Part of the book series: IAGA Special Sopron Book Series ((IAGA,volume 3))

Abstract

The purpose of this chapter is to present a tutorial and recent advances on the Earth’s inner magnetosphere, which includes the plasmasphere, warm plasma, ring current, and radiation belts. Recent analysis and modeling efforts have revealed the detailed structure and dynamics of the inner magnetosphere. It has been clearly recognized that elementary processes can affect and be affected by each other. From this sense, the following two different approaches enable us to fully understand the inner magnetosphere and magnetic storms. The first is to investigate its elementary processes, which would include the transport of single particles, interaction between particles and waves, and collisions. The other approach is to integrate the elementary processes in terms of cross energy and cross region couplings. Multi-satellite observations along with ground-network observations and comprehensive simulations are one of the promising avenues to incorporate the two approaches and treat the inner magnetosphere as a non-linear, compound system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel B, Thorne RM (1998a) Electron scattering loss in the Earth’s inner magnetosphere, 1. Dominant physical processes. J Geophys Res 103:2385–2396

    Article  Google Scholar 

  • Abel B, Thorne RM (1998b) Electron scattering loss in the Earth’s inner magnetosphere, 2. Sensitivity to model parameters. J Geophys Res 103:2397–2407

    Article  Google Scholar 

  • Abel B, Thorne RM, Vampola AL (1994) Solar cycle behavior of trapped energetic electrons in Earth’s radiation belt. J Geophys Res 99:19427–19431

    Article  Google Scholar 

  • Abe T, Watanabe S, Whalen BA, Yau AW, Sagawa E (1996) Observations of polar wind and thermal ion outflow by Akebono/SMS. J Geomagn Geoelectr 48:319–325

    Google Scholar 

  • Aggson TL, Heppner JP, Maynard NC (1983) Observations of large magnetospheric electric fields during the onset phase of a substorm. J Geophys Res 88:3981–3990

    Article  Google Scholar 

  • Akasofu S-I, Chapman S (1964) On the asymmetric development of magnetic storm fields in low and middle latitudes. Planet Space Sci 12:607–626

    Article  Google Scholar 

  • Albert JM (1994) Quasi-linear pitch angle diffusion coefficients: Retaining high harmonics. J Geophys Res 99:23741–23745

    Article  Google Scholar 

  • Albert JM (1999) Analysis of quasi-linear diffusion coefficients. J Geophys Res 104:2429–2441

    Article  Google Scholar 

  • Albert JM (2000) Pitch angle diffusion as seen by CRRES. Adv Space Res 12:2343–2346

    Article  Google Scholar 

  • Albert JM (2003) Evolution of quasi-linear diffusion coefficients for EMIC waves in a multispecies plasma. J Geophys Res. doi:10.1029/2002JA009792

    Google Scholar 

  • Albert JM, Ginet G, Gussenhoven M (1998) CRRES observations of radiation belt protons 1. Data overview and steady state radial diffusion. J Geophys Res 103:9261–9273

    Article  Google Scholar 

  • Albert JM, Meredith NP, Horne RB (2009) Three‐dimensional diffusion simulation of outer radiation belt electrons during the 9 October 1990 magnetic storm. J Geophys Res. doi:10.1029/2009JA014336

    Google Scholar 

  • Anderson BJ, Fuselier SA (1994) Response of thermal ions to electromagnetic ion cyclotron waves. J Geophys Res 99:19413–19425

    Article  Google Scholar 

  • Anderson BJ, Erlandson RE, Zanetti LJ (1992) A statistical study of pc 1–2 magnetic pulsations in the equatorial magnetosphere, 1. Equatorial occurrence distributions. J Geophys Res 97:3075–3088

    Article  Google Scholar 

  • Anderson PC, Hanson WB, Heelis RA, Craven JD, Baker DN, Frank LA (1993) A proposed production model of rapid subauroral ion drifts and their relationship to substorm evolution. J Geophys Res 98:6069–6078

    Article  Google Scholar 

  • Anderson PC, Carpenter DL, Tsuruda K, Mukai T, Rich FJ (2001) Multisatellite observations of rapid subauroral ion drifts (SAID). J Geophys Res 106:29585–29599. doi:10.1029/2001JA000128

    Article  Google Scholar 

  • Anderson PC, Johnston WR, Goldstein J (2008) Observations of the ionospheric projection of the plasmapause. Geophys Res Lett. doi:10.1029/2008GL033978

    Google Scholar 

  • Baker DN, Blake JB, Klebesadel RW, Higbie PR (1986) Highly relativistic electrons in the Earth’s outer magnetosphere, 1. Lifetimes and temporal history 1979–1984. J Geophys Res 91:4265–4276

    Article  Google Scholar 

  • Baker DN, Pulkkinen T, Li X, Kanekal S, Blake JB, Selesnick RS, Henderson MG, Reeves GD, Spence HE, Rostoker G (1998a) Coronal mass ejection, magnetic clouds, and relativistic electron events: ISTP. J Geophys Res 103:17279–17291

    Article  Google Scholar 

  • Baker DN, Pulkkinen TI, Li X, Kanekal SG, Ogilivie KW, Lepping RP, Blake JB, Callis LB, Rostoker G, Singer HJ, Reeves GD (1998b) A strong CME-related magnetic cloud interaction with the Earth’s magnetosphere: ISTP observations of rapid relativistic electron acceleration on May 15:1997. Geophys Res Lett 25:2975–2978

    Article  Google Scholar 

  • Baker DN, Kanekal SG, Pulkkinen TI, Blake JB (1999) Equinoctial and solstitial averages of magnetospheric relativistic electrons: a strong semiannual modulation. Geophys Res Lett 26:3163–3196

    Google Scholar 

  • Baker DN, Kanekal SG, Li X, Monk SP, Goldstein J, Burch JL (2004) An extreme distortion of the Van Allen belt arising from the "Halloween" solar storm in 2003. Nature 432:878–881

    Article  Google Scholar 

  • Baker DN, Kanekal SG (2008) Solar cycle changes, geomagnetic variations, and energetic particle properties in the inner magnetosphere. J Atmos Solar-Terr Phys 70:195–206

    Article  Google Scholar 

  • Barnett CF (1990) Atomic data for fusion, vol I, Collisions of H, H2, He and Li atoms and ions with atoms and molecules. Technical Report ORNL–6086/VI, Oak Ridge National Laboratory, Oak Ridge, TN

    Google Scholar 

  • Baumgardner J, Wroten J, Semeter J, Kozyra J, Buonsanto M, Erickson P, Mendillo M (2007) A very bright SAR arc: implications for extreme magnetosphere-ionosphere coupling. Ann Geophys 25:2593–2608

    Article  Google Scholar 

  • Baumjohann W, Haerendel G (1985) Magnetospheric convection observed between 0600 and 2100 LT: solar wind and IMF dependence. J Geophys Res 90:6370–6378

    Article  Google Scholar 

  • Baumjohann W, Paschmann G, Cattell CA (1989) Average plasma properties in the central plasma sheet. J Geophys Res 94:6597

    Article  Google Scholar 

  • Beutier T, Boscher D, France M (1995) SALAMMBO: a three-dimensional simulation of the proton radiation belt. J Geophys Res 100:17181–17188

    Article  Google Scholar 

  • Birn J, Thomsen MF, Borovsky JE, Reeves GD, McComas DJ, Belian RD (1997a) Characteristic plasma properties during dispersionless substorm injections at geosynchronous orbit. J Geophys Res 102:2309–2324

    Article  Google Scholar 

  • Birn J, Thomsen MF, Borovsky JE, Reeves GD, McComas DJ, Belian RD, Hesse M (1997b) Substorm ion injections: geosynchronous observations and test particle orbits in three-dimensional dynamic MHD fields. J Geophys Res 102:2325–2341

    Article  Google Scholar 

  • Blake JB, Baker DN, Turner N, Ogilvie KW, Lepping RP (1997) Correlation of changes in the outer zone relativistic electron population with upstream solar wind and magnetic field measurements. Geophys Res Lett 24:927–929

    Article  Google Scholar 

  • Blake JB, Kolasinski WA, Fillius RW, Mullen EG (1992) Injection of electrons and protons with energies of tens of MeV into L < 3 on 24 March 1991. Geophys Res Lett 19:821–824

    Article  Google Scholar 

  • Borovsky JE, Denton MH (2006) Differences between CME-driven storms and CIR-driven storms. J Geophys Res. doi:10.1029/2005JA011447

    Google Scholar 

  • Borovsky JE, Denton MH (2008) A statistical look at plasmaspheric drainage plumes. J Geophys Res. doi:10.1029/2007JA012994

    Google Scholar 

  • Borovsky JE, Denton MH (2009) Relativistic-electron dropouts and recovery: a superposed epoch study of the magnetosphere and the solar wind. J Geophys Res. doi:10.1029/2008JA013128

    Google Scholar 

  • Borovsky JE, Thomsen MF, McComas DJ (1997) The superdense plasma sheet: Plasmaspheric origin, solar wind origin or ionospheric origin? J Geophys Res 102:22089–22097

    Google Scholar 

  • Borovsky JE, Thomsen MF, Elphic RC (1998) The driving of the plasma sheet by the solar wind. J Geophys Res 103:17617–17639

    Article  Google Scholar 

  • Borovsky JE, Lavraud B, Kuznetsova MM (2009) Polar cap potential saturation, dayside reconnection, and changes to the magnetosphere. J Geophys Res. doi:10.1029/2009JA014058

    Google Scholar 

  • Bortnik J, Thorne RM (2007) The dual role of ELF/VLF chorus waves in the acceleration and precipitation of radiation belt electrons. J Atmos Solar-Terr Phys 69:378–376

    Google Scholar 

  • Bortnik J, Inan US, Bell TF (2006a) Temporal signatures of radiation belt electron precipitation induced by lightning-generated MR whistler waves: 1. Methodology. J Geophys Res. doi:10.1029/2005JA01182

    Google Scholar 

  • Bortnik J, Inan US, Bell TF (2006b) Temporal signatures of radiation belt electron precipitation induced by lightning-generated MR whistler waves: 2. Global signatures. J Geophys Res. doi:10.1029/2005JA011398

    Google Scholar 

  • Bortnik J, Thorne RM, O’Brien TO, Green JC, Strangeway RJ, Shprits YY, Baker DN (2006c) Observation of two distinct rapid loss-mechanisms during the November 20:2003 radiation belt dropout event. J Geophys Res. doi:10.1029/2006JA011802

    Google Scholar 

  • Bortnik J, Thorne RM, Meredith NP (2007) Modeling the propagation characteristics of chorus using CRRES suprathermal electron fluxes. J Geophys Res. doi:10.1029/2006JA012237

    Google Scholar 

  • Bortnik J, Thorne RM, Inan US (2008) Nonlinear interaction of energetic electrons with large amplitude chorus. Geophys Res Lett. doi:10.1029/2008GL035500

    Google Scholar 

  • Brandt PC, Mitchell DG, Ebihara Y, Sandel BR, Roelof EC, Burch JL, Demajistre R (2002a) Global IMAGE/HENA observations of the ring current: Examples of rapid response to IMF and ring current-plasmasphere interaction. J Geophys Res. doi:10.1029/2001JA000084

    Google Scholar 

  • Brandt PC, Ohtani S, Mitchell DG, Fok M-C, Roelof EC, Demajistre R (2002b) Global ENA observations of the storm mainphase ring current: Implications for skewed electric fields in the inner magnetosphere. Geophys Res Lett. doi:10.1029/2002GL015160

    Google Scholar 

  • Brandt PC, Roelof EC, Ohtani S, Mitchell DG, Anderson B (2004) IMAGE/HENA: pressure and current distributions during the 1 October 2002 storm. Adv Space Res 33. Streamers, slow solar wind, and the dynamics of the magnetosphere, pp 719–722

    Google Scholar 

  • Brandt PC, Zheng Y, Sotirelis TS, Oksavik K, Rich FJ (2008) The linkage between the ring current and the ionosphere system. In: Kintner PM, Coster AJ, Fuller-Rowell T, Mannucci AJ, Mendillo M, Heelis R (eds) Midlatitude ionospheric dynamics and disturbances. Geophysical monograph series, vol 181. AGU, Washington, DC, pp 135–143

    Google Scholar 

  • Breneman AW, Kletzing CA, Pickett J, Chum J, Santolik O (2009) Statistics of multispacecraft observations of chorus dispersion and source location. J Geophys Res. doi:10.1029/2008JA013549

    Google Scholar 

  • Brice NM (1967) Bulk Motion of the Magnetosphere. J Geophys Res 72:5193–5211

    Article  Google Scholar 

  • Burch JL et al (2001) Views of the Earth’s magnetosphere with the IMAGE satellite. Science 291:619

    Article  Google Scholar 

  • Burch JL, Goldstein J, Sandel BR (2004) Cause of plasmasphere corotation lag. Geophys Res Lett. doi:10.1029/2003GL019164

    Google Scholar 

  • Burke WJ, Gentile LC, Huang CY (2007) Penetration electric fields driving main phase Dst. J Geophys Res. doi:10.1029/2006JA012137

    Google Scholar 

  • Büchner J, Zelenyi L (1989) Regular and chaotic charged particle motion in magnetotaillike field reversals, 1. Basic theory of trapped motion. J Geophys Res 94:11821–11842

    Article  Google Scholar 

  • Cahill LJ (1966) Inflation of the inner magnetosphere during a magnetic storm. J Geophys Res 71:4505–4519

    Google Scholar 

  • Carpenter DL (1963) Whistler evidence of a ‘knee’ in the magnetospheric ionization density profile. J Geophys Res 68:1675–1682

    Article  Google Scholar 

  • Carpenter DL (1966) Whistler studies of the plasmapause in the magnetosphere 1. Temporal variations in the position of the knee and some evidence on plasma motions near the knee. J Geophys Res 71:693–709

    Google Scholar 

  • Carpenter DL, Anderson RR (1992) An ISEE/whistler model of equatorial electron density in the magnetosphere. J Geophys Res 97:1097–1108

    Article  Google Scholar 

  • Carpenter DL, Lemaire J (1997) Erosion and recovery of the plasmasphere in the plasmapause region. Space Sci Rev 80:153–179

    Article  Google Scholar 

  • Carpenter DL, Lemaire J (2004) The plasmasphere boundary layer. Ann Geophys 22:4291–4298

    Article  Google Scholar 

  • Carpenter DL, Anderson RR, Calvert W, Moldwin MB (2000) CRRES observations of density cavities inside the plasmasphere. J Geophys Res 105:23323–23338

    Article  Google Scholar 

  • Chappell CR (1972) Recent satellite measurements of the morphology and dynamics of the plasmasphere. Rev Geophys 10:951–979

    Article  Google Scholar 

  • Chappell CR (1974) Detached plasma regions in the magnetosphere. J Geophys Res 79:1861–1870

    Article  Google Scholar 

  • Chappell CR, Harris KK, Sharp GW (1970) A study of the influence of magnetic activity on the location of the plasmapause as measured by OGO 5. J Geophys Res 75:50–56

    Article  Google Scholar 

  • Chappell CR, Olsen RC, Green JL, Johnson JFE, Waite JH Jr (1982) The discovery of nitrogen ions in the Earth’s magnetosphere. Geophys Res Lett 9:937–940

    Article  Google Scholar 

  • Chappell CR, Huddleston MM, Moore TE, Giles BL, Delcourt DC (2008) Observations of the warm plasma cloak and an explanation of its formation in the magnetosphere. J Geophys Res. doi:10.1029/2007JA012945

    Google Scholar 

  • Chapman S, Ferraro VCA (1933) A new theory of magnetic storms. Terr Magn Atmos Electr 38:79–96

    Article  Google Scholar 

  • Chen AJ, Grebowsky JM (1974) Plasma tail interpretations of pronounced detached plasma regions measured by Ogo 5. J Geophys Res 79:3851–3855

    Article  Google Scholar 

  • Chen L, Hasegawa A (1974) A theory of long-period magnetic pulsations: Impulse excitation of surface eigenmode. J Geophys Res 79:1033–1037

    Article  Google Scholar 

  • Chen M, Lyons L, Schulz M (1994) Simulations of phase space distributions of storm time proton ring current. J Geophys Res 99:5745–5759

    Article  Google Scholar 

  • Chen Y, Friedel RHW, Reeves GD (2006) Phase space density distributions of energetic electrons in the outer radiation belt during two Geospace Environment Modeling Inner Magnetosphere/Storms selected storms. J Geophys Res. doi:10.1029/2006JA011703

    Google Scholar 

  • Chen Y, Reeves GD, Friedel RHW (2007) The energization of relativistic electrons in the outer Van Allen radiation belt. Nat Phys. doi:10.1038/nphys655

    Google Scholar 

  • Chen L, Thorne RM, Horne RB (2009) Simulation of EMIC wave excitation in a model magnetosphere including structured high-density plumes. J Geophys Res. doi:10.1029/2009JA014204

    Google Scholar 

  • Christon SP, Desai MI, Eastman TE, Gloeckler G, Kokubun S, Lui ATY, McEntire RW, Roelof EC, Williams DJ (2000) Low-charge-state heavy ions upstream of Earth’s bow shock and sunward flux of ionospheric O+1, N+1, and O+2 ions: geotail observations. Geophys Res Lett 27:2433–2436

    Article  Google Scholar 

  • Cladis JB, Francis WE (1992) Distribution in magnetotail of O+ ions from cusp/cleft ionosphere: a possible substorm trigger. J Geophys Res 97:123–130

    Article  Google Scholar 

  • Claudepierre SG, Elkington SR, Wiltberger M (2008) Solar wind driving of magnetospheric ULF waves: Pulsations driven by velocity shear at the magnetopause. J Geophys Res. doi:10.1029/2007JA012890

    Google Scholar 

  • Clauer CR, McPherron RL (1980) The relative importance of the interplanetary electric field and magnetospheric substorms on partial ring current development. J Geophys Res 85:6747–6759

    Article  Google Scholar 

  • Cole KD (1965) Stable auroral red arcs, Sinks for energy of Dst main phase. J Geophys Res 70:1689–1706

    Article  Google Scholar 

  • Collin HL, Quinn JM, Cladis JB (1993) An empirical static model of low energy ring current ions. Geophys Res Lett. 20:141–144

    Article  Google Scholar 

  • Comfort RH, Horwitz JL (1981) Low energy ion pitch angle distributions observed on the dayside at geosynchronous altitudes. J Geophys Res 86:1621–1627

    Article  Google Scholar 

  • Cornwall JM (1977) On the role of charge exchange in generating unstable waves in the ring current. J Geophys Res 82:1188–1196

    Article  Google Scholar 

  • Cornwall JM, Coroniti FV, Thorne RM (1970) Turbulent loss of ring current protons. J Geophys Res 75:4699–4709

    Article  Google Scholar 

  • Craven JD, Frank LA, Ackerson KL (1982) Global observations of a SAR arc. Geophys Res Lett 9:961–964

    Article  Google Scholar 

  • Daglis IA, Axford WI (1996) Fast ionospheric response to enhanced activity in geospace: ion feeding of the inner magnetotail. J Geophys Res 101:5047–5065

    Article  Google Scholar 

  • Daglis IA, Sarris ET, Wilken B (1993) AMPTE/CCE CHEM observations of the ion population at geosynchronous altitudes. Ann Geophys 11:685

    Google Scholar 

  • Daglis IA, Kasotakis G, Sarris ET, Kamide Y, Livi S, Wilken B (1999) Variations of the ion composition during an intense magnetic storm and their consequences. Phys Chem Earth 24:229–232

    Google Scholar 

  • Daglis IA, Kamide Y, Monikis C, Reeves GD, Sarris ET, Shiokawa K, Wilken B (2000) ‘Fine structure’ of the storm-substorm relationship: ion injections during DST decrease. Adv Space Res 25:2369–2372

    Article  Google Scholar 

  • Darrouzet, F, Décréau PME, De Keyser J, Masson A, Gallagher DL, Santolik O, Sandel BR, Trotignon JG, Rauch JL, Le Guirriec E, Canu P, Sedgemore F, André M, Lemaire JF (2004) Density structures inside the plasmasphere: Cluster observations. Ann Geophys 22:2577–2585

    Article  Google Scholar 

  • De Benedetti J, Milillo A, Orsini S, Mura A, De Angelis E, Daglis IA (2005) Empirical model of the inner magnetosphere H+ pitch angle distributions. In: Pulkkinen TI, Tsyganenko NA, Friedel RHW (eds) The inner magnetosphere: physics and modeling. Geophysical monograph series, vol 38. AGU, Washington, DC, pp 283–291

    Google Scholar 

  • DeForest SE, McIlwain CE (1971) Plasma clouds in the magnetosphere. J Geophys Res 76:3587

    Article  Google Scholar 

  • Degeling AW, Ozeke LG, Rankin R, Mann IR, Kabin K (2008) Drift resonance generation of peaked relativistic electron distributions by Pc5 ULF waves. J Geophys Res. doi:10.1029/2007JA012411

    Google Scholar 

  • Delcourt D, Sauvaud J-A, Martin R Jr, Moore T (1996) On the nonadiabatic precipitation of ions from the near-Earth plasma sheet. J Geophys Res 101:17409–17418

    Article  Google Scholar 

  • De Michelis P, Daglis IA, Consolini G (1997) Average terrestrial ring current derived from AMPTE/CCE–CHEM measurements. J Geophys Res 102:14103–14111

    Article  Google Scholar 

  • De Michelis P, Daglis IA, Consolini G (1999) An average image of proton plasma pressure and of current systems in the equatorial plane derived from AMPTE/CCE-CHEM measurements. J Geophys Res 104:28615–28624

    Article  Google Scholar 

  • Denton MH, Borovsky JE (2008) Superposed epoch analysis of high-speed-stream effects at geosynchronous orbit: hot plasma, cold plasma, and the solar wind. J Geophys Res. doi:10.1029/2007JA012998

    Google Scholar 

  • Denton RE, Goldstein J, Menietti JD (2002) Field line dependence of magnetospheric electron density. Geophys Res Lett. doi:10.1029/2002GL015963

    Google Scholar 

  • Denton MH, Borovsky JE, Skoug RM, Thomsen MF, Lavraud B, Henderson MG, McPherron RL, Zhang JC, Liemohn MW (2006) Geomagnetic storms driven by ICME- and CIR-dominated solar wind. J Geophys Res. doi:10.1029/2005JA011436

    Google Scholar 

  • Denton RE, Décréau P, Engebretson MJ, Darrouzet F, Posch JL, Mouikis C, Kistler LM, Cattell CA, Takahashi K, Schäfer S, Goldstein J (2009) Field line distribution of density at L = 4.8 inferred from observations by CLUSTER. Ann Geophys 27:705–724.

    Article  Google Scholar 

  • Dessler AJ, Parker EN (1959) Hydromagnetic theory of geomagnetic storms. J Geophys Res 64:2239–2252.

    Article  Google Scholar 

  • Dessler AJ, Karplus R (1961) Some effects of diamagnetic ring currents on Van Allen radiation. J Geophys Res 66:2289–2295

    Article  Google Scholar 

  • Dungey JW (1961) Interplanetary magnetic field and the auroral zones. Phys Rev Lett 6:47–48

    Article  Google Scholar 

  • Ebihara Y, Ejiri M (1998) Modeling of solar wind control of the ring current buildup: A case study of the magnetic storms in April 1997. Geophys Res Lett 25:3751–3754

    Article  Google Scholar 

  • Ebihara Y, Ejiri M (2000) Simulation study on fundamental properties of the storm-time ring current. J Geophys Res 105:15843–15859

    Article  Google Scholar 

  • Ebihara Y, Ejiri M (2003) Numerical simulation of the ring current: review. Space Sci Rev 105:377–452

    Article  Google Scholar 

  • Ebihara Y, Fok M-C (2004) Postmidnight storm–time enhancements of tens-of-keV proton flux. J Geophys Res. doi:10.1029/2004JA010523

    Google Scholar 

  • Ebihara Y, Yamauchi M, Nilsson H, Lundin R, Ejiri M (2001) Wedge-like dispersion of sub-keV ions in the dayside magnetosphere: particle simulation and Viking observation. J Geophys Res 106:29571–29584

    Article  Google Scholar 

  • Ebihara Y, Ejiri M, Nilsson H, Sandahl I, Milillo A, Grande M, Fennell JF, Roeder JL (2002) Statistical distribution of the storm–time proton ring current: POLAR measurements. Geophys Res Lett. doi:10.1029/2002GL015430

    Google Scholar 

  • Ebihara Y, Ejiri M, Sandahl I, Nilsson H, Grande M, Fennell JF, Roeder JL, Ganushkina N Yu, Milillo A (2004a) Structure and dynamics on the proton energy density in the inner magnetosphere. Adv Space Res 33:711–718

    Article  Google Scholar 

  • Ebihara Y, Fok M-C, Wolf RA, Immel TJ, Moore TE (2004b) Influence of ionosphere conductivity on the ring current. J Geophys Res. doi:10.1029/2003JA010351

    Google Scholar 

  • Ebihara Y, Fok M-C, Sazykin S, Thomsen MF, Hairston MR, Evans DS, Rich FJ, Ejiri M (2005a) Ring current and the magnetosphere–ionosphere coupling during the super storm of 20 November 2003. J Geophys Res. doi:10.1029/2004JA010924

    Google Scholar 

  • Ebihara Y, Fok M-C, Wolf RA, Thomsen MF, Moore TE (2005b) Nonlinear impact of the plasma sheet density on the ring current. J Geophys Res. doi:10.1029/2004JA010435

    Google Scholar 

  • Ebihara Y, Yamada M, Watanabe S, Ejiri M (2006) Fate of outflowing suprathermal oxygen ions that originate in the polar ionosphere. J Geophys Res. doi:10.1029/2005JA011403

    Google Scholar 

  • Ebihara Y, Fok M-C, Blake JB, Fennell JF (2008a) Magnetic coupling of the ring current and the radiation belt. J Geophys Res. doi:10.1029/2008JA013267

    Google Scholar 

  • Ebihara Y, Kistler LM, Eliasson L (2008b) Imaging cold ions in the plasma sheet from the Equator-S satellite. J Geophys Res Lett. doi:10.1029/2008GL034357

    Google Scholar 

  • Ebihara Y, Nishitani N, Kikuchi T, Ogawa T, Hosokawa K, Fok M-C (2008c) Two-dimensional observations of overshielding during a magnetic storm by the Super Dual Auroral Radar Network (SuperDARN) Hokkaido radar. J Geophys Res. doi:10.1029/2007JA012641

    Google Scholar 

  • Ebihara Y, Kasahara S, Seki K, Miyoshi Y, Fritz TA, Chen J, Grande M, Zurbuchen TH (2009a) Simultaneous entry of oxygen ions originating from the Sun and Earth into the inner magnetosphere during magnetic storms. J Geophys Res. doi:10.1029/2009JA014120

    Google Scholar 

  • Ebihara Y, Nishitani N, Kikuchi T, Ogawa T, Hosokawa K, Fok M-C, Thomsen MF (2009b) Dynamical property of storm time subauroral rapid flows as a manifestation of complex structures of the plasma pressure in the inner magnetosphere. J Geophys Res. doi:10.1029/2008JA013614

    Google Scholar 

  • Ejiri M (1978) Trajectory traces of charged particles in the magnetosphere. J Geophys Res 83:4798–4810

    Article  Google Scholar 

  • Ejiri M (1981) Shielding of the magnetospheric convection electric field and energetic charged particle penetrations towards the Earth. In: Magnetospheric Dynamics, Proceedings of the 1980 ISAS Symposium on Magneto-Ionosphere. Institute of Space and Aeronautical Science, University of Tokyo, Tokyo, p. 113

    Google Scholar 

  • Ejiri M, Hoffman RA, Smith PH (1980) Energetic particle penetrations into the inner magnetosphere. J Geophys Res 85(A2):653–663

    Article  Google Scholar 

  • Elkington SR (2006) A review of ULF interactions with radiation belt electrons. In: Takahashi K, Chi PJ, Denton RE, Lysak RL (eds) Magnetospheric ULF waves: synthesis and new directions. AGU, Washington, DC, pp 177–193

    Google Scholar 

  • Elkington SR, Hudson MK, Chan AA (1999) Acceleration of relativistic electrons via drift-resonant interaction with toroidal-mode Pc-5 ULF oscillations. Geophys Res Lett 26:3273–3276

    Article  Google Scholar 

  • Elkington SR, Hudson MK, Chan AA (2003) Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field. J Geophys Res. doi:10.1029/2001JA009202

    Google Scholar 

  • Elphic RC, Weiss LA, Thomsen MF, McComas DJ, Moldwin MB (1996) Evolution of plasmaspheric ions at geosynchronous orbit during times of high geomagnetic activity. Geophys Res Lett 23:2189–2192

    Article  Google Scholar 

  • Elphic RC, Thomsen MF, Borovsky JE (1997) The fate of the outer plasmasphere. Geophys Res Lett 24:365–368

    Article  Google Scholar 

  • Engebretson MJ et al (2007) Cluster observations of Pc 1-2 waves and associated ion distributions during the October and November 2003 magnetic storms. Planet Space Sci 55:829–848

    Article  Google Scholar 

  • Erickson GM, Spiro RW, Wolf RA (1991) The physics of the Harang discontinuity. J Geophys Res 96:1633–1645

    Article  Google Scholar 

  • Farrugia CJ, Young DT, Geiss J, Balsiger H (1989) The composition, temperature, and density structure of cold ions in the quiet terrestrial plasmasphere: GEOS 1 results. J Geophys Res 94:11865–11891

    Article  Google Scholar 

  • Fejer BG, Gonzales CA, Farley DT, Kelley MC, Woodman RF (1979) Equatorial electric fields during magnetically disturbed conditions, 1. The effect of the interplanetary magnetic field. J Geophys Res 84:5797–5802

    Article  Google Scholar 

  • Fennell JF, Croley DR Jr, Kaye SM (1981) Low-energy ion pitch angle distribution in the magnetosphere: ion zipper distributions. J Geophys Res 86:3375

    Article  Google Scholar 

  • Fennell JF, Roeder JL (2008) Storm time phase space density radial profiles of energetic electrons for small and large K values: SCATHA results. J Atmos Solar-Terr Phys 70:1760–1773

    Article  Google Scholar 

  • Foat JE, Lin RP, Smith DM, Fenrich F, Millan R, Roth I, Lorentzen KR, McCarthy MP, Parks GK, Treilhou JP (1995) First detection of a terrestrial MeV X-ray burst. Geophys Res Lett 25:4109–4112

    Article  Google Scholar 

  • Fok M-C, Kozyra JU, Nagy A, Cravens T (1991) Lifetime of ring current particles due to coulomb collisions in the plasmasphere. J Geophys Res 96:7861–7867

    Article  Google Scholar 

  • Fok M-C, Moore TE, Kozyra JU, Ho GC, Hamilton DC (1995) Three-dimensional ring current decay model. J Geophys Res 100:9619–9632

    Article  Google Scholar 

  • Fok M-C, Moore TE, Greenspan ME (1996) Ring current development during storm main phase. J Geophys Res 101:15311–15322

    Article  Google Scholar 

  • Fok M-C, Moore TE, Delcourt DC (1999) Modeling of inner plasma sheet and ring current during substorms. J Geophys Res 104:14557–14569

    Article  Google Scholar 

  • Fok M-C, Wolf RA, Spiro RW, Moore TE (2001) Comprehensive computational model of Earth’s ring current. J Geophys Res 106:8417–8424

    Article  Google Scholar 

  • Fok M-C, Horne RB, Meredith NP, Glauert SA (2008) Radiation Belt Environment model: application to space weather nowcasting. J Geophys Res. doi:10.1029/2007JA012558

    Google Scholar 

  • Foster JC, Vo HB (2002) Average characteristics and activity dependence of the subauroral polarization stream. J Geophys Res. doi:10.1029/2002JA009409

    Google Scholar 

  • Foster JC, Coster AJ, Erickson PJ, Rich FJ, Sandel BR (2004a) Stormtime observations of the flux of plasmaspheric ions to the dayside cusp/magnetopause. Geophys Res Lett. doi:10.1029/2004GL020082

    Google Scholar 

  • Foster JC, Erickson PJ, Lind FD, Rideout W (2004b) Millstone Hill coherent-scatter radar observations of electric field variability in the sub-auroral polarization stream. Geophys Res Lett. doi:10.1029/2004GL021271

    Google Scholar 

  • Frahm RA, Reiff PH, Winningham JD, Burch JL (1986) Banded ion morphology: main and recovery storm phases. In: Chang T et al (eds) Ion acceleration in the magnetosphere and ionosphere. Geophysical monograph series, vol 38. AGU, Washington, DC, pp 98–107

    Google Scholar 

  • Frank LA (1967) On the extraterrestrial ring current during geomagnetic storms. J Geophys Res 72:3753–3767

    Article  Google Scholar 

  • Freeman JW Jr (1969) Magnetospheric wind. Science 63:1061–1062

    Article  Google Scholar 

  • Friedel RHW, Korth A, Kremser G (1996) Substorm onsets observed by CRRES: Determination of energetic particle source regions. J Geophys Res 101:13137–13154

    Article  Google Scholar 

  • Friedel RH, Reeves GD, Obara T (2002) Relativistic electron dynamics in the inner magnetosphere – a review. J Atmos Solar-Terr Phys 64:265–282

    Article  Google Scholar 

  • Fritz TA, Chen J, Siscoe GL (2003) Energetic ions, large diamagnetic cavities, and Chapman-Ferraro cusp. J Geophys Res. doi:10.1029/2002JA009476

    Google Scholar 

  • Fujimoto M, Nishida A (1990) Energization and anisotropization of energetic electrons in the Earth’s radiation belt by the recirculation process. J Geophys Res 95:4265–4270

    Article  Google Scholar 

  • Fujimoto M, Terasawa T, Mukai T, Saito T, Yamamoto T, Kokubun S (1998) Plasma entry from the flanks of the near-Earth magnetotail: geotail observations. J Geophys Res 103:4391–4408

    Article  Google Scholar 

  • Fung SF, Shao X, Tan LC (2006) Long-term variations of the electron slot region and global radiation belt structure. Geophys Res Lett. doi:10.1029/2005GL024891

    Google Scholar 

  • Fuselier SA, Gary SP, Thomsen MF, Claflin ES, Hubert B, Sandel BR, Immel T (2004) Generation of transient dayside subauroral proton precipitation. J Geophys Res. doi:10.1029/2004JA010393

    Google Scholar 

  • Galand M, Fuller-Rowell TJ, Codrescu MV (2001) Response of the upper atmosphere to auroral protons. J Geophys Res 106:127–139

    Article  Google Scholar 

  • Galand M, Richmond AD (2001) Ionospheric electrical conductances produced by auroral proton precipitation. J Geophys Res 106:117–125

    Article  Google Scholar 

  • Gallager DL, Adrian ML (2007) Two-dimensional drift velocities from the IMAGE EUV plasmaspheric imager. J Atmos Solar-Terr Phys 69:341–350

    Article  Google Scholar 

  • Galperin YI, Ponomarev VN, Zosimova AG (1973) Direct measurements of drift rate of ions in upper atmosphere during a magnetic storm. II. Results of measurements during magnetic storm of November 3:1967. Cosmic Res Engl Transl 11:249–258

    Google Scholar 

  • Galvan DA, Moldwin MB, Sandel BR (2008) Diurnal variation in plasmaspheric He inferred from extreme ultraviolet images. J Geophys Res. doi:10.1029/2007JA013013

    Google Scholar 

  • Gamayunov KV, Khazanov GV (2008) Crucial role of ring current H+ in electromagnetic ion cyclotron wave dispersion relation: results from global simulations. J Geophys Res. doi:10.1029/2008JA013494

    Google Scholar 

  • Gamayunov KV, Khazanov GV, Liemohn MW, Fok M-C, Ridley AJ (2009) Self-consistent model of magnetospheric electric field, ring current, plasmasphere, and electromagnetic ion cyclotron waves: initial results. J Geophys Res. doi:10.1029/2008JA013597

    Google Scholar 

  • Ganushkina N Yu, Pulkkinen TI, Kubyshkina MV, Sergeev VA, Lvova EA, Yahnina TA, Yahnin AG, Fritz TA (2005) Proton isotropy boundaries as measured on mid- and low-altitude satellites. Ann Geophys 23:1839–1847

    Article  Google Scholar 

  • Garner TW (2003) Numerical experiments on the inner magnetospheric electric field. J Geophys Res. doi:10.1029/2003JA010039

    Google Scholar 

  • Garner TW, Wolf RA, Spiro RW, Burke WJ, Fejer BG, Sazykin S, Roeder JL, Hairston MR (2004) Magnetospheric electric fields and plasma sheet injection to low L-shells during the 4–5 June 1991 magnetic storm: Comparison between the Rice Convection Model and observations. J Geophys Res. doi:10.1029/2003JA010208

    Google Scholar 

  • Gannon JL, Li X, Temerin M (2005) Parametric study of shock-induced transport and energization of relativistic electrons in the magnetosphere. J Geophys Res. doi:10.1029/2004JA010679

    Google Scholar 

  • Gendrin R, Roux A (1980) Energization of Helium ions by proton-induced hydromagnetic waves. J Geophys Res 85:4577–4586

    Article  Google Scholar 

  • Gkioulidou M, Wang C-P, Lyons LR, Wolf RA (2009) Formation of the Harang reversal and its dependence on plasma sheet conditions: rice convection model simulations. J Geophys Res. doi:10.1029/2008JA013955

    Google Scholar 

  • Goldstein J, Denton RE, Hudson MK, Miftakhova EG, Young SL, Menietti JD, Gallagher DL (2001) Latitudinal density dependence of magnetic field lines inferred from Polar plasma wave data. J Geophys Res 106:6195–6201

    Article  Google Scholar 

  • Goldstein J, Sandel BR, Forrester WT, Reiff PH (2003a) IMF-driven plasmasphere erosion of 10 July 2000. Geophys Res Lett. doi:10.1029/2002GL016478

    Google Scholar 

  • Goldstein J, Sandel BR, Hairston MR, Reiff PH (2003b) Control of plasmaspheric dynamics by both convection and sub-auroral polarization stream. Geophys Res Lett. doi:10.1029/2003GL018390

    Google Scholar 

  • Goldstein J, Spiro RW, Sandel BR, Wolf RA, Su S-Y, Reiff PH (2003c) Overshielding event of 28–29 July 2000. Geophys Res Lett. doi:10.1029/2002GL016644

    Google Scholar 

  • Goldstein J, Sandel BR, Hairston MR, Mende SB (2004a) Plasmapause undulation of 17 April 2002. Geophys Res Lett. doi:10.1029/2004GL019959

    Google Scholar 

  • Goldstein J, Wolf RA, Sandel BR, Reiff PH (2004b) Electric fields deduced from plasmapause motion in IMAGE EUV images. Geophys Res Lett. doi:10.1029/2003GL018797

    Google Scholar 

  • Goldstein J, Kanekal SG, Baker DN, Sandel BR (2005) Dynamic relationship between the outer radiation belt and the plasmapause during March-May 2001. Geophys Res Lett. doi:10.1029/2005GL023431

    Google Scholar 

  • Green JC, Kivelson MG (2001) A tale of two theories: how the adiabatic response and ULF waves affect relativistic electrons. J Geophys Res 106:25777–25791

    Article  Google Scholar 

  • Green JL, Reinisch BW (2002) An overview of results from RPI on IMAGE. Space Sci Rev 145:231–261

    Google Scholar 

  • Green JC, Kivelson MG (2004) Relativistic electrons in the outer radiation belt. Differentiating between acceleration mechanisms. J Geophys Res. doi:10.1029/2003JA010153

    Google Scholar 

  • Green JL, Fung SF (2005) Advances in inner magnetosphere passive and active wave research. In: Pulkkinen TI, Tsyganenko NA, Friedel HW (eds) The inner magnetosphere physics and modeling. AGU, Washington, DC. doi:10.1029/155GM21

    Google Scholar 

  • Green JC, Onsager TG, O’Brien TP, Baker DN (2004) Testing loss mechanisms capable of rapidly depleting relativistic electron flux in the Earth’s outer radiation belt. J Geophys Res. doi:10.1029/2004JA010579

    Google Scholar 

  • Greenspan ME, Hamilton DC (2000) A test of the Dessler-Parker-Sckopke relation during magnetic storms. J Geophys Res 105:5419–5430

    Article  Google Scholar 

  • Greenspan ME, Hamilton DC (2002) Relative contributions of H+ and O+ to the ring current energy near magnetic storm maximum. J Geophys Res. doi:10.1029/2001JA000155

    Google Scholar 

  • Grebowsky JM (1970) Model study of plasmapause motion. J Geophys Res 75:4329–4333

    Article  Google Scholar 

  • Grebowsky JM, Maynard NC, Tulunay YK, Lanzerotti LJ (1976) Coincident observations of ionospheric troughs and the equatorial plasmapause. Planet Space Sci 24:1177–1185

    Article  Google Scholar 

  • Grebowsky JM, Benson RF, Webb PA, Truhlik V, Bilitza D (2009) Altitude variation of the plasmapause signature in the main ionospheric trough. J Atmos Solar-Terr Phys 71:1669–1676

    Article  Google Scholar 

  • Hamilton DC, Gloeckler G, Ipavich FM, Stüdemann W, Wilken B, Kremser G (1988) Ring current development during the great geomagnetic storm of February 1986. J Geophys Res 93:14343–14355

    Article  Google Scholar 

  • Hairston MR, Drake KA, Skoug R (2005) Saturation of the ionospheric polar cap potential during the October-November 2003 superstorms. J Geophys Res. doi:10.1029/2004JA010864

    Google Scholar 

  • Hardy DA, Gussenhoven MS, Brautigam D (1989) A statistical model of auroral ion precipitation. J Geophys Res 94:370–392

    Article  Google Scholar 

  • Hasegawa H et al (2004) Rolled-up Kelvin-Helmholtz vortices and associated solar wind entry at Earth’s magnetopause. Nature 430:755–758

    Article  Google Scholar 

  • Hilmer RV, Ginet GP, Cayton TE (2000) Enhancement of equatorial energetic electron fluxes near L=4.2 as a result of high speed solar wind streams. J Geophys Res 105:23311–23322

    Article  Google Scholar 

  • Hoffman RA (1973) Particle and field observations from Explorer 45 during the December 1971 magnetic storm period. J Geophys Res 78:4771–4777

    Article  Google Scholar 

  • Hori T et al (2005) Storm-time convection electric field in the near‐Earth plasma sheet. J Geophys Res. doi:10.1029/2004JA010449

    Google Scholar 

  • Horne RB (2002) The contribution of wave-particle interactions to electron loss and acceleration in the earth’s radiation belts during geomagnetic storms. In: Stone WR (ed) Rev Radio Sci., 1999–2002, Wiley, pp 801–829

    Google Scholar 

  • Horne RB (2007) Plasma astrophysics: acceleration of killer electrons. Nat Phys 3:590–591

    Article  Google Scholar 

  • Horne RB, Thorne RM (1997) Wave heating of He+ by electromagnetic ion cyclotron waves in the magnetosphere: Heating near the H+‐He+ bi-ion resonance frequency. J Geophys Res 102:11457–11471

    Article  Google Scholar 

  • Horne RB, Thorne RM (1998) Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms. Geophys Res Lett 25:3011–3014

    Article  Google Scholar 

  • Horne RB, Meredith NP, Thorne RM, Heynderickx D, Iles RHA, Anderson RR (2003) Evolution of energetic electron pitch angle distributions during storm time electron acceleration to megaelectronvolt energies. J Geophys Res. doi:10.1029/2001JA009165

    Google Scholar 

  • Horne RB, Thorne RM, Glauert SA, Albert JM, Meredith NP, Anderson RR (2005a) Timescale for radiation belt electron acceleration by whistler mode chorus waves. J Geophys Res. doi:10.1029/2004JA010811

    Google Scholar 

  • Horne RB, Thorne RM, Shprits YY, Meredith NP, Glauert SA, Smith AJ, Kanekal SG, Baker DN, Engebretson MJ, Posch JL, Spasojevic M, Inan US, Pickett JS, Decreau PMM (2005b) Wave acceleration of electrons in the Van Allen radiation belts. Nature 437:227–230

    Article  Google Scholar 

  • Horne RB, Thorne RM, Glauert SA, Meredith NP, Pokhotelov D, Santolik O (2007) Electron acceleration in the Van Allen radiation belts by fast magnetosonic waves. Geophys Res Lett. doi:10.1029/2007GL030267

    Google Scholar 

  • Horwitz JL, Comfort RH, Chappell CR (1984) Thermal ion composition measurements of the formation of the new outer plasmasphere and double plasmapause during storm recovery phase. Geophys Res Lett 11:701–704

    Article  Google Scholar 

  • Horwitz J, Brace L, Comfort R, Chappell C (1986) Dual-spacecraft measurements of plasmasphere-ionosphere coupling. J Geophys Res 91:11203–11216

    Article  Google Scholar 

  • Horwitz JL, Comfort RH, Chappell CR (1990a) A statistical characterization of plasmasphere density structure and boundary locations. J Geophys Res 95:7937–7947

    Article  Google Scholar 

  • Horwitz JL, Comfort RH, Richards PG, Chandler MO, Chappell CR, Anderson P, Hanson WB, Brace LH (1990b) Plasmasphere-ionosphere coupling, 2. ion composition measurements at plasmaspheric and ionospheric altitudes and comparison with modeling results. J Geophys Res 95:7949–7959

    Article  Google Scholar 

  • Huang C-S, Foster JC (2007) Correlation of the subauroral polarization streams (SAPS) with the Dst index during severe magnetic storms. J Geophys Res 112. doi:10.1029/2007JA012584

    Google Scholar 

  • Huang X, Reinisch BW, Song P, Green JL, Gallagher DL (2004) Developing an empirical density model of the plasmasphere using IMAGE/RPI observations. Adv Space Res 33:829–832

    Article  Google Scholar 

  • Hudson MK, Kotelnikov AD, Li X, Roth I, Temerin M, Wygant J, Blake JB, Gussenhoven MS (1995) Simulation of proton radiation belt formation during the March 24:1991 SSC. Geophys Res Lett 22:291–294

    Article  Google Scholar 

  • Hudson MK, Kress BT, Mazur JE, Perry KL, Slocum PL (2004) 3D modeling of shock-induced trapping of solar energetic particles in the Earth’s magnetosphere. J Atmos Solar-Terr Phys 66:1389–1397

    Article  Google Scholar 

  • Hudson MK, Kress BT, Mueller H-R, Zastrow JA, Blake JB (2008) Relationship of the Van Allen radiation belts to solar wind drivers. J Atmos Solar-Terr Phys 70:708–729

    Article  Google Scholar 

  • Iijima T, Potemra TA (1976) The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad. J Geophys Res 81:2165–2174

    Article  Google Scholar 

  • Iles RH, Meredith NP, Fazakerley AN, Horne RB (2006) Phase space density analysis of the outer radiation belt energetic electron dynamics. J Geophys Res. doi:10.1029/2005JA011206

    Google Scholar 

  • Iles RHA, Fazakerley AN, Johnstone AD, Meredith NP, Buhler P (2002) The relativistic electron response in the outer radiation belt during magnetic storms. Ann Geophys 20:957–965.

    Google Scholar 

  • Janev RK, Smith JJ (1993) Cross sections for collision processes of hydrogen atoms with electrons, protons, and multiply-charged ions. In: Atomic and plasma-material interaction data for fusion. Int Atmos Energ Agency 4:1–80

    Google Scholar 

  • Jordanova VK, Miyoshi Y (2005) Relativistic model of ring current and radiation belt ions and electrons: initial results. Geophys Res Lett. doi:10.1029/2005GL023020

    Google Scholar 

  • Jordanova VK, Kistler LM, Kozyra JU, Khazanov GV, Nagy AF (1996) Collisional losses of ring current ions. J Geophys Res 101:111–126

    Article  Google Scholar 

  • Jordanova VK, Kozyra JU, Nagy AF, Khazanov GV (1997) Kinetic model of the ring current-atmosphere interactions. J Geophys Res 102:14279–14291

    Article  Google Scholar 

  • Jordanova VK, Farrugia CJ, Quinn JM, Torbert RB, Borovsky JE, Sheldon RB, Peterson WK (1999) Simulation of off-equatorial ring current ion spectra measured by Polar for a moderate storm at solar minimum. J Geophys Res 104:429–436

    Article  Google Scholar 

  • Jordanova VK, Kistler LM, Thomsen MF, Mouikis CG (2003) Effects of plasma sheet variability on the fast initial ring current decay. Geophys Res Lett. doi:10.1029/2002GL016576

    Google Scholar 

  • Jordanova VK, Miyoshi Y, Zaharia S, Thomsen MF, Reeves GD, Evans DS, Moukis CG, Fennell JF (2006) Kinetic simulations of ring current evolution during the Geospace Environment Modeling challenging events. J Geophys Res. doi:10.1029/2006JA011644.

    Google Scholar 

  • Jordanova VK, Spasojevic M, Thomsen MF (2007) Modeling the electromagnetic ion cyclotron wave-induced formation of detached subauroral proton arcs. J Geophys Res. doi:10.1029/2006JA012215

    Google Scholar 

  • Jordanova VK, Albert J, Miyoshi Y (2008) Relativistic electron precipitation by EMIC waves from self-consistent global simulations. J Geophys Res. doi:10.1029/2008JA013239

    Google Scholar 

  • Jordanova VK, Thorne RM, Li W, Miyoshi Y (2010) Excitation of whistler-mode chorus from global ring current simulations. J Geophys Res. doi:10.1029/2009JA014810

    Google Scholar 

  • Jorgensen AM, Spence HE, Henderson MG, Reeves GD, Sugiura M, Kamei T (1997) Global energetic neutral atom (ENA) measurements and their association with the Dst index. Geophys Res Lett 24:3173–3176

    Article  Google Scholar 

  • Kale ZC, Mann IR, Waters CL, Vellante M, Zhang TL, Honary F (2009) Plasmaspheric dynamics resulting from the Hallowe’en 2003 geomagnetic storms. J Geophys Res 114. doi:10.1029/2009JA014194

    Google Scholar 

  • Kamide Y (1974) Association of DP and DR fields with the interplanetary magnetic field variation. J Geophys Res 79:49–55

    Article  Google Scholar 

  • Kamide Y, Fukushima N (1971) Analysis of magnetic storms with DR indices for equatorial ring-current field. Radio Sci 6:277–278

    Article  Google Scholar 

  • Kamide Y, McIlwain CE (1974) The onset time of magnetospheric substorms determined from ground and synchronous satellite records. J Geophys Res 79:4787–4790

    Article  Google Scholar 

  • Karlsson T, Marklund G, Blomberg L, Mälkki A (1998) Subauroral electric fields observed by the Freja satellite: a statistical study. J Geophys Res 103:4327–4341

    Article  Google Scholar 

  • Kasahara Y, Miyoshi Y, Omura Y, Berkhoglyadova O, Nagano I, Kimura I, Tsurutani B (2009) Simultaneous satellite observations of VLF chorus, hot and relativistic electrons in a magnetic storm “recovery phase”. Geophys Res Lett. doi:10.1029/2008GL036454

    Google Scholar 

  • Kataoka R, Miyoshi Y (2006) Flux enhancement of radiation belt electrons during geomagnetic storms driven by coronal mass ejections and corotating interaction regions. Space Weather. doi:10.1029/2005SW000211

    Google Scholar 

  • Kataoka R, Miyoshi Y (2008a) Magnetosphere inflation during the recovery phase of geomagnetic storms as an excellent magnetic confinement of killer electrons. Geophys Res Lett. doi:10.1029/2007GL031842

    Google Scholar 

  • Kataoka R, Miyoshi Y (2008b) Average profiles of the solar wind and outer radiation belt during the extreme flux enhancement of relativistic electrons at geosynchronous orbit. Ann Geophys 26:1335–1339

    Article  Google Scholar 

  • Kataoka R, Nishitani N, Ebihara Y, Hosokawa K, Ogawa T, Kikuchi T, Miyoshi Y (2007) Dynamic variations of a convection flow reversal in the subauroral postmidnight sector as seen by the SuperDARN Hokkaido HF radar. Geophys Res Lett. doi:10.1029/2007GL031552

    Google Scholar 

  • Katoh Y, Omura Y (2007a) Computer simulation of chorus wave generation in the Earth’s inner magnetosphere. Geophys Res Lett. doi:10.1029/2006GL028594

    Google Scholar 

  • Katoh Y, Omura Y (2007b) Relativistic particle acceleration in the process of whistler-mode chorus wave generation. Geophys Res Lett. doi:10.1029/2007GL029758

    Google Scholar 

  • Katoh Y, Omura Y, Summers D (2008) Rapid energization of radiation belt electrons by nonlinear wave trapping. Ann Geophys 26:3451–3456

    Article  Google Scholar 

  • Kavanagh LD Jr, Freeman JW Jr, Chen AJ (1968) Plasma flow in the magnetosphere. J Geophys Res 73:5511–5519

    Article  Google Scholar 

  • Kaye SM, Shelley EG, Sharp RD, Johnson RG (1981) Ion composition of zipper events. J Geophys Res 86:3383–3388

    Article  Google Scholar 

  • Keika K, Nosé M, Christon SP, McEntire RW (2004) Acceleration sites of energetic ions upstream of the Earth’s bow shock and in the magnetosheath: statistical study on charge states of heavy ions. J Geophys Res. doi:10.1029/2003JA009953

    Google Scholar 

  • Keika K, Nosé M, Ohtani S-I, Takahashi K, Christon SP, McEntire RW (2005) Outflow of energetic ions from the magnetosphere and its contribution to the decay of the storm time ring current. J Geophys Res. doi:10.1029/2004JA010970

    Google Scholar 

  • Kelley MC, Fejer BG, Gonzales CA (1979) An explanation for anomalous equatorial ionospheric electric fields associated with a northward turning of the interplanetary magnetic field. Geophys Res Lett 6:301–304

    Article  Google Scholar 

  • Kennel C, Petschek H (1966) Limit on stably trapped particle fluxes. J Geophys Res 71:1–28

    Google Scholar 

  • Khazanov GV, Moore TE, Liemohn MW, Jordanova VK, Fok M-C (1996) Global, collisional model of high-energy photoelectrons. Geophys Res Lett 23:331–334

    Article  Google Scholar 

  • Kikuchi T, Araki T, Maeda H, Maekawa K (1978) Transmission of polar electric fields to the equator. Nature 273:650–651

    Article  Google Scholar 

  • Kikuchi T, Lühr H, Kitamura T, Saka O, Schlegel K (1996) Direct penetration of the polar electric field to the equator during a DP 2 event as detected by the auroral and equatorial magnetometer chains and the EISCAT radar. J Geophys Res 101:17161–17173

    Article  Google Scholar 

  • Kikuchi T, Hashimoto KK, Nozaki K (2008) Penetration of magnetospheric electric fields to the equator during a geomagnetic storm. J Geophys Res. doi:10.1029/2007JA012628

    Google Scholar 

  • Kikuchi T, Ebihara Y, Hashimoto K, Kataoka R, Hori T, Watari S, Nishitani N (2010) Penetration of the convection and overshielding electric fields to the equatorial ionosphere during a quasi-periodic DP2 geomagnetic fluctuation event. J Geophys Res. doi:10.1029/2008JA013948

    Google Scholar 

  • Kim H-J, Chan AA (1997) Fully adiabatic changes in storm time relativistic electron fluxes. J Geophys Res 102:22107–22116

    Article  Google Scholar 

  • Kim H-J, Kim KC, Lee D-Y, Rostoker G (2006) Origin of geosynchronous relativistic electron events. J Geophys Res. doi:10.1029/2005JA011469

    Google Scholar 

  • Kim KC, Lee D-Y, Kim H-J, Lyons LR, Lee ES, Ozturk MK, Choi CR (2008) Numerical calculations of relativistic electron drift loss effect. J Geophys Res. doi:10.1029/2007JA013011

    Google Scholar 

  • Kivelson MG, Ridley AJ (2008) Saturation of the polar cap potential: Inference from Alfvén wing arguments. J Geophys Res. doi:10.1029/2007JA012302

    Google Scholar 

  • Klumpar DM (1979) Transversely accelerated ions: an ionospheric source of hot magnetospheric ions. J Geophys Res 84:4229–4237

    Article  Google Scholar 

  • Kokubun S (1972) Relationship of interplanetary magnetic field structure with development of substorm and storm main phase. Planet Space Sci 20:1033–1049

    Article  Google Scholar 

  • Koller J, Chen Y, Reeves GD, Friedel RHW, Cayton TE, Vrugt JA (2007) Identifying the radiation belt source region by data assimilation. J Geophys Res. doi:10.1029/2006JA012196

    Google Scholar 

  • Kondrashov D, Shprits Y, Ghil M, Thorne R (2007) A Kalman filter technique to estimate relativistic electron lifetimes in the outer radiation belt. J Geophys Res. doi:10.1029/2007JA012583.

    Google Scholar 

  • Konradi A (1967) Proton events in the magnetosphere associated with magnetic bays. J Geophys Res 72:3829–3841

    Article  Google Scholar 

  • Konradi A, Semar CL, Fritz TA (1975) Substorm-injected protons and electrons and the injection boundary model. J Geophys Res 80:543–552

    Article  Google Scholar 

  • Koons HC (1989) Observations of large-amplitude, whistler mode wave ducts in the outer plasmasphere. J Geophys Res 94:15393–15397

    Article  Google Scholar 

  • Korth A, Friedel RHW, Mouikis CG, Fennell JF, Wygant JR, Korth H (2000) Comprehensive particle and field observations of magnetic storms at different local times from the CRRES spacecraft. J Geophys Res 105:18729–18740

    Article  Google Scholar 

  • Kotova G, Bezrukikh V, Verigin M, Smilauer J (2008) New aspects in plasmaspheric ion temperature variations from INTERBALL 2 and MAGION 5 measurements. J Atmos Solar-Terr Phys 70:399–406

    Article  Google Scholar 

  • Kozyra JU, Shelley EG, Comfort, RH, Brace LH, Cravens TE, Nagy AF (1987) The role of ring current O+ in the formation of stable auroral red arcs. J Geophys Res 92:7487–7502

    Article  Google Scholar 

  • Kozyra JU, Chandler MO, Hamilton DC Peterson WK, Klumpar DM, Slater DW, Buonsanto MJ, Carlson HC (1993) The role of ring current nose events in producing stable auroral red arc intensifications during the main phase: Observations during the September 19–24:1984, equinox transition study. J Geophys Res 98:9267–9283

    Article  Google Scholar 

  • Kozyra JU, Nagy AF, Slater DW (1997) High-altitude energy source(s) for stable auroral red arcs. Rev Geophys 35:155–190

    Article  Google Scholar 

  • Kozyra JU, Fok M-C, Sanchez ER, Evans DS, Hamilton DC, Nagy AF (1998a) The role of precipitation losses in producing the rapid early recovery phase of the great magnetic storm of February 1986. J Geophys Res 103:6801–6814

    Article  Google Scholar 

  • Kozyra JU, Jordanova VF, Borovsky JE, Thomsen MF, Knipp D, Evans DS, McComas D, Cayton T (1998b) Effects of a high-density plasma sheet on ring current development during the November 2–6:1993, magnetic storm. J Geophys Res 103:26285–26305

    Article  Google Scholar 

  • Kozyra JU, Liemohn MW (2003) Ring current energy input and decay. Space Sci Rev 109:105–131

    Article  Google Scholar 

  • Krall J, Huba JD, Fedder JA (2008) Simulation of field-aligned H+ and He+ dynamics during late-stage plasmasphere refilling. Ann Geophys 26:1507–1516

    Article  Google Scholar 

  • Kress BT, Hudson MK, Slocum PL (2005) Impulsive solar energetic ion trapping in the magnetosphere during geomagnetic storms. Geophys Res Lett. doi:10.1029/2005GL022373

    Google Scholar 

  • Krimigis SM, Gloeckler G, McEntire RW, Potemra TA, Scarf FL, Shelley EG (1985) Magnetic storm of September 4:1984: a synthesis of ring current spectra and energy densities measured with AMPTE/CCE. Geophys Res Lett 12:329–332

    Article  Google Scholar 

  • Lam MM, Horne RB, Meredith NP, Glauert SA (2007) Modeling the effects of radial diffusion and plasmaspheric hiss on outer radiation belt electrons. Geophys Res Lett 34. doi:10.1029/2007GL031598

    Google Scholar 

  • Lavraud B, Jordanova VK (2007) Modeling the effects of cold-dense and hot-tenuous plasma sheet on proton ring current energy and peak location. Geophys Res Lett. doi:10.1029/2006GL027566.

    Google Scholar 

  • Lavraud B, Denton MH, Thomsen MF, Borovsky JE, Friedel RHW (2005) Superposed epoch analysis of dense plasma access to geosynchronous orbit. Ann Geophys 23:2519–2529. doi:10.5194/angeo-23-2519-2005.

    Article  Google Scholar 

  • Le G, Russell CT, Takahashi K (2004) Morphology of the ring current derived from magnetic field observations. Ann Geophys 22:1267–1295

    Article  Google Scholar 

  • Lee D-Y, Ohtani S, Brandt PC, Lyons LR (2007) Energetic neutral atom response to solar wind dynamic pressure enhancements. J Geophys Res. doi:10.1029/2007JA012399

    Google Scholar 

  • Lemaire J (1989) Plasma distribution models in a rotating magnetic dipole and refilling of plasmaspheric flux tubes. Phys Fluids B 1:1519–1525.

    Article  Google Scholar 

  • Lemaire J (2001) The formation of the light ion trough and peeling off the plasmasphere. J Atmos Terr Phys 63:1285–1291

    Article  Google Scholar 

  • Lennartsson W (1989) Energetic (0.1- to 16-keV/e) magnetospheric ion composition at different levels of Solar F10.7. J Geophys Res 94:3600–3610

    Article  Google Scholar 

  • Lennartsson W, Sharp RD (1982) A comparison of the 0.1–17 keV/e ion composition in the near equatorial magnetosphere between quiet and disturbed conditions. J Geophys Res 87:6109–6120

    Article  Google Scholar 

  • Lennartsson W, Sharp RD, Shelley EG, Johnson RG, Balsiger H (1981) Ion composition and energy distribution during 10 magnetic storms. J Geophys Res 86:4628–4638

    Article  Google Scholar 

  • Li X, Temerin MA (2001) The electron radiation belt. Space Sci Rev 95:569–580

    Article  Google Scholar 

  • Li X, Roth I, Temerin M, Wygant JR, Hudson MK, Blake JB (1993) Simulation of the prompt energization and transport of radiation belt particles during the March 24:1991 SSC. Geophys Res Lett 20:2423–2426

    Article  Google Scholar 

  • Li X, Baker DN, Temerin M, Cayton TE, Reeves GD, Christensen RA, Blake JB, Looper MD, Nakamura R, Kanekal SG (1997) Multisatellite observations of the outer zone electron variation during the November 3–4:1993, magnetic storm. J Geophys Res 102:14123–14140

    Article  Google Scholar 

  • Li X, Baker DN, Kanekal SG, Looper M, Temerin M (2001) Long term measurements of radiation belts by SAMPEX and their variations. Geophys Res Lett 28:3827–3830

    Article  Google Scholar 

  • Li X, Baker DN, Temerin M, Reeves G, Friedel R, Shen C (2005) Energetic electrons, 50 keV to 6 MeV, at geosynchronous orbit: their responses to solar wind variations. Space Weather. doi:10.1029/2004SW000105

    Google Scholar 

  • Li X, Baker DN, O’Brien TP, Xie L, Zong QG (2006) Correlation between the inner edge of outer radiation belt electrons and the innermost plasmapause location. Geophys Res Lett. doi:10.1029/2006GL026294.

    Google Scholar 

  • Li W, Shprits YY, Thorne RM (2007) Dynamic evolution of energetic outer zone electrons due to wave-particle interactions during storms. J Geophys Res. doi:10.1029/2007JA012368

    Google Scholar 

  • Li W, Thorne RM, Angelopoulos V, Bortnik J, Cully CM, Ni B, LeContel O, Roux A, Auster U, Magnes W (2009) Global distribution of whistler mode chorus waves observed on the THEMIS spacecraft. Geophys Res Lett. doi: 10.1029/2009GL037595

    Google Scholar 

  • Li W, Thorne RM, Meredith NP, Horne RB, Bortnik J, Shprits YY, Ni B (2008) Evaluation of whistler mode chorus amplication during an injection event observed on CRRES. J Geophys Res. doi:10.1029/2008JA013129

    Google Scholar 

  • Liemohn MW, Kozyra JU, Jordanova VK, Khazanov GV, Thomsen MF, Cayton TE (1999) Analysis of early phase ring current recovery mechanisms during geomagnetic storms. Geophys Res Lett 26:2845–2848

    Article  Google Scholar 

  • Liemohn MW, Kozyra JU, Thomsen MF, Roeder JL, Lu G, Borovsky JE, Cayton TE (2001) Dominant role of the asymmetric ring current in producing the stormtime Dst. J Geophys Res 106:10883–10904

    Article  Google Scholar 

  • Liemohn MW, Ridley AJ, Brandt PC, Gallagher DL, Kozyra JU, Mitchell DG, Roelof EC, DeMajistre R (2005) Parametric analysis of nightside conductance effects on inner magnetospheric dynamics for the 17 April 2002 storm. J Geophys Res. doi:10.1029/2005JA011109

    Google Scholar 

  • Liemohn MW, Zhang J-C, Thomsen MF, Borovsky JE, Kozyra JU, Ilie R (2008) Plasma properties of superstorms at geosynchronous orbit: how different are they? Geophys Res Lett. doi:10.1029/2007GL031717

    Google Scholar 

  • Liu W, Rostoker G, Baker D (1999) Internal acceleration of relativistic electrons by large-amplitude ULF pulsations. J Geophys Res 104:17391–17407

    Article  Google Scholar 

  • Liu S, Chen MW, Roeder JL, Lyons LR, Schulz M (2005a) Relative contribution of electrons to the stormtime total ring current energy content. Geophys Res Lett. doi:10.1029/2004GL021672

    Google Scholar 

  • Liu WL, Fu SY, Zong Q-G, Pu ZY, Yang J, Ruan P (2005b) Variations of N+/O+ in the ring current during magnetic storms. Geophys Res Lett. doi:10.1029/2005GL023038

    Google Scholar 

  • Looper MD, Blake JB, Mewaldt RA (2005) Response of the inner radiation belt to the violent Sun-Earth connection events of October-November 2003. Geophys Res Lett. doi:10.1029/2004GL021502

    Google Scholar 

  • Lopez RE, Sibeck DG, McEntire RW, Krimigis SM (1990) The energetic ion substorm injection boundary. J Geophys Res 95:109–117

    Article  Google Scholar 

  • Lopez RE, Lyon JG Mitchell E, Bruntz R, Merkin VG, Brogl S, Toffoletto F, Wiltberger M (2009) Why doesn’t the ring current injection rate saturate? J Geophys Res. doi:10.1029/2008JA013141.

    Google Scholar 

  • Lorentzen KR, McCarthy MP, Parks GK, Foat JE, Millan RM, Smith DM, Lin RP, Treilhou JP (2000) Precipitation of relativistic electrons by interaction with electromagnetic ion cyclotron waves. J Geophys Res 5381–5389

    Google Scholar 

  • Lorentzen KR, Blake JB, Inan US, Bortnik J (2001) Observations of relativistic electron microbursts in association with VLF chorus. J Geophys Res 106:6017–6027

    Article  Google Scholar 

  • Loto’aniu TM, Mann IR, Ozeke LG, Chan AA, Dent ZC, Milling DK (2006) Radial diffusion of relativistic electrons into the radiation belt slot region during the 2003 Halloween geomagnetic storms. J Geophys Res. doi:10.1029/2005JA011355

    Google Scholar 

  • Lui ATY (2003) Inner magnetospheric plasma pressure distribution and its local time asymmetry. Geophys Res Lett. doi:10.1029/2003GL017596

    Google Scholar 

  • Lui ATY, McEntire RW, Krimigis SM (1987) Evolution of the ring current during two geomagnetic storms. J Geophys Res 92:7459–7470

    Article  Google Scholar 

  • Lui ATY, Spence HE, Stern DP (1994) Empirical modeling of the quiet time nightside magnetosphere. J Geophys Res 99:151–157

    Article  Google Scholar 

  • Lundin R, Lyons LR, Pissarenko N (1980) Observations of the ring current composition at L < 4. Geophys Res Lett 7:425–428

    Article  Google Scholar 

  • Lyatsky W Khazanov GV (2008) Effect of solar wind density on relativistic electrons at geosynchronous orbit. Geophys Res Lett. doi:10.1029/2007GL032524

    Google Scholar 

  • Lyons LR (1974) General relations for resonant particle diffusion in pictcn angle and decay. J Plasma Phys 12:45–49

    Article  Google Scholar 

  • Lyons LR (1977) Adiabatic evolution of trapped particle pitch angle distributions during a storm main phase. J Geophys Res 82:2428–2432

    Article  Google Scholar 

  • Lyons LR, Thorne RM (1972) Parasitic pitch angle diffusion of radiation belt particles by ion cyclotron waves. J Geophys Res 77:5608–5616

    Article  Google Scholar 

  • Lyons LR, Thorne RM (1973) Equilibrium structure of radiation belt electrons. J Geophys Res 78:2142–2149

    Article  Google Scholar 

  • Lyons LR, Williams DJ (1975a) The quiet time structure of energetic (35–560 keV) radiation belt electrons. J Geophys Res 80:943–950

    Article  Google Scholar 

  • Lyons LR, Williams DJ (1975b) The storm and poststorm evolution of energetic (35–560 keV) radiation belt electron distributions. J Geophys Res 80:3985–3994

    Article  Google Scholar 

  • Lyons L, Williams D (1976) Storm-associated variations of equatorially mirroring ring current protons, 1–800 keV, at constant first adiabatic invariant. J Geophys Res 81:216–220

    Article  Google Scholar 

  • Lyons LR, Richmond AD (1978) Low-latitude E region ionization by energetic ring current particles. J Geophys Res 83:2201–2204

    Article  Google Scholar 

  • Lyons LR, Thorne RM, Kennel CF (1972) Pitch-angle diffusion of radiation belt electrons within the plasmasphere. J Geophys Res 77:3455–3474

    Article  Google Scholar 

  • Lyons LR, Lee D-Y, Thorne RM, Horne RB, Smith AJ (2005) Solar wind–magnetosphere coupling leading to relativistic electron energization during high–speed streams. J Geophys Res. doi:10.1029/2005JA011254

    Google Scholar 

  • Lyons LR, Lee D-Y, Kim H-J, Hwang JA, Thorne RM, Horne RB, Smith AJ (2009) Solar-wind-magnetosphere coupling, including relativistic electron energization, during high-speed streams. J Atmos Solar-Terr Phys 71:1059–1072

    Article  Google Scholar 

  • Maget V, Bourdarie S, Boscher D, Friedel RHW (2007) Data assimilation of LANL satellite data into the Salammbo electron code over a complete solar cycle by direct insertion. Space Weather. doi:10.1029/2007SW000322

    Google Scholar 

  • Makarevich RA, Kellerman AC, Bogdanova YV, Koustov AV (2009) Time evolution of the subauroral electric fields: a case study during a sequence of two substorms. J Geophys Res. doi:10.1029/2008JA013944

    Google Scholar 

  • Mann IR, O’Brien TP, Milling DK (2004) Correlations between ULF wave power, solar wind speed, and relativistic electron flux in the magnetosphere: solar cycle dependence. J Atmos Solar-Terr Phys 66:187–198

    Article  Google Scholar 

  • Mathie RA, Mann IR (2001) On the solar wind control of Pc5 ULF pulsation power at mid-latitudes: implications for MeV electron acceleration in the outer radiation belt. J Geophys Res 106:29783–29796

    Article  Google Scholar 

  • Matsui H, Mukai T, Ohtani S, Hayashi K, Elphic RC, Thomsen MF, Matsumoto H (1999) Cold dense plasma in the outer magnetosphere. J Geophys Res 104:25077–25095

    Article  Google Scholar 

  • Matsui H, Nakamura M, Terasawa T, Izaki Y, Mukai T, Tsuruda K, Hayakawa H, Matsumoto H (2000) Outflow of cold dense plasma associated with variation of convection in the outer magnetosphere. J Atmos Solar–Terr Phys 62:521–526

    Article  Google Scholar 

  • Matsui H, Puhl-Quinn PA, Jordanova VK, Khotyaintsev Y, Lindqvist P-A, Torbert RB (2008) Derivation of inner magnetospheric electric field (UNH–IMEF) model using Cluster data set. Ann Geophys 26:2887–2898

    Article  Google Scholar 

  • Mauk BH, McIlwain CE (1974) Correlation of Kp with the substorm-injected plasma boundary. J Geophys Res 79:3193–3196

    Article  Google Scholar 

  • Mauk BH, Meng C-I (1983) Characterization of geostationary particle signatures based on the ‘injection boundary’ model. J Geophys Res 88:3055–3071

    Article  Google Scholar 

  • Maynard NC, Chen AJ (1975) Isolated cold plasma regions: observations and their relation to possible production mechanisms. J Geophys Res 80:1009–1013

    Article  Google Scholar 

  • Maynard NC, Aggson TL, Heppner JP (1980) Magnetospheric observation of large sub‐auroral electric fields. Geophys Res Lett 7:881–884

    Article  Google Scholar 

  • Maynard NC, Aggson TL, Heppner JP (1983) The plasmaspheric electric field as measured by ISEE 1. J Geophys Res 88:3991–4003

    Article  Google Scholar 

  • McFadden JP, Carlson CW, Larson D, Bonnell J, Mozer FS, Angelopoulos V, Glassmeier K, Auster U (2008) Structure of plasmaspheric plumes and their participation in magnetopause reconnection: first results from THEMIS. Geophys Res Lett. doi:10.1029/2008GL033677

    Google Scholar 

  • McIlwain CE (1966) Ring current effects on trapped particles. J Geophys Res 71:3623–3628

    Google Scholar 

  • McIlwain CE (1974) Substorm injection boundaries, In: McComac BM (ed) Magnetospheric physics, D. Reidel, Hingham, MA, p 143

    Google Scholar 

  • McPherron RL, Baker DN, Crooker NU (2009) Role of the Russell-McPherron effect in the acceleration of relativistic electrons. J Atmos Solar-Terr Phys 71:1032–1044

    Article  Google Scholar 

  • Meredith NP, Horne RB, Anderson RR (2001) Substorm dependence of chorus amplitudes: implications for the acceleration of electrons to relativistic energies. J Geophys Res 106:13165–13178

    Article  Google Scholar 

  • Meredith NP, Horne RB, Summers D, Thorne RM, Iles RHA, Heynderickx D, Anderson RR (2002) Evidence for acceleration of outer zone electrons to relativistic energies by whistler mode chorus. Ann Geophys 20:967–979

    Article  Google Scholar 

  • Meredith NP, Cain M, Horne RB, Thorne RM, Summers D, Anderson RR (2003a) Evidence for chorus-driven electron acceleration to relativistic energies from a survey of geomagnetically disturbed periods. J Geophys Res. doi:10.1029/2002JA009764

    Google Scholar 

  • Meredith NP, Horne RB, Thorne RM, Anderson RR (2003b) Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth’s outer radiation belt. Geophys Res Lett. doi:10.1029/2003GL017698

    Google Scholar 

  • Meredith NP, Thorne RM, Horne RB, Summers D, Fraser BJ, Anderson RR (2003c) Statistical analysis of relativistic electron energies for cyclotron resonance with EMIC waves on CRRES. J Geophys Res. doi:10.1029/2002JA009700

    Google Scholar 

  • Meredith NP, Horne RB, Glauert SA, Thorne RM, Summers D, Albert JM, Anderson RR (2006) Energetic outer zone electron loss timescales during low geomagnetic activity. J Geophys Res. doi:10.1029/2005JA011516

    Google Scholar 

  • Merkin VG, Sharma AS, Papadopoulos K Milikh G, Lyon J, Goodrich C (2005) Global MHD simulations of the strongly driven magnetosphere: modeling of the transpolar potential saturation. J Geophys Res. doi:10.1029/2004JA010993

    Google Scholar 

  • Milillo A, Orsini S, Daglis IA (2001) Empirical model of proton fluxes in the equatorial inner magnetosphere: development. J Geophys Res 106:25713–25729

    Article  Google Scholar 

  • Milillo A, Orsini S, Delacourt DC, Mura A, Massetti S, De Angelis E, Ebihara Y (2003) Empirical model of proton fluxes in the equatorial inner magnetosphere: 2. Properties and applications. J Geophys Res. doi:10.1029/2002JA009581

    Google Scholar 

  • Millan RM, Thorne RM (2007) Review of radiation belt electron losses. J Atmos Solar-Terr Phys 69:362–377

    Article  Google Scholar 

  • Millan RM, Lin RP, Smith DM, Lorentzen KR, McCarthy MP (2002) X-ray observations of MeV electron precipitation with a balloon-borne germanium spectrometer. Geophys Res Lett. doi:10.1029/2002GL015922.

    Google Scholar 

  • Mishin EV, Puhl-Quinn PA (2007) SAID: plasmaspheric short circuit of substorm injections. Geophys Res Lett. doi:10.1029/2007GL031925

    Google Scholar 

  • Mitchell DG, Brandt PC, Roelof EC, Hamilton DC, Retterer KC, Mende S (2003) Global imaging of O+ from IMAGE/HENA. Space Sci. Rev. 109:63– 75

    Article  Google Scholar 

  • Miyoshi Y, Kataoka R (2005) Ring current ions and radiation belt electrons during geomagnetic storms driven by coronal mass ejections and corotating interaction regions. Geophys Res Lett. doi:10.1029/2005GL024590

    Google Scholar 

  • Miyoshi Y, Kataoka R (2008a) Flux enhancement of the outer radiation belt electrons after the arrival of stream interaction regions. J Geophys Res. doi:10.1029/2007JA012506

    Google Scholar 

  • Miyoshi Y, Kataoka R (2008b) Probabilistic space weather forecast of the relativistic electron flux enhancement at geosynchronous orbit. J Atmos Solar-Terr Phys 70:475–481

    Article  Google Scholar 

  • Miyoshi Y, Morioka A, Misawa H (2000) Long term modulation of low altitude proton radiation belt by the Earth’s atmosphere. Geophys Res Lett 27:2169–2172

    Article  Google Scholar 

  • Miyoshi Y, Morioka A, Obara T, Misawa H, Nagai T, Kasahara Y (2003) Rebuilding process of the outer radiation belt during the November 3:1993, magnetic storm – NOAA and EXOS-D observations. J Geophys Res. doi:10.1029/2001JA007542

    Google Scholar 

  • Miyoshi Y, Jordanova VK, Morioka A, Evans DS (2004) Solar cycle variations of the electron radiation belts: observations and radial diffusion simulation. Space Weather. doi:10.1029/2004SW000070

    Google Scholar 

  • Miyoshi YS, Jordanova VK, Morioka A, Thomsen MF, Reeves GD, Evans DS, Green JC (2006) Observations and modeling of energetic electron dynamics during the Oct. 2001 storm. J Geophys Res. doi:10.1029/2005JA011351

    Google Scholar 

  • Miyoshi Y, Morioka A, Kataoka R, Kasahara Y, Mukai T (2007) Evolution of the outer radiation belt during the November 1993 storms driven by corotating interaction regions. J Geophys Res. doi:10.1029/2006JA012148

    Google Scholar 

  • Miyoshi Y, Sakaguchi K, Shiokawa K, Evans D, Albert J, Connors M, Jordanova V (2008) Precipitation of radiation belt electrons by EMIC waves, observed from ground and space. Geophys Res Lett. doi:10.1029/2008GL035727

    Google Scholar 

  • Mizera PF, Fennell JF (1977) Signatures of electric fields from high and low altitude particles distributions. Geophys Res Lett 4:311–314

    Article  Google Scholar 

  • Möbius D, Hovestadt D, Klecker B, Scholer M, Ipavich FM, Carlson CW, Lin RP (1986) A burst of energetic O+ ions during an upstream particle event. Geophys Res Lett 13:1372–1375

    Article  Google Scholar 

  • Moldwin MB, Downward L, Rassoul HK, Amin R, Anderson RR (2002) A new model of the location of the plasmapause: CRRES results. J Geophys Res. doi:10.1029/2001JA009211

    Google Scholar 

  • Moore TE, Arnoldy RL, Feynman J, Hardy DA (1981) Propagating substorm injection fronts. J Geophys Res 86:6713–6726

    Article  Google Scholar 

  • Moore TE, Fok M-C, Delcourt DC, Slinker SP, Fedder JA (2008) Plasma plume circulation and impact in an MHD substorm. J Geophys Res. doi:10.1029/2008JA013050

    Google Scholar 

  • Morgan MG, Maynard NC (1976) Evidence of dayside plasmaspheric structure through comparisons of ground-based whistler data and Explorer 45 plasmapause data. J Geophys Res 81:3992–3998

    Article  Google Scholar 

  • Morioka A, Misawa H, Miyoshi Y, Oya H, Iizima M, Nagai T (2001) Pitch angle distribution of relativistic electrons in the inner radiation belt and its relation to equatorial plasma wave turbulence phenomena. Geophys Res Lett 28:931–934

    Article  Google Scholar 

  • Murakami G, Yoshikawa I, Obana Y, Yoshikawa K, Ogawa G, Yamazaki A, Kagitani M, Taguchi M, Kikuchi M, Kameda S, Nakamura M (2010) First sequential images of the plasmasphere from the meridian perspective observed by KAGUYA. Earth Planet Space 62, e9–e13

    Article  Google Scholar 

  • Mursula K, Braysy T, Niskala, K, Russell CT (2001) Pc1 pearls revisited: structured electromagnetic ion cyclotron waves on Polar satellite and on the ground. J Geophys Res 106:29543–29533

    Google Scholar 

  • Nagai T (1988) “Space Weather Forecast”: prediction of relativistic electron intensity at synchronous orbit. Geophys Res Lett 15:425–428

    Google Scholar 

  • Nagai T, Johnson JFE, Chappell CR (1983) Low-energy (less than 100 eV) ion pitch angle distributions in the magnetosphere by ISEE 1. J Geophys Res 88:6944–6960

    Article  Google Scholar 

  • Nagai T, Yukimatu AS, Matsuoka A, Asai KT, Green JC, Onsager TG, Singer HJ (2006) Timescales of relativistic electron enhancements in the slot region. J Geophys Res. doi:10.1029/2006JA011837

    Google Scholar 

  • Nakamura R, Baker DN, Blake JB, Kanekal S, Klechker B, Hovestadt D (1995) Relativistic electron precipitation enhancements near the outer edge of the radiation belt. Geophys Res Lett 22:1129–1132

    Article  Google Scholar 

  • Nakamura M, Yoshikawa I, Yamazaki A, Shiomi K, Takizawa Y, Hirahara M, Yamashita K, Saito Y, Miyake W (2000a) Terrestrial plasmaspheric imaging by an Extreme Ultraviolet Scanner on Planet-B. Geophys Res Lett 27:141–144

    Article  Google Scholar 

  • Nakamura R, Isowa M, Kamide Y, Baker DN, Blake JB, Looper M (2000b) SAMPEX observations of precipitation bursts in the outer radiation belt. J Geophys Res 105:15875–15885

    Article  Google Scholar 

  • Ni B, Thorne RM, Shprits YY, Bortnik J (2008) Resonant scattering of plasma sheet electrons by whistler-mode chorus: contribution to diffuse auroral precipitation. Geophys Res Lett 35. doi:10.1029/2008GL034032.

    Google Scholar 

  • Ni B, Shprits Y, Thorne R, Friedel R, Nagai T (2009a) Reanalysis of relativistic radiation belt electron phase space density using multisatellite observations: sensitivity to empirical magnetic field models. J Geophys Res. doi:10.1029/2009JA014438

    Google Scholar 

  • Ni B, Shprits Y, Nagai T, Thorne R, Chen Y, Kondrashov D, Kim H-J (2009b) Reanalysis of the radiation belt electron phase space density using nearly equatorial CRRES and polar-orbiting Akebono satellite observations. J Geophys Res. doi:10.1029/2008JA013933

    Google Scholar 

  • Nishida A (1966) Formation of plasmapause, or magnetospheric plasma knee, by the combined action of magnetospheric convection and plasma escape from the tail. J Geophys Res 71:5669–5679

    Google Scholar 

  • Nishida A (1976) Outward diffusion of energetic particles from the Jovian radiation belt. J Geophys Res 81:1771–1773

    Article  Google Scholar 

  • Nishimura Y, Wygant J, Ono T, Iizima M, Kumamoto A, Brautigam D, Friedel R (2008) SAPS measurements around the magnetic equator by CRRES. Geophys Res Lett. doi:10.1029/2008GL033970

    Google Scholar 

  • Northrop TG, Teller E (1960) Stability of the adiabatic motion of charged particles in the Earth’s field. Phys Rev 117:215–225

    Article  Google Scholar 

  • Nosé M, Ieda A, Christon SP (2009a) Geotail observations of plasma sheet ion composition over 16 years: on variations of average plasma ion mass and O+ triggering substorm model. J Geophys Res. doi:10.1029/2009JA014203

    Google Scholar 

  • Nosé M, Taguchi S, Christon SP, Collier MR, Moore TE, Carlson CW, McFadden JP (2009b) Response of ions of ionospheric origin to storm time substorms: coordinated observations over the ionosphere and in the plasma sheet. J Geophys Res. doi:10.1029/2009JA014048

    Google Scholar 

  • Obara T, Nagatsuma T, Den M, Miyoshi Y, Morioka A (2000) Main–phase creation of “seed” electrons in the outer radiation belt. Earth Planet Space 52:41–47

    Google Scholar 

  • Ober DM, Horwitz JL, Gallagher DL (1997) Formation of density troughs embedded in the outer plasmasphere by subauroral ion drift events. J Geophys Res 102:14595–14602

    Article  Google Scholar 

  • Ober DM, Maynard NC, Burke WJ (2003) Testing the Hill model of transpolar potential saturation. J Geophys Res. doi:10.1029/2003JA010154

    Google Scholar 

  • O’Brien TP, McPherron RL, Sornette D, Reeves GD, Friedel R, Singer HJ (2001) Which magnetic storms produce relativistic electrons at geosynchronous orbit? J Geophys Res 106:15533–15544

    Article  Google Scholar 

  • O’Brien TP, Lorentzen KR, Mann IR, Meredith NP, Blake JB, Fennell JF, Looper MD, Milling DK, Anderson RR (2003) Energization of relativistic electrons in the present of ULF power and MeV microbursts: evidence for dual ULF and VLF acceleration. J Geophys Res. doi:10.1029/2002JA009784

    Google Scholar 

  • O’Brien TP, Looper MD, Blake JB (2004) Quantification of relativistic electron microburst losses during the GEM storms. Geophys Res Lett. doi:10.1029/2003GL018621

    Google Scholar 

  • Ohtani S, Brandt PC, Singer HJ, Mitchell DG, Roelof EC (2006) Statistical characteristics of hydrogen and oxygen ENA emission from the storm-time ring current. J Geophys Res. doi:10.1029/2005JA011201

    Google Scholar 

  • Ohtani S, Ebihara Y, Singer HJ (2007a) Storm-time magnetic configurations at geosynchronous orbit: comparison between the main and recovery phases. J Geophys Res. doi:10.1029/2006JA011959

    Google Scholar 

  • Ohtani S et al (2007b) Cluster observations in the inner magnetosphere during the 18 April 2002 sawtooth event: dipolarization and injection at r = 4.6 RE. J Geophys Res. doi:10.1029/2007JA012357

    Google Scholar 

  • Ohtani S, Miyoshi Y, Singer H, Weygand J (2009) On the loss of relativistic electrons at geosynchronous altitude: its dependence on magnetic configurations and external conditions. J Geophys Res. doi:10.1029/2008JA013391

    Google Scholar 

  • Olsen RC (1981) Equatorially Trapped plasma populations. J Geophys Res 86:11235–11245

    Article  Google Scholar 

  • Olsen RC, Shawhan SD, Gallagher DL, Green JL, Chappell CR, Anderson RR (1987) Plasma observations at the Earth’s magnetic equator. J Geophys Res 92:2385–2407

    Article  Google Scholar 

  • Omura Y, Furuya N, Summers D (2007) Relativistic turning acceleration of resonant electrons by coherent whistler mode waves in a dipole magnetic field. J Geophys Res. doi:10.1029/2006JA012243

    Google Scholar 

  • Omura Y, Katoh Y, Summers D (2008) Theory and simulation of generation of whistler-mode chorus. J Geophys Res. doi:10.1029/2007JA012622

    Google Scholar 

  • Omura Y, Pickett J, Grison B, Santolik O, Dandouras I, Engebretson M, Décréau PME, Masson A (2010) Theory and observation of electromagnetic ion cyclotron triggered emissions in the magnetosphere. J Geophys Res. doi:10.1029/2010JA015300

    Google Scholar 

  • Ono T, Hirasawa T, Meng CI (1987) Proton auroras observed at the equatorward edge of the duskside auroral oval. Geophys Res Lett 14:660–663

    Article  Google Scholar 

  • Ono Y, Nosé M, Christon SP, Lui ATY (2009) The role of magnetic field fluctuations in nonadiabatic acceleration of ions during depolarization. J Geophys Res. doi:10.1029/2008JA013918

    Google Scholar 

  • Onsager TG, Chan AA, Fei Y, Elkington SR, Green JC, Singer HJ (2004) The radial gradient of relativistic electrons at geosynchronous orbit. J Geophys Res. doi:10.1029/2003JA010368

    Google Scholar 

  • Onsager TG, Green JC, Reeves GD, Singer HJ (2007) Solar wind and magnetospheric conditions leading to abrupt loss of outer radiation belt electrons. J Geophys Res. doi:10.1029/2006JA011708

    Google Scholar 

  • Østgaard N, Mende SB, Frey HU, Gladstone GR, Lauche H (2003) Neutral hydrogen density profiles derived from geocoronal imaging. J Geophys Res. doi:10.1029/2002JA009749

    Google Scholar 

  • Oya H, Ono T (1987) Stimulation of plasma waves in the magnetosphere using satellite JIKIKEN (EXOS B) Part II: plasma density across the plasmapause. J Geomagn Geoelectr 39:591–607

    Google Scholar 

  • Ozeke LG, Mann IR (2008) Energization of radiation belt electrons by ring current ion driven ULF waves. J Geophys Res. doi:10.1029/2007JA012468

    Google Scholar 

  • Park CG (1970) Whistler observations of the interchange of ionization between the ionosphere and the protonosphere. J Geophys Res 75:4249–4260

    Article  Google Scholar 

  • Park CG (1974) Some features of plasma distribution in the plasmasphere deduced from Antarctic whistlers. J Geophys Res 79:169–173

    Article  Google Scholar 

  • Parker EN (1957) Newtonian development of the dynamical properties of ionized gases of low density. Phys Rev 107:924–933

    Article  Google Scholar 

  • Paulikas GA, Blake JB (1979) Effects of the solar wind on magnetospheric dynamics: energetic electrons at the synchronous orbit. In: Olson WP (ed) Quantitative modeling of magnetospheric processes. AGU, Washington, DC, pp 180–202

    Google Scholar 

  • Perry KL, Hudson MK, Elkington SR (2005) Incorporating spectral characteristic of Pc5 waves into three-dimensional radiation belt modeling and the diffusion of relativistic electrons. J Geophys Res. doi:10.1029/2004JA010760

    Google Scholar 

  • Peterson WK, Doering JP, Potemra TA, McEntire RW, Bostrom CO (1977) Conjugate photoelectron fluxes observed on Atmosphere Explorer C. Geophys Res Lett 4:109–112

    Article  Google Scholar 

  • Peymirat C, Richmond AD, Kobea AT (2000) Electrodynamic coupling of high and low latitudes: simulations of shielding/overshielding effects. J Geophys Res 105:22991–23003

    Article  Google Scholar 

  • Phaneuf RA, Janev RK, Pindzola MS (1987) Atomic data for fusion, vol. V, Collisions of carbon and oxygen ions with electrons, H, H2 and He. Technical Report ORNL–6090/V5, Oak Ridge National Laboratory, Oak Ridge, TN

    Google Scholar 

  • Pickett JS, Grison B, Engebretson MJ, Dan douras I, Masson A, Adrian ML, Decreau PME, Cornilleau-Wehrlin N, Constantinescu D (2010) Cluster observations of EMIC triggered emissions in association with Pc1 waves near Earth's plasmapause. Geophys Res Lett 37:L09104. doi:10.1029/2010GL042648

    Article  Google Scholar 

  • Pollock CJ et al (2001) First medium energy neutral atom (MENA) Images of Earth's magnetosphere during substorm and storm‐time. Geophys Res Lett 28:1147–1150

    Article  Google Scholar 

  • Pulkkinen TI, Ganushkina NYu, Baker DN, Turner NE, Fennell JF, Roeder J, Fritz TA, Grande M, Kellett B, Kettmann G (2001) Ring current ion composition during solar minimum and rising solar activity: polar/CAMMICE/MICS results. J Geophys Res 106:19131–19147

    Article  Google Scholar 

  • Quinn JM, McIlwain CE (1979) Bouncing ion clusters in the Earth’s magnetosphere. J Geophys Res 84:7365–7370

    Article  Google Scholar 

  • Quinn JM, Johnson RG (1982a) Composition measurements of warm equatorially trapped ions near geosynchronous orbit. Geophys Res Lett 9:777–780

    Article  Google Scholar 

  • Quinn JM, Southwood DJ (1982) Observations of parallel ion energization in the equatorial region. J Geophys Res 87:10536–10540

    Article  Google Scholar 

  • Rairden RL, Frank LA, Craven JD (1986) Geocoronal imaging with dynamics explorer. J Geophys Res 91:13613–13630

    Article  Google Scholar 

  • Rasmussen CE, Guiter SM, Thomas SG (1993) A two-dimensional model of the plasmasphere: refilling time constants. Planet Space Sci 41:35–43

    Article  Google Scholar 

  • Reeves GD (2007) Radiation belt storm probes: a new mission for space weather forecasting. Space Weather. doi:10.1029/2007SW000341

    Google Scholar 

  • Reeves GD, Henderson MG, McLachlan PS, Belian RD, Friedel RHW, Korth A (1996) Radial propagation of substorm injections, In: Proceedings of the Third International Conference on Substorms, Versailles, France, 12–17 May 1996. Eur. Space Agency Spec. Publ., ESA SP–389, pp 579–584

    Google Scholar 

  • Reeves G, Friedel R, Belian R, Meier M, Henderson M, Onsager T, Singer H, Baker D, Li X, Blake J (1998) The relativistic electron response at geosynchronous orbit during the January 1997 magnetic storm. J Geophys Res 103:17559–17570

    Article  Google Scholar 

  • Reeves GD, McAdams KL, Friedel RHW, O’Brien TP (2003) Acceleration and loss of relativistic electrons during geomagnetic storms. Geophys Res Lett. doi:10.1029/2002GL016513

    Google Scholar 

  • Reiff PH, Spiro RW, Hill TW (1981) Dependence of polar cap potential drop on interplanetary parameters. J Geophys Res 86:7639–7648

    Article  Google Scholar 

  • Reinisch BW, Moldwin MB, Denton RE, Gallagher DL, Matsui H, Pierrard V, Tu J (2009) Augmented empirical models of plasmaspheric density and electric field using IMAGE and CLUSTER Data. Space Sci Rev 145:231–261

    Article  Google Scholar 

  • Richards PG, Torr DG (1985) Seasonal, diurnal, and solar cyclical variations of the limiting H+ flux in the Earth’s topside ionosphere. J Geophys Res 90:5261–5268

    Article  Google Scholar 

  • Roeder JL, Fennell JF, Grande M, Livi S, Sheldon R (1999) Ring current response to interplanetary magnetic cloud events. Phys Chem Earth, Part C: Solar Terr Planet Sci 24:83–87

    Article  Google Scholar 

  • Roederer JG (1970) Dynamics of geomagnetically trapped radiation. Springer, New York, NY

    Google Scholar 

  • Roelof EC (1989) Remote sensing of the ring current using energetic neutral atoms. Adv Space Res 9:195–203

    Article  Google Scholar 

  • Roelof EC, Skinner AJ (2000) Extraction of ion distributions from magnetospheric ENA and EUV images. Space Sci Rev 91:437–459

    Article  Google Scholar 

  • Rostoker G, Skone S, Baker DN (1998) On the origin of relativistic electrons in the magnetosphere associated with some geomagnetic storms. Geophys Res Lett 25:3701–3704

    Article  Google Scholar 

  • Rowe JF Jr (1974) Magnetic activity variations of the nighttime E region at Arecibo. Radio Sci 9:175–182

    Article  Google Scholar 

  • Rowland D, Wygant J (1998) Dependence of the large-scale, inner magnetospheric electric field on geomagnetic activity. J Geophys Res 103:14959–14964

    Article  Google Scholar 

  • Rozanov E, Callis L, Schlesinger M, Yang F, Andronova N, Zubov V (2005) Atmospheric response to NOy source due to energetic electron precipitation. Geophys Res Lett. doi:10.1029/2005GL023041

    Google Scholar 

  • Russell CT, McPherron RL (1973) Semiannual variation of geomagnetic activity. J Geophys Res 78:92–108

    Article  Google Scholar 

  • Sagawa E, Yau AW, Whalen BA, Peterson WK (1987) Pitch angle distributions of low-energy ions in the near-Earth magnetosphere. J Geophys Res 92:12241–12254

    Article  Google Scholar 

  • Saito S, Miyoshi Y, Seki K (2010) A split in the outer radiation belt by magnetopause shadowing: test particle simulations. J Geophys Res. doi:10.1029/2009JA014738

    Google Scholar 

  • Sakaguchi K, Shiokawa K, Ieda A, Miyoshi Y, Otsuka Y, Ogawa T, Connors M, Donovan EF, Rich FJ (2007) Simultaneous ground and satellite observations of an isolated proton arc at subauroral latitudes. J Geophys Res. doi:10.1029/2006JA012135

    Google Scholar 

  • Sakaguchi K, Shiokawa K, Miyoshi Y, Otsuka Y, Ogawa T, Asamura K, Connors M (2008) Simultaneous appearance of isolated aurora arcs and Pc1 geomagnetic pulsations at subauroral latitudes. J Geophys Res. doi:10.1029/2007JA012888

    Google Scholar 

  • Sandanger M, Søraas F, Aarsnes K, Oksavik K, Evans DS (2007) Loss of relativistic electrons: evidence for pitch angle scattering by electromagnetic ion cyclotron waves excited by unstable ring current protons. J Geophys Res. doi:10.1029/2006JA012138

    Google Scholar 

  • Sandel BR, Denton MH (2007) Global view of refilling of the plasmasphere. Geophys Res Lett. doi:10.1029/2007GL030669

    Google Scholar 

  • Sandel BR, Goldstein J, Gallagher DL, Spasojevic M (2003) Extreme ultraviolet imager observations of the structure and dynamics of the plasmasphere. Space Sci. Rev 109:25–46

    Article  Google Scholar 

  • Sandel BR, King RA, Forrester WT, Gallagher DL, Broadfoot AL, Curtis CC (2001) Initial results from the IMAGE Extreme Ultraviolet Imager. Geophys Res Lett. doi:10.1029/2001GL012885

    Google Scholar 

  • Santolik O, Gurnett DA, Pickett JS, Parrot M, Cornilleau-Wehrlin N (2003) Spatio-temporal structure of storm-time chorus. J Geophys Res. doi:10.1029/2002JA009791

    Google Scholar 

  • Sarris TE, Li X, Temerin M (2006) Simulating radial diffusion of energetic (MeV) electrons through a model of fluctuating electric and magnetic fields. Ann Geophys 24:1–16

    Article  Google Scholar 

  • Sarris TE, Loto’aniu TM, Li X, Singer HJ (2007) Observations at geosynchronous orbit at a persistent Pc5 geomagnetic pulsation and energetic electron flux modulations. Ann Geophys 25:1653–1667

    Article  Google Scholar 

  • Schulz M (1991) The magnetosphere. In: Jacobs JA (ed) Geomagnetism. Academic, London, pp 87–293

    Google Scholar 

  • Schulz M, Koons HC (1972) Thermalization of colliding ion streams beyond the plasmapause. J Geophys Res 77:248–254

    Article  Google Scholar 

  • Schulz M, Lanzerotti LJ (1974) Particle diffusion in the radiation belts. Sprinter, Heidelberg, Germany

    Google Scholar 

  • Scime EE, Keesee AM Jahn J, Kline JL, Pollock CJ, Thomsen MF (2002) Remote ion temperature measurements of Earth’s magnetosphere: medium energy neutral atom (MENA) images. Geophys Res Lett. doi:10.1029/2001GL013994

    Google Scholar 

  • Sckopke N (1966) A general relation between the energy of trapped particles and the disturbance field near the Earth. J Geophys Res 71:3125–3135

    Google Scholar 

  • Seki K, Miyoshi Y, Summers D, Meredith NP (2005) Comparative study of outer-zone relativistic electrons observed by Akebono and CRRes. J Geophys Res. doi:10.1029/2004JA010655

    Google Scholar 

  • Selesnick RS, Blake JB (2000) On the source location of radiation belt electrons. J Geophys Res 105:2607–2624

    Article  Google Scholar 

  • Selesnick RS, Looper MD, Mewaldt RA (2007) A theoretical model of the inner proton radiation belt. Space Weather. doi:10.1029/2006SW000275

    Google Scholar 

  • Senior C (1991) Solar and particle contributions to auroral height integrated conductivities from EISCAT data: a statistical study. Ann Geophys 9:449–460

    Google Scholar 

  • Senior C, Sharber JR, de la Beaujardière O, Heelis RA, Evans DS, Winningham JD, Sugiura M, Hoegy WR (1987) E and F region study of the evening sector auroral oval: a Chatanika/Dynamics Explorer 2/NOAA 6 comparison. J Geophys Res 92:2477–2494

    Article  Google Scholar 

  • Sergeev VA, Sazhina EM, Tsyganenko NA, Lundblad JÅ, Søraas F (1983) Pitch-angle scattering of energetic protons in the magnetotail current sheet as the dominant source of their isotropic precipitation into the nightside ionosphere. Planet Space Sci 31:1147–1155

    Article  Google Scholar 

  • Sergeev VA, Malkov M, Mursula K (1993) Testing the isotropic boundary algorithm method to evaluate the magnetic field configuration in the tail. J Geophys Res 98:7609–7620

    Article  Google Scholar 

  • Sergeev VA, Shukhtina MA, Rasinkangas R, Korth A, Reeves GD, Singer HJ, Thomsen MF, Vagina LI (1998) Event study of deep energetic particle injections during substorm. J Geophys Res 103:9217–9234

    Article  Google Scholar 

  • Sheldon RB, Spence HE, Fennell JF (1998) Observation of the 40 keV field-aligned ion beams. Geophys Res Lett 25:1617– 16i20

    Article  Google Scholar 

  • Shinbori A, Ono T, Iizima T, Kumamoto A (2004) SC related electric and magnetic field phenomena observed by the Akebono satellite inside the plasmasphere. Earth Planet Space 56:269–282

    Google Scholar 

  • Shprits YY, Thorne RM, Friedel R, Reeves GD, Fennell J, Baker DN, Kanekal SG (2006) Outward radial diffusion driven by losses at magnetopause. J Geophys Res. doi:10.1029/2006JA011657

    Google Scholar 

  • Shprits Y, Kondrashov D, Chen Y, Thorne R, Ghil M, Friedel R, Reeves G (2007) Reanalysis of relativistic radiation belt electron fluxes using CRRES satellite data, a radial diffusion model, and a Kalman filter. J Geophys Res. doi:10.1029/2007JA012579.

    Google Scholar 

  • Shprits YY, Elkington SR, Meredith NP, Subbotin DA (2008a) Review of modeling of losses and sources of relativistic electrons in the outer radiation belt I: radial transport. J Atmos Solar-Terr Phys 70:1679–1693

    Article  Google Scholar 

  • Shprits YY, Subbotin DA, Meredith NP, Elkington SR (2008b) Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: local acceleration and loss. J Atmos Solar-Terr Phys 70:1694–1713

    Article  Google Scholar 

  • Shprits YY, Subbotin DA, Ni B (2009) Evolution of electron fluxes in the outer radiation belt computed with the VERB code. J Geophys Res 114. doi:10.1029/2008JA013784.

    Google Scholar 

  • Singh N, Horwitz JL (1992) Plasmasphere refilling: recent observations and modeling. J Geophys Res 97:1049–1079

    Article  Google Scholar 

  • Siscoe GL, Crooker NU, Siebert KD (2002) Transpolar potential saturation: roles of region 1 current system and solar wind ram pressure. J Geophys Res. doi:10.1029/2001JA009176

    Google Scholar 

  • Sitnov MI, Tsyganenko NA, Ukhorskiy AY, Brandt PC (2008) Dynamical data-based modeling of the storm-time geomagnetic field with enhanced spatial resolution. J Geophys Res. doi:10.1029/2007JA013003

    Google Scholar 

  • Smith PH, Hoffman RA (1973) Ring current particle distributions during the magnetic storms of December 16–18:1971. J Geophys Res 78:4731–4737

    Article  Google Scholar 

  • Smith PH, Bewtra NK (1976) Dependence of the charge exchange lifetimes on mirror latitude. Geophys Res Lett 3:689–692

    Article  Google Scholar 

  • Smith JP, Thomsen MF, Borovsky JE, Collier M (1999) Solar wind density as a driver for the ring current in mild storms. Geophys Res Lett 26:1797–1800

    Article  Google Scholar 

  • Sojka J, Schunk R, Johnson J, Waite J, Chappell C (1983) Characteristics of Thermal and suprathermal ions associated with the dayside plasma trough as measured by the dynamics explorer retarding ion mass spectrometer. J Geophys Res 88:7895–7911

    Article  Google Scholar 

  • Song P, Russell C (1992) Model of the formation of the low-latitude boundary layer for strongly northward interplanetary magnetic field. J Geophys Res 97:1411–1420

    Article  Google Scholar 

  • Song XT, Gendrin R, Caudal G (1988) Refilling process in the plasmasphere and its relation to magnetic activity. J Atmos Terr Phys 50:185–195

    Article  Google Scholar 

  • Song P, DeZeeuw DL, Gombosi TI, Groth CPT, Powell KG (1999) A numerical study of solar wind-magnetosphere interaction for northward interplanetary magnetic field. J Geophys Res 104:28361–28378

    Article  Google Scholar 

  • Southwood DJ, Dungey JW, Etherington RJ (1969) Bounce resonant interaction between pulsations and trapped particles. Planet Space Sci 17:349–361

    Article  Google Scholar 

  • Spasojevic M, Thomsen MF, Chi PJ, Sandel BR (2005) Afternoon subauroral proton precipitation resulting from ring current-plasmasphere interaction. In: Burch J, Schulz M, Spence H (eds) Inner magnetosphere interactions: new perspective from imaging. doi: 10.1029/159GM12. AGU, Washington DC

    Google Scholar 

  • Spence HE, Kivelson MG (1993) Contributions of the low-latitude boundary layer to the finite width magnetotail convection model. J Geophys Res 98:15487–15496

    Article  Google Scholar 

  • Spence HE, Kivelson MG, Walker RJ, McComas DJ (1989) Magnetospheric plasma pressures in the midnight meridian: observations from 2.5 to 35 RE. J Geophys Res 94:5264–5272

    Article  Google Scholar 

  • Spiro RW, Wolf RA (1984) Electrodynamics of convection in the inner magnetosphere. In: Potemra TA (ed) Magnetospheric currents. Geophysical monograph series, vol 28. AGU, Washington, DC, p 248

    Google Scholar 

  • Spiro RW, Heelis RA, Hanson WB (1979) Rapid subauroral ion drifts observed by Atmospherics Explorer C. Geophys Res Lett 6:657–660

    Article  Google Scholar 

  • Spiro RW, Wolf RA, Fejer BG (1988) Penetration of high-altitude-electric-field effects to low latitudes during SUNDIAL 1984. Ann Geophys 6:39–49

    Google Scholar 

  • Stüdemann W et al (1987) The May 2–3:1986 magnetic storm: first energetic ion composition observations with the MICS instrument on Viking. Geophys Res Lett 14:455–458

    Article  Google Scholar 

  • Subbotin D, Shprits Y, Ni B (2010) Three-dimensional VERB radiation belt simulations including mixed diffusion. J Geophys Res. doi:10.1029/2009JA015070.

    Google Scholar 

  • Sugiura M (1964) Hourly values of equatorial Dst for IGY. In: Berkner LV(eds) Annals of the International Geophysical Year, 35. Pergamon Press, Oxford, pp 9–45

    Google Scholar 

  • Sugiura M, Ledley B, Skillman T, Heppner J (1971) Magnetospheric-field distortions observed by Ogo 3 and 5. J Geophys Res 76:7552–7565

    Article  Google Scholar 

  • Summers D (2005) Quasi-linear diffusion coefficients for field-aligned electromagnetic waves with applications to the magnetosphere. J Geophys Res 110. doi:10.1029/2005JA011159

    Google Scholar 

  • Summers D, Ma C (2000) Rapid acceleration of electrons in the magnetosphere by fast-mode MHD waves. J Geophys Res 105:15887–15895

    Article  Google Scholar 

  • Summers D, Thorne RM (2003) Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms. J Geophys Res 108. doi:10.1029/2002JA009489

    Google Scholar 

  • Summers D, Thorne RM, Xiao F (1998) Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere. J Geophys Res 103:20487–20500

    Article  Google Scholar 

  • Summers D, Thorne RM, Xiao F (2001) Gyroresonant acceleration of electrons in the magnetosphere by superluminous electromagnetic waves. J Geophys Res 106:10853–10868

    Article  Google Scholar 

  • Summers D, Ni B, Meredith NP (2007) Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 1. Theory. J Geophys Res 112. doi:10.1029/2006JA011801.

    Google Scholar 

  • Søraas F, Oksavik K, Aarsnes K, Evans DS, Greer MS (2003) Storm time equatorial belt-an “image” of RC behavior. Geophys Res Lett. doi:10.1029/2002GL015636

    Google Scholar 

  • Sørbø M, Søraas F, Aarsnes K, Oksavik K, Evans DS (2006) Latitude distribution of vertically precipitating energetic neutral atoms observed at low altitudes. Geophys Res Lett 33. doi:10.1029/2005GL025240

    Google Scholar 

  • Takahashi K, Ukhorskiy AY (2007) Solar wind control of Pc5 pulsation power at geosynchronous orbit. J Geophys Res. doi:10.1029/2007JA012483

    Google Scholar 

  • Takahashi K, Ohtani S, Denton RE, Hughes WJ, Anderson RR (2008) Ion composition in the plasma trough and plasma plume derived from a combined release and radiation effects satellite magnetoseismic study. J Geophys Res. doi:10.1029/2008JA013248

    Google Scholar 

  • Takasaki S, Kawano H, Tanaka Y, Yoshikawa A, Seto M, Iizima M, Obana Y, Sato N, Yumoto K (2006) A significant mass density increase during a large magnetic storm in October 2003 obtained by ground-based ULF observations at L ∼ 1.4. Earth Planet Space 58:617–622

    Google Scholar 

  • Tan LC, Fung SF, Shao X (2004) Observation of magnetospheric relativistic electrons accelerated by Pc–5 ULF waves. Geophys Res Lett. doi:10.1029/2004GL019459

    Google Scholar 

  • Taylor HA Jr (1972) The light ion trough. Planet Space Sci 20:1593–1599

    Article  Google Scholar 

  • Terada N, Iyemori T, Nose M, Nagai T, Matsumoto H, Goka T (1998) Storm–time magnetic field variations observed by the ETS-VI satellite. Earth Planet Space 50:853–864

    Google Scholar 

  • Terasawa T et al (1997) Solar wind control of density and temperature in the near-Earth plasma sheet: WIND/GEOTAIL collaboration. Geophys Res Lett 24:935–938

    Article  Google Scholar 

  • Thomsen M, Borovsky J, McComas D, Collier M (1998) Variability of the ring current source population. Geophys Res Lett 25:3481–3484

    Article  Google Scholar 

  • Thomsen MF, Borovsky JE, Skoug RM, Smith CW (2003) Delivery of cold, dense plasma sheet material into the near-Earth region. J Geophys Res. doi:10.1029/2002JA009544

    Google Scholar 

  • Thorne RM, Kennel CF (1971) Relativistic electron precipitation during magnetic storm main phase. J Geophys Res 76:4446–4453

    Article  Google Scholar 

  • Thorne RM (1977) Energetic radiation belt electron precipitation: a natural depletion mechanism for stratospheric ozone. Science 195:287–289

    Article  Google Scholar 

  • Thorne RM, Horne RB (1994) Energy transfer between energetic ring current H+ and O+ by electromagnetic ion cyclotron waves. J Geophys Res 99:17275–17282

    Article  Google Scholar 

  • Thorne RM, Horne RB (1997) Modulation of electromagnetic ion cyclotron instability due to interaction with ring current O+ during magnetic storms. J Geophys Res 102:14155–14163

    Article  Google Scholar 

  • Thorne RM O’Brien TP, Shprits YY, Summers D, Horne RB (2005) Timescale for MeV electron microburst loss during geomagnetic storms. J Geophys Res. doi:10.1029/2004JA010882

    Google Scholar 

  • Tinsley BA (1981) Neutral atom precipitation – a review. J Atmos Terr Phys 43:617–632,

    Article  Google Scholar 

  • Tsurutani BT, Gonzalez WD, Gonzalez ALC, Guarnieri FL, Gopalswamy N, Grande M, Kamide Y, Kasahara Y, Lu G, Mann I, McPherron R, Sorass F, and Vasyliunas V (2006) Corotating solar wind streams and recurrent geomagnetic activity: a review. J Geophys Res. doi:10.1029/2005JA011273

    Google Scholar 

  • Tu J, Song P, Reinisch BW, Green JL, Huang X (2006) Empirical specification of field–aligned plasma density profiles for plasmasphere refilling. J Geophys Res 111. doi:10.1029/2005JA011582

    Google Scholar 

  • Turner NE, Baker DN, Pulkkinen TI, Roeder JL Fennell JF, Jordanova VK (2001) Energy content in the storm time ring current. J Geophys Res 106:19149–19156

    Article  Google Scholar 

  • Tverskaya LV, Pavlov NN, Blake JB, Selesnick RS, Fennell JF (2003) Predicting the L-position of the storm-injected relativistic electron belt. Adv Space Res 31:1039–1044

    Article  Google Scholar 

  • Ukhorskiy AY, Anderson BJ, Takahashi K, Tsyganenko NA (2006) Impact of ULF oscillations in solar wind dynamic pressure on the outer radiation belt electrons. Geophys Res Lett. doi:10.1029/2005GL024380

    Google Scholar 

  • Unwin RW, Cummack CH (1980) Drift spikes: the ionospheric signature of large poleward directed electric fields at subauroral latitudes. Mem Natl Inst Polar Res 16:72 (Special Issue “IMS in Antarctica”)

    Google Scholar 

  • Usanova ME, Mann IR, Rae IJ, Kale ZC, Angelopoulos V, Bonnell JW, Classmeier K-H, Auster HU, Singer HJ (2008) Multipoint observations of magnetospheric compression-related EMIC Pc1 waves by THEMIS and CARISMA. Geophys Res Lett. doi:10.1029/2008GL034458

    Google Scholar 

  • Vallance Jones A (1974) Aurora D. Reidel, Norwell, MA

    Google Scholar 

  • Vallat et al (2005) First current density measurements in the ring current region using simultaneous multi-spacecraft Cluster-FGM data. Ann Geophys 23:1849–1865

    Article  Google Scholar 

  • Van Allen JA, Frank LA (1959) Radiation around the earth to a radial distance of 107400 km. Nature 183:430–434

    Article  Google Scholar 

  • Varotsou A, Boscher D, Bourdarie S, Horne RB, Glauert SA, Meredith NP (2005) Simulation of the outer radiation belt electrons near geosynchronous orbit including both radial diffusion and resonant interaction with whistler-mode chorus waves. Geophys Res Lett. doi:10.1029/2005GL023282

    Google Scholar 

  • Varotsou A, Boscher D, Bourdarie S, Horne RB, Meredith NP, Glauert SA, Friedel RH (2008) Three-dimensional test simulations of the outer radiation belt electron dynamics including electron-chorus resonant interactions. J Geophys Res. doi:10.1029/2007JA012862

    Google Scholar 

  • Vassiliadis D, Klimas AJ, Weigel RS, Baker DN, Rigler EJ, Kanekal SG, Nagai T, Fung SF, Friedel RWH, Cayton TE (2003) Structure of Earth’s outer radiation belt inferred from long-term electron flux dynamics. Geophys Res Lett. doi:10.1029/2003GL017328

    Google Scholar 

  • Vassiliadis D, Fung SF, Klimas AJ (2005) Solar, interplanetary, and magnetospheric parameters for the radiation belt energetic electron flux. J Geophys Res. doi:10.1029/2004JA010443

    Google Scholar 

  • Vasyliunas VM (1970) Mathematical models of magnetospheric convection and its couplingt to the ionosphere, In: McCormac BM (ed) Particles and fields in the magnetosphere. D. Reidel, New York, NY pp. 60–71

    Google Scholar 

  • Voiculescu M, Roth M (2008) Eastward sub-auroral ion drifts or ASAID. Ann Geophys 26:1955–1963

    Article  Google Scholar 

  • Walker RJ, Erickson KN, Swanson RL, Winckler JR (1976) Substorm-associated particle boundary motion at synchronous orbit. J Geophys Res 81:5541–5550

    Article  Google Scholar 

  • Wang C, Newman TS, Gallagher DL (2007) Plasmapause equatorial shape determination via the Minimum L Algorithm: description and evaluation. J Geophys Res. doi:10.1029/2006JA012202

    Google Scholar 

  • Wang H, Ridley AJ, Lühr H, Liemohn MW, Ma SY (2008) Statistical study of the subauroral polarization stream: its dependence on the cross-polar cap potential and subauroral conductance. J Geophys Res. doi:10.1029/2008JA013529

    Google Scholar 

  • West H Jr, Buck R, Walton J (1973) Electron Pitch Angle Distributions throughout the Magnetosphere as Observed on Ogo 5. J Geophys Res 78:1064–1081

    Article  Google Scholar 

  • Weimer DR (2001) An improved model of ionospheric electric potentials including substorm perturbations and application to the Geospace Environment Modeling November 24:1996, event. J Geophys Res 106:407–416

    Article  Google Scholar 

  • Weimer DR (2005) Improved ionospheric electrodynamic models and application to calculating Joule heating rates. J Geophys Res. doi:10.1029/2004JA010884

    Google Scholar 

  • Williams DJ (1981) Ring current composition and sources: an update. Planet Space Sci 29:1195–1203

    Article  Google Scholar 

  • Williams DJ, Arens JF, Lanzerotti LJ (1968) Observations of trapped electrons at low and high altitudes. J Geophys Res 73:5673–5696

    Article  Google Scholar 

  • Wolf RA (1970) Effects of ionospheric conductivity on convective flow of plasma in the magnetosphere. J Geophys Res 75:4677–4698

    Article  Google Scholar 

  • Wolf RA, Harel M, Spiro RW, Voigt G-H, Reiff PH, Chen C-K (1982) Computer simulation of inner magnetospheric dynamics for the magnetic storm of July 29:1977. J Geophys Res 87:5949–5962

    Article  Google Scholar 

  • Wygant JR, Torbert RB, Mozer FS (1983) Comparison of S3-3 polar cap potential with the interplanetary magnetic field and models of magnetospheric reconnection. J Geophys Res 88:5727–5735

    Article  Google Scholar 

  • Xiao F, Thorne RM, Summers D (2007) Higher-order gyroresonant acceleration of electrons by superluminous (AKR) wave modes. Planet Space Sci 55:1257–1271

    Article  Google Scholar 

  • Xiao F, Su Z, Zheng H, Wang S (2010a) Three-dimensional simulations of outer radiation belt electron dynamics including cross-diffusion terms. J Geophys Res. doi:10.1029/2009JA014541

    Google Scholar 

  • Xiao F, Su Z, Chen L, Zheng H, Wang S (2010b) A parametric study on outer radiation belt electron evolution by superluminous R-X mode waves. J Geophys Res. doi:10.1029/2010JA015374

    Google Scholar 

  • Yahnin AG, Yahnina TA, Frey HU (2007) Subauroral proton spots visualize the Pc1 source. J Geophys Res. doi:10.1029/2007JA012501

    Google Scholar 

  • Yahnina TA, Frey HU, Bösinger T, Yahnin AG (2008) Evidence for subauroral proton flashes on the dayside as the result of the ion cyclotron interaction. J Geophys Res. doi:10.1029/2008JA013099

    Google Scholar 

  • Yamauchi M, Lundin R, Mursula K, Marklund G, Potemra TA (1996) Dayside Pc5 pulsation detected by Viking ion data at L=4. Geophys Res Lett 23:2517–2520

    Article  Google Scholar 

  • Yamauchi M, Ebihara Y, Dandouras I, Rème H (2009) Dual source populations of substorm-associated ring current ions, Ann Geophys 27:1431–1438

    Google Scholar 

  • Yao Y, Seki K, Miyoshi Y, McFadden JP, Lund EJ, Carlson CW (2008) Statistical properties of the multiple ion band structures observed by the FAST satellite. J Geophys Res. doi:10.1029/2008JA013178

    Google Scholar 

  • Yau AW, Beckwith PH, Peterson WK, Shelley EG (1985a) Long-term (solar cycle) and seasonal variations of upflowing ionospheric ion events at DE 1 Altitudes. J Geophys Res 90:6395–6407

    Article  Google Scholar 

  • Yau AW, Shelley EG, Peterson WK, Lenchyshyn L (1985b) Energetic auroral and polar ion outflow at DE 1 altitudes: magnitude, composition, magnetic activity dependence, and long-term variations. J Geophys Res 90:8417–8432

    Article  Google Scholar 

  • Yizengaw E, Wei H, Moldwin MB, Galvan D, Mandrake L, Mannucci A, Pi X (2005) The correlation between mid-latitude trough and the plasmapause. Geophys Res Lett. doi:10.1029/2005GL022954

    Google Scholar 

  • Yizengaw E, Moldwin MB, Galvan D, Iijima BA, Komjathy A, Mannucci AJ (2008) Global plasmaspheric TEC and its relative contribution to GPS TEC. J Atmos Solar-Terr Phys 70:1541–1548

    Article  Google Scholar 

  • Yoshikawa I, Murakami G, Ogawa G, Yoshioka K, Obana Y, Taguchi M, Yamazaki A, Kameda S, Nakamura M, Kikuchi M, Kagitani M, Okano S, Miyake W (2010) Plasmaspheric EUV images seen from lunar orbit: initial results of the extreme ultraviolet telescope on board the Kaguya spacecraft. J Geophys Res. doi:10.1029/2009JA014978

    Google Scholar 

  • Young DT, Balsiger H, Geiss J (1982) Correlations of magnetospheric ion composition with geomagnetic and solar activity. J Geophys Res 87:9077–9096

    Article  Google Scholar 

  • Zaharia S, Jordanova VK, Thomsen MF, Reeves GD (2006) Self-consistent modeling of magnetic fields and plasmas in the inner magnetosphere: application to a geomagnetic storm. J Geophys Res. doi:10.1029/2006JA011619

    Google Scholar 

  • Zhang Y, Paxton LJ, Kozyra JU, Kil H, Brandt PC (2006) Nightside thermospheric FUV emissions due to energetic neutral atom precipitation during magnetic superstorms. J Geophys Res. doi:10.1029/2005JA011152

    Google Scholar 

  • Zhang Y, Paxton LJ, Zheng Y (2008) Interplanetary shock induced ring current auroras. J Geophys Res. doi:10.1029/2007JA012554

    Google Scholar 

  • Zhang J-C, Wolf RA, Spiro RW, Erickson GM, Sazykin S, Toffoletto FR, Yang J (2009) Rice convection model simulation of the substorm-associated injection of an observed plasma bubble into the inner magnetosphere: 2. Simulation results. J Geophys Res. doi:10.1029/2009JA014131

    Google Scholar 

  • Zong Q-G, Wilken B (1999) Bursty energetic oxygen events in the dayside magnetosheath: geotail observations. Geophys Res Lett 26:3349–3352

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Ebihara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ebihara, Y., Miyoshi, Y. (2011). Dynamic Inner Magnetosphere: A Tutorial and Recent Advances. In: Liu, W., Fujimoto, M. (eds) The Dynamic Magnetosphere. IAGA Special Sopron Book Series, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0501-2_9

Download citation

Publish with us

Policies and ethics