Skip to main content

Physical Processes for Magnetospheric Substorm Expansion Onsets

  • Chapter
  • First Online:
The Dynamic Magnetosphere

Part of the book series: IAGA Special Sopron Book Series ((IAGA,volume 3))

Abstract

A major challenge in magnetospheric research is to identify the physical processes for magnetospheric substorm expansion onsets. Recent abundance of observations from Geotail, Cluster, and Themis missions has added impetus to substorm research. Observations that are linked to substorm expansion onsets are discussed. Topics encompassed in this review are (1) the external conditions in the solar wind for substorm onset, (2) observations prior to onset, (3) observations immediately after onset, (4) time history approach, and (5) system-wide approach that can reveal general characteristics of the physical processes for onset. The implications for the substorm onset processes are discussed based on these observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akasofu S-I (1964) The development of the auroral substorm. Planet Space Sci 12:273–282

    Google Scholar 

  • Akasofu S-I (1968) Polar and magnetospheric substorms. D. Reidel, Norwell, MA

    Google Scholar 

  • Akasofu S-I, Lui ATY, Meng C-I (2010) The importance of auroral features in search for substorm onset processes. J Geophys Res 115:A08218. doi:10.1029/2009JA014960

    Google Scholar 

  • Alfvén, H. (1977) Electrical currents in cosmic plasmas. Rev Geophys 15:271–284

    Google Scholar 

  • Angelopoulos V (2008) The THEMIS mission. Space Sci Rev. doi:10.1007/s11214-008-9336-1

    Google Scholar 

  • Angelopoulos V, Baumjohann W, Kennel CF, Coroniti FV, Kivelson MG, Pellat R, Lühr H, Paschmann G (1992) Bursty bulk flow in the inner central plasma sheet. J Geophys Res 97:4027–4039

    Google Scholar 

  • Angelopoulos V, Kennel CF, Coroniti FV, Pellat R, Kivelson MG, Walker RJ, Russell CT, Baumjohann W, Feldman WC, Gosling JT (1994) Statistical characteristics of bursty bulk flow events. J Geophys Res 99:21257–21280

    Google Scholar 

  • Angelopoulos V, McFadden JP, Larson D, Carlson CW, Mende SB, Frey H, Phan T, Sibeck DG, Glassmeier K-H, Auster U, Donovan E, Mann IR, Rae IJ, Russell CT, Runov A, Zhou X-Z, Kepko L (2008) Tail reconnection triggering substorm onset. Science 321:931–935. doi:10.1126/science.1160495

    Google Scholar 

  • Angelopoulos V, McFadden JP, Larson D, Carlson CW, Mende SB, Frey H, Phan T, Sibeck DG, Glassmeier K-H, Auster U, Donovan E, Mann IR, Rae IJ, Russell CT, Runov A, Zhou X-Z, Kepko L (2009) Response to Comment on “Tail reconnection triggering substorm onset.” Science 324:1391-c, doi:10.1126/science.1168045

    Google Scholar 

  • Antonova EE, Kirpichev IP, Ovchinnikov IL, Orlova KG, Stepanova MV (2009a) High latitude magnetospheric topology and magnetospheric substorm. Ann Geophys 27:4069–4073

    Google Scholar 

  • Antonova EE, Kornilov IA, Kornilova TA, Kornilov OI, Stepanova MV (2009b) Features of auroral breakup obtained using data of ground-based television observations: case study. Ann Geophys 27:1413–1422

    Google Scholar 

  • Atkinson G (1967) An approximate flow equation for geomagnetic flux tubes and its application to polar substorms. J Geophys Res 72:5373–5382

    Google Scholar 

  • Baumjohann W, Paschmann G, Luhr H (1990) Characteristics of high-speed ion flows in the plasma sheet. J Geophys Res 95:3801–3809

    Google Scholar 

  • Bhattacharjee A, Ma ZW, Wang X (1998) Ballooning instability of a thin current sheet in the high-Lundquist number magnetotail. Geophys Res Lett 25:861–864

    Google Scholar 

  • Blanchard GT, Lyons LR, Spann J (2000) Predictions of substorms following northward turnings of the interplanetary magnetic field. J Geophys Res 105:375–384

    Google Scholar 

  • Burch JL (1972) Preconditions for the triggering of polar magnetic substorms by storm sudden commencements. J Geophys Res 77:6529–5632

    Google Scholar 

  • Burton RK, McPherron RL, Russell CT (1975) An empirical relationship between interplanetary conditions and Dst. J Geophys Res 80:4204–4214

    Google Scholar 

  • Caan MN, McPherron RL, Russell CT (1977) Characteristics of the association between the interplanetary magnetic field and substorms. J Geophys Res 82:4837–4842

    Google Scholar 

  • Carbary JF, Liou K, Lui ATY, Newell PT, Meng CI (2000) “Blob” analysis of auroral substorm dynamics. J Geophys Res 105:16083–16091

    Google Scholar 

  • Chang T (1992) Low dimensional behavior and symmetry breaking of stochastic systems near criticality – can these effects be observed in space and in the laboratory? IEEE Trans Plasma Sci 20:691–694

    Google Scholar 

  • Chanteur G (1998) Spatial interpolation for four spacecraft: theory. In: Paschmann G, Daly P (eds) Analysis methods for multi-spacecraft data. ISSI Sci Rep SR-001, European Space Agency, Paris, pp 349–369

    Google Scholar 

  • Chao JK, Kan JR, Lui ATY, Akasofu S-I (1977) A model for thinning of the plasma sheet. Planet Space Sci 25:703–710

    Google Scholar 

  • Chen L-J, Bhattacharjee A, Sigsbee K, Parks G, Fillingim M, Lin R (2003) Wind observations pertaining to current disruption and ballooning instability during substorms. Geophys Res Lett 30:68-1. doi:10.1029/2002GL016317

    Google Scholar 

  • Cheng CZ (2004) Physics of substorm growth phase, onset, and depolarization. Space Sci Rev 113:207–270

    Google Scholar 

  • Cheng CZ, Lui ATY (1998) Kinetic ballooning instability for substorm onset and current disruption observed by AMPTE/CCE. Geophys Res Lett 25:4091–4094

    Google Scholar 

  • Chi PJ, Russell CT, Ohtani S (2009) Substorm onset timing via traveltime magnetoseismology. Geophys Res Lett 36:L08107. doi:10.1029/2008GL036574

    Google Scholar 

  • Consolini G (1997) Intermittency and turbulence in magnetospheric dynamics. In: Mallamace F, Stanley HE (eds) Proceedings of the international school of physics "Enrico Fermi”, IOS Press, Amsterdam, pp 657–660

    Google Scholar 

  • Consolini G, Marcucci MF, Candidi M (1996) Multifractal structure of auroral electrojet index data. Phys Rev Lett 76(21):4082–4085

    Google Scholar 

  • Consolini G, Kretzschmar M, Lui ATY, Zimbardo G, Macek WM (2005) On the magnetic field fluctuations during magnetospheric tail current disruption: a statistical approach. J Geophys Res 110:A07202. doi:10.1029/2004JA010947

    Google Scholar 

  • Coroniti FV, Kennel CF (1972) Changes in magnetospheric configuration during the substorm growth phase. J Geophys Res 77:3361–3370

    Google Scholar 

  • Donovan E, Jackel B, Voronkov I, Sotirelis T, Creutzbert F, Nicholson N (2003) Ground-based optical determination of the b2i boundary: a basis for an optical MT-index. J Geophys Res 108(A3):1115. doi:10.1029/2001JA009198

    Google Scholar 

  • Donovan E, Mende S, Jackel B, Frey H, Syrjäsuo M, Voronkov I, Trondsen T, Peticolas L, Angelopoulos V, Stewart H, Greffen M, Connors M (2006a) The THEMIS all-sky imaging array – system design and initial results from the prototype imager. J Atmos Sol Terr Phys 68:1472–1487

    Google Scholar 

  • Donovan E, Mende S, Jackel B, Syrjäsuo M, Meurant M, Voronkov I, Frey H, Angelopoulos V, Connors M (2006b) The azimuthal evolution of the substorm expansive phase onset aurora. In: Syrjäsuo M, Donovan E (eds) Proceedings of ICS-8. University of Calgary, Calgary, AB, pp 55–60

    Google Scholar 

  • Donovan E, Liu W, Liang J, Spanswick E, Voronkov I, Connors M, Syrjäsuo M, Baker G, Jackel B, Trondsen T, Greffen M, Angelopoulos V, Russell CT, Mende SB, Frey HU, Keiling A, Carlson CW, McFadden JP, Glassmeier K-H, Auster U, Hayashi K, Sakaguchi K, Shiokawa K, Wild JA, Rae IJ (2008) Simultaneous THEMIS in situ and auroral observations of a small substorm. Geophys Res Lett 35:L17S18. doi:10.1029/2008GL033794

    Google Scholar 

  • Dubyagin SV, Sergeev VA, Carlson CW, Marple SR, Pulkkinen TI, Yahnin AG (2003) Evidence of near-Earth breakup location. Geophys Res Lett 30:1282. doi:10.1029/2002GL016569

    Google Scholar 

  • Dunlop MW, Southwood DJ, Glassmeier K-H, Neubauer FM (1988) Analysis of multipoint magnetometer data. Adv Space Res 8:273–277

    Google Scholar 

  • Elphinstone RD, Hearn DJ, Cogger LL, Murphree JS, Singer H, Sergeev V, Mursula K, Klumpar DM, Reeves GD, Johnson M, Ohtani S, Potemra TA, Sandahl I, Nielsen E, Persson M, Opgenoorth H, Newell PT, Feldstein YI (1995) Observations in the vicinity of substorm onset: implications for the substorm process. J Geophys Res 100:7937–7969

    Google Scholar 

  • Erickson GM, Maynard NC, Burke WJ, Wilson GR, Heinemann MA (2000) Electromagnetics of substorm onsets in the near-geosynchronous plasma sheet. J Geophys Res 105:25265–25290

    Google Scholar 

  • Fairfield DH, Cahill LJ Jr (1966) Transition region magnetic field and polar magnetic disturbances. J Geophys Res 71:155–169

    Google Scholar 

  • Foster JC, Fairfield DH, Ogilvie KW, Rosenberg TJ (1971) Relationship of interplanetary parameters and occurrence of magnetospheric substorms. J Geophys Res 76:6971–6975

    Google Scholar 

  • Frank LA, Paterson WR, Sigwarth JB, Mukai T (2001) Observations of plasma sheet dynamics earthward of the onset region with the Geotail spacecraft. J Geophys Res 106:18823–18841

    Google Scholar 

  • Freeman MP, Morley SK (2004) A minimal substorm model that explains the observed statistical distribution of times between substorms. Geophys Res Lett 31:L12807. doi:10.1029/2004GL019989

    Google Scholar 

  • Freeman MP, Morley SK (2009) No evidence for externally triggered substorms based on superposed epoch analysis of IMF Bz. Geophys Res Lett 36:L21101. doi:10.1029/2009GL040621

    Google Scholar 

  • Friedrich E, Samson JC, Voronkov I (2001) Ground-based observations and plasma instabilities in auroral substorms. Phys Plasmas 8(4):1104–1110

    Google Scholar 

  • Gabrielse C, Angelopoulos V, Runov A, Frey HU, McFadden J, Larson DE, Glassmeier K-H, Mende S, Russell CT, Apatenkov S, Murphy KR, Rae IJ (2009) Timing and localization of near-Earth tail and ionospheric signatures during a substorm onset. J Geophys Res 114:A00C13. doi:10.1029/2008JA013583

    Google Scholar 

  • Haerendel G (1992) Disruption, ballooning or auroral avalanche. In: Proceedings of the first international conference on substorms, ESA SP-335, Paris, 23–27 Mar 1992, pp 417–420

    Google Scholar 

  • Henderson MG (2009) Observational evidence for an inside-out substorm onset scenario. Ann Geophys 27:2129–2140

    Google Scholar 

  • Henderson MG, Reeves GD, Belian RD (1996) Observations of magnetospheric substorms occurring with no apparent solar wind/IMF trigger. J Geophys Res 101:10773–10791

    Google Scholar 

  • Hones EW Jr (1973) Plasma flow in the plasma sheet and its relation to substorms. Radio Sci 8:979–990

    Google Scholar 

  • Hones EW Jr, Schindler K (1979) Magnetotail plasma flow during substorms: a survey with IMP 6 and IMP 8. J Geophys Res 84:7155–7169

    Google Scholar 

  • Horwitz JL (1985) The substorm as an internal magnetospheric instability: substorms and their characteristic time scales during intervals of steady interplanetary magnetic field. J Geophys Res 90:4164–4170

    Google Scholar 

  • Hsu TS, McPherron RL (2002) An evaluation of the statistical significance of the association between northward turnings of the interplanetary magnetic field and substorm expansion onsets. J Geophys Res 107(A11):1398. doi:10.1029/2000JA000125

    Google Scholar 

  • Ieda A, Fairfield DH, Mukai T, Saito Y, Kokubun S, Liou K (2001) Plasmoid ejection and auroral brightenings. J Geophys Res 106:3845–3858

    Google Scholar 

  • Jacquey C, Sauvaud JA, Dandouras J (1991) Location and propagation of the magnetotail current disruption during substorm expansion: analysis and simulation of an ISEE multi-onset event. Geophys Res Lett 18:389–392

    Google Scholar 

  • Jacquey C, Sauvaud JA, Dandouras J, Korth A (1993) Tailward propagating cross-tail current disruption and dynamics of near-earth tail: a multi-point measurement analysis. Geophys Res Lett 20:983–986

    Google Scholar 

  • Kaufmann RL (1987) Substorm currents: growth phase and onset. J Geophys Res 92:7471–7486

    Google Scholar 

  • Kauristie K, Pulkkinen TI, Huuskonen A, Pellinen RJ, Opgenoorth HJ, Baker DN, Korth A, Syrjäsuo M (1997) Auroral precipitation fading before and at substorm onset: ionospheric and geostationary signatures. Ann Geophys 15:967–983

    Google Scholar 

  • Kawasaki K, Akasofu S-I, Yasuhara F, Meng C-I (1971) Storm sudden commencements and polar magnetic substorms. J Geophys Res 76:6781–6789

    Google Scholar 

  • Kepko L, Spanswick E, Angelopoulos V, Donovan E, McFadden J, Glassmeier K-H, Raeder J, Singer HJ (2009) Equatorward moving auroral signatures of a flow burst observed prior to auroral onset. Geophys Res Lett 36:L24104. doi:10.1029/2009GL041476

    Google Scholar 

  • Le Contel O, Roux A, Jacquey C, Robert P, Berthomier M, Chust T, Grison B, Angelopoulos V, Sibeck D, Chaston CC, Cully CM, Ergun B, Glassmeier K-H, Auster U, McFadden J, Carlson C, Larson D, Bonnell JW, Mende S, Russell CT, Donovan E, Mann I, Singer H (2009) Quasi-parallel whistler mode waves observed by THEMIS during near-earth dipolarizations. Ann Geophys 27:2259–2275

    Google Scholar 

  • Liang J, Donovan EF, Liu WW, Jackel B, Syrjasuo M, Mende SB, Frey HU, Angelopoulos V, Connors M (2008) Intensification of pre-existing auroral arc at substorm expansion phase onset: Wave-like disruption during the first tens of seconds. Geophys Res Lett 35:L17S19. doi:10.1029/2008GL033666

    Google Scholar 

  • Liang J, Liu WW, Donovan EF (2009) Ion temperature drop and quasi-electrostatic electric field at the current sheet boundary minutes prior to the local current disruption. J Geophys Res 114:A10215. doi:10.1029/2009JA014357

    Google Scholar 

  • Lin N, Frey HU, Mende SB, Mozer FS, Lysak RL, Song Y, Angelopoulos V (2009) Statistical study of substorm timing sequence. J Geophys Res 114:A12204. 10.1029/2009JA014381

    Google Scholar 

  • Liou K (2007) Large, abrupt pressure decreases as a substorm onset trigger. Geophys Res Lett 34(14):L14107. doi:10.1029/2007GL029909

    Google Scholar 

  • Liou K, Meng C-I, Newel PT, Takahashi K, Ohtani S-I, Lui ATY, Brittnacher M, and Parks G (2000) Evaluation of low-latitude Pi2 pulsations as indicators of substorm onset using Polar ultraviolet imagery. J Geophys Res 105:2495–2505

    Google Scholar 

  • Liou K, Newell PT, Meng C-I, Wu C-C, Lepping RP (2003) Investigation of external triggering of substorms with Polar ultraviolet imager observations. J Geophys Res 108:1364. doi:10.1029/2003JA009984

    Google Scholar 

  • Liu WW (1997) Physics of the explosive growth phase: ballooning instability revisited. J Geophys Res 102:4927–4931

    Google Scholar 

  • Liu WW, Liang J (2009) Disruption of magnetospheric current sheet by quasi-electrostatic field. Ann Geophys 27:1941–1950

    Google Scholar 

  • Liu WW, Charbonneau P, Thibault K, Morales L (2006) Energy avalanches in the central plasma sheet. Geophys Res Lett 33:L19106. doi:10.1029/2006GL027282

    Google Scholar 

  • Liu WW, Donovan EF, Liang J, Voronkov I, Spanswick E, Jayachandran PT, Jackel B, Meurant M (2007) On the equatorward motion and fading of proton aurora during substorm growth phase. J Geophys Res 112:A10217. doi:10.1029/2007JA012495

    Google Scholar 

  • Liu WW, Liang J, Donovan EF (2008) Interaction between kinetic ballooning perturbation and thin current sheet: quasi-electrostatic field, local onset, and global characteristics. Geophys Res Lett 35:L20107. doi:10.1029/2008GL035757

    Google Scholar 

  • Liu WW, Liang J, Donovan EF (2010) Electrostatic field and ion temperature drop in thin current sheets: a theory. J Geophys Res 115:A03211. doi:10.1029/2009JA014359

    Google Scholar 

  • Longmire CL (1963) Elementary plasma physics. Interscience Publishers, New York, NY, p 54

    Google Scholar 

  • Lopez RE, Lui ATY (1990) A multisatellite case study of the expansion of a substorm current wedge in the near-earth magnetotail. J Geophys Res 95:8009–8018

    Google Scholar 

  • Lui ATY, Chang C-L, Mankofsky A, Wong H-K, Winske D (1991) A cross-field current instability for substorm expansions. J Geophys Res 96:11389–11401

    Google Scholar 

  • Lui ATY (2001) A multiscale model for substorms. Space Sci Rev 95:325–345

    Google Scholar 

  • Lui ATY (2002) Multiscale phenomena in the near-earth magnetosphere. J Atmos Sol Terr Phys 64:125–143

    Google Scholar 

  • Lui ATY (2004) Potential plasma instabilities for substorm expansion onset. Space Sci Rev 113:127–206

    Google Scholar 

  • Lui ATY (2009) Comment on “Tail reconnection triggering substorm onset.” Science 324:1391-b. doi:10.1126/science.1167726

    Google Scholar 

  • Lui ATY (2011a) Revisiting THEMIS substorm events implying magnetic reconnection as the substorm trigger. J Geophys Res 116:A03211. doi:10.1029/2010JA016078

    Google Scholar 

  • Lui ATY (2011b) Energy source for auroral electrons from two proposed substorm onset processes. J Geophys Res 116:A04214. doi:10.1029/2010JA016332

    Google Scholar 

  • Lui ATY, Burrows JR (1978) On the location of auroral arcs near substorm onset. J Geophys Res 83:3342–3348

    Google Scholar 

  • Lui ATY, Consolini G (2005) Substorm disturbance propagation from a two-dimensional cellular automaton model. In: Lui ATY, Kamide Y, Consolini G (eds) Multiscale coupling of sun-earth processes. Elsevier, Amsterdam, The Netherlands, pp 357–364

    Google Scholar 

  • Lui ATY, Murphree JS (1998) A substorm model with onset location tied to an auroral arc. Geophys Res Lett 25: 1269–1272

    Google Scholar 

  • Lui ATY, Najmi A-H (1997) Time-frequency decomposition of signals in a current disruption event. Geophys Res Lett 24:3157–3160

    Google Scholar 

  • Lui ATY, Frank LA, Ackerson KL, Meng C-I, Akasofu S-I (1977a) Systematic study of plasma flow during plasma sheet thinnings. J Geophys Res 82:4815–4825

    Google Scholar 

  • Lui ATY, Meng C-I, Akasofu S-I (1977b) Search for the magnetic neutral line in the near-earth plasma sheet, 2. Systematic study of IMP-6 magnetic field observations. J Geophys Res 82:1547–1565

    Google Scholar 

  • Lui ATY, Lopez RE, Krimigis SM, McEntire RW, Zanetti LJ, Potemra TA (1988) A case study of magnetotail current sheet disruption and diversion. Geophys Res Lett 15:721–724

    Google Scholar 

  • Lui ATY, Liou K, Newell PT, Meng C-I, Ohtani S-I, Kokubun S, Ogino T, Brittnacher M, Parks G (1998) Plasma and magnetic flux transport associated with auroral breakups. Geophys Res Lett 25:4059–4062

    Google Scholar 

  • Lui ATY, Liou K, Nosé M, Ohtani S, Williams DJ, Mukai T, Tsuruda K, Kokubun S (1999) Near-earth dipolarization: evidence for a non-MHD process. Geophys Res Lett 26:2905–2908

    Google Scholar 

  • Lui ATY, Chapman SC, Liou K, Newell PT, Meng C-I, Brittnacher M, Parks GK (2000) Is the dynamic magnetosphere an avalanching system? Geophys Res Lett 27:911–914

    Google Scholar 

  • Lui ATY, Lai WW, Liou K, Meng CI (2003) A new technique for short-term forecast of auroral activity. Geophys Res Lett 30(5):1258. doi:10.1029/2002GL016505

    Google Scholar 

  • Lui ATY, Zheng Y, Zhang Y, Angelopoulos V, Parks GK, Mozer FS, Rème H, Kistler LM, Dunlop MW, Gustafsson G, Henderson MG (2007a) Prelude to THEMIS tail conjunction. Ann Geophys 25:1001–1009

    Google Scholar 

  • Lui ATY, Zheng Y, Rème H, Dunlop MW, Gustafsson G, Owen CJ (2007b) Breakdown of the frozen-in condition in the Earth’s magnetotail. J Geophys Res 112:A04215. doi:10.1029/2006JA012000

    Google Scholar 

  • Lui ATY, Volwerk M, Dunlop MW, Alexeev IV, Fazakerley AN, Walsh AP, Lester M, Grocott A, Mouikis C, Henderson MG, Kistler LM, Shen C, Shi J-K, Zhang T-L, Rème H (2008a) Near-earth substorm features from multiple satellite observations. J Geophys Res 113:A07S26. doi:10.1029/2007JA012738

    Google Scholar 

  • Lui ATY, Yoon PH, Mok C, Ryu C-M (2008b) Inverse cascade feature in current disruption. J Geophys Res 113:A00C06. doi:10.1029/2008JA013521

    Google Scholar 

  • Lyons LR, Blanchard GT, Samson JC, Lepping RP, Yamamoto T, Moretto T (1997) Coordinated observations demonstrating external substorm triggering. J Geophys Res 102:27039–27051

    Google Scholar 

  • Lyon JG, Lopez RE, Goodrich CC, Wiltberger M, Papadopoulos K (1998) Simulation of the March 9, 1995, substorm: auroral brightening and the onset of lobe reconnection. Geophys Res Lett 25:3039–3042

    Google Scholar 

  • Lyons LR, Nishimura Y, Shi Y, Zou S, Kim H-J, Angelopoulos V, Heinselman C, Nicolls MJ, Fornacon K-H (2010) Substorm triggering by new plasma intrusion: incoherent-scatter radar observations. J Geophys Res 115:A07223. doi:10.1029/2009JA015168

    Google Scholar 

  • Machida S, Miyashita Y, Ieda A, Nosé M, Nagata D, Liou K, Obara T, Nishida A, Saito Y, Mukai T (2009) Statistical visualization of the Earth’s magnetotail based on Geotail data and the implied substorm model. Ann Geophys 27:1035–1046

    Google Scholar 

  • McIlwain CE (1974) Substorm injection boundaries. In: McCormac BM (ed) Magnetospheric physics. D. Reidel, Hingham, MA, pp 143–154

    Google Scholar 

  • McPherron RL (1970) Growth phase of magnetospheric substorms. J Geophys Res 75:5592–5599

    Google Scholar 

  • Mende SB, Frey HU, Morsony BJ, Immel TJ (2003) Statistical behavior of proton and electron auroras during substorms. J Geophys Res 108(A3):1339. doi:10.1029/2002JA009751

    Google Scholar 

  • Meng C-I, Liou K (2004) Substorm timings and timescales: a new aspect. Space Sci Rev 113:41–75

    Google Scholar 

  • Morley SK, Freeman MP (2007) On the association between northward turnings of the interplanetary magnetic field and substorm onsets. Geophys Res Lett 34:L08104. doi:10.1029/2006GL028891

    Google Scholar 

  • Nagai T, Fujimoto M, Saito Y, Machida S, Terasawa T, Nakamura R, Yamamoto T, Mukai T, Nishida A, Kokubun S (1998) Structure and dynamics of magnetic reconnection for substorm onsets with Geotail observations. J Geophys Res 103:4419–4440

    Google Scholar 

  • Nakamura R, Baumjohann W, Brittnacher M, Sergeev VA, Kubyshkina M, Mukai T, Liou K (2001) Flow bursts and auroral activations: onset timing and foot point location. J Geophys Res 106:10777–10790

    Google Scholar 

  • Nakamura R, Baumjohann W, Klecker B, Bogdanova Y, Balogh A, Rème H, Bosqued JM, Dandouras I, Sauvaud JA, Glassmeier K-H, Kistler L, Mouikis C, Zhang TL, Eichelberger H, Runov A (2002) Motion of the dipolarization front during a flow burst event observed by Cluster. Geophys Res Lett 29(20):1942. doi:10.1029/2002GL015763

    Google Scholar 

  • Nakamura R, Retinò A, Baumjohann W, Volwerk M, Erkaev N, Klecker B, Lucek EA, Dandouras I, André M, Khotyaintsev Y (2009) Evolution of dipolarization in the near-Earth current sheet induced by Earthward rapid flux transport. Ann Geophys 27:1743–1754

    Google Scholar 

  • Newell PT, Sotirelis T, Liou K, Rich FJ (2008) Pairs of solar wind-magnetosphere coupling functions: combining a merging term with a viscous term works best. J Geophys Res 113:A04218. doi:10.1029/2007JA012825

    Google Scholar 

  • Nishimura Y, Lyons L, Zou S, Angelopoulos V, Mende S (2010) Substorm triggering by new plasma intrusion: THEMIS all-sky imager observations. J Geophys Res 115:A07222. doi:10.1029/2009JA015166

    Google Scholar 

  • Ohtani S, Takahashi K, Russell CT (1992) Radial expansion of the tail current disruption during substorms: a new approach to substorm onset region. J Geophys Res 97:3129–3136

    Google Scholar 

  • Ohtani S, Takahashi K, Higuchi T, Lui ATY, Spence HE (1998) AMPTE/CCE – SCATHA simultaneous observations of substorm-associated magnetic fluctuations. J Geophys Res 103:4671–4682

    Google Scholar 

  • Ohtani S, Singer HJ, Mukai T (2006) Effects of the fast plasma sheet flow on the geosynchronous magnetic configuration: Geotail and GOES coordinated study. J Geophys Res 111:A01204. doi:10.1029/2005JA011383

    Google Scholar 

  • Ohtani S, Miyashita Y, Singer H, Mukai T (2009) Tailward flows with positive Bz in the near-earth plasma sheet. J Geophys Res 114:A06218. doi:10.1029/2009JA014159

    Google Scholar 

  • Papadopoulos K, Sharma AS, Valdivia JA (1993) Is the magnetosphere a lens for MHD waves? Geophys Res Lett 20:2809–2812

    Google Scholar 

  • Pellinen RJ, Heikkila WJ (1978) Observations of auroral fading before breakup. J Geophys Res 83:4207–4217

    Google Scholar 

  • Perreault P, Akasofu S-I (1978) A study of geomagnetic storms. Geophys J R Astron Soc 54:547–573

    Google Scholar 

  • Pu ZY, Korth A, Chen ZX (1997) MHD drift ballooning instability near the inner edge of the near-earth plasma sheet and its application to the substorm onset. J Geophys Res 102:14397

    Google Scholar 

  • Pu ZY, Korth A, Kang KB, Zong QG, Fu SY, Hong MH, Liu ZX, Mouikis CG, Friedel RWH, Pulkknien T (1999) Drift ballooning instability in the presence of a plasma flow: a synthesis of tail reconnection and current disruption for the initiation of substorms. J Geophys Res 104:10235–10248

    Google Scholar 

  • Pu ZY, Chu XN, Cao X, Mishin V, Angelopoulos V, Wang J, Wei Y, Zong QG, Fu SY, Xie L, Glassmeier K-H, Frey H, Russell CT, Liu J, McFadden J, Larson D, Mende S, Mann I, Sibeck D, Sapronova LA, Tolochko MV, Saifudinova TI, Yao ZH, Wang XG, Xiao CJ, Zhou XZ, Reme H, Lucek E (2010) THEMIS observations of substorms on 26 February 2008 initiated by magnetotail reconnection. J Geophys Res 115:A02212. doi:10.1029/2009JA014217

    Google Scholar 

  • Rae IJ, Mann IR, Angelopoulos V, Murphy KR, Milling DK, Kale A, Frey HU, Rostoker G, Russell CT, Watt CEJ, Engebretson MJ, Moldwin MB, Mende SB, Singer HJ, Donovan EF (2009) Near-earth initiation of a terrestrial substorm. J Geophys Res 114:A07220. doi:10.1029/2008JA013771

    Google Scholar 

  • Rae IJ, Watt CEJ, Mann IR, Murphy KR, Samson JC, Kabin K, Angelopoulos VA (2010) Optical characterization of the growth and spatial structure of a substorm onset arc. J Geophys Res 115:A10222. doi:10.1029/2010JA015376

    Google Scholar 

  • Raeder, Larson JD, Li W, Kepko L, Fuller-Rowell T (2008) OpenGGCM simulations for the THEMIS mission. Space Sci Rev 141:535–555. doi:10.1007/s11214-008-9421-5

    Google Scholar 

  • Rostoker G (1983) Triggering of expansion phase intensifications of magnetospheric substorms by northward turnings of the interplanetary magnetic field. J Geophys Res 88:6981–6993

    Google Scholar 

  • Roux A, Perraut S, Robert P, Morane A, Pedersen A, Korth A, Kremser G, Aparicio B, Rodgers D, Pellinen R (1991) Plasma sheet instability related to the westward traveling surge. J Geophys Res 96:17697–17714

    Google Scholar 

  • Runov A, Baumjohann W, Nakamura R, Sergeev VA, Amm O, Frey H, Alexeev I, Fazakerley AN, Owen CJ, Lucek E, André M, Vaivads A, Dandouras I, Blecker B (2008) Observations of an active thin current sheet. J Geophys Res 113:A07S27. doi:10.1029/2007JA012685

    Google Scholar 

  • Runov A, Angelopoulos V, Sitnov MI, Sergeev VA, Bonnell J, McFadden JP, Larson D, Glassmeier K-H, Auster U (2009) THEMIS observations of an earthward-propagating dipolarization front. Geophys Res Lett 36:L14106. doi:10.1029/2009GL038980

    Google Scholar 

  • Russell CT (2000) How northward turnings of the IMF can lead to substorm expansion onsets. Geophys Res Lett 27:3257–3259

    Google Scholar 

  • Saito MH, Miyashita Y, Fujimoto M, Shinohara I, Saito Y, Liou K, Mukai T (2008a) Ballooning mode waves prior to substorm-associated dipolarizations: Geotail observations. Geophys Res Lett 35:L07103. doi:10.1029/2008GL033269

    Google Scholar 

  • Saito MH, Miyashita Y, Fujimoto M, Shinohara I, Saito Y, Mukai T (2008b) Modes and characteristics of low-frequency MHD waves in the near-earth magnetotail prior to dipolarization: fitting method. J Geophys Res 113:A06201. doi:10.1029/2007JA012778

    Google Scholar 

  • Samson JC, Dobias P (2005) Explosive instabilities and substorm intensifications in the Earth’s magnetotail. In: Lui ATY, Kamide Y, Consolini G (eds) Multiscale coupling of sun-earth processes. Elsevier, Amsterdam, pp 235–251

    Google Scholar 

  • Samson JC, Lyons LR, Newell PT, Creutzbert F, Xu B (1992a) Proton aurora and substorm intensifications. Geophys Res Lett 19:2167–2170

    Google Scholar 

  • Samson JC, Wallis DD, Hughes TJ, Creutzberg F, Ruohoniemi JM, Greenwald RA (1992b) Substorm intensifications and field line resonances in the nightside magnetosphere. J Geophys Res 97:8495

    Google Scholar 

  • Samson JC, Cogger LL, Pao Q (1996) Observations of field line resonances, auroral arcs, and auroral vortex structures. J Geophys Res 101:17373

    Google Scholar 

  • Sauvaud J-A, Winckler JR (1980) Dynamics of plasma, energetic particles, and fields near synchronous orbit in the nighttime sector during magnetospheric substorms. J Geophys Res 85:2043–2056

    Google Scholar 

  • Schieldge JP, Siscoe GL (1970) A correlation of the occurrence of simultaneous sudden magnetospheric compressions and geomagnetic bay onsets with selected geophysical indices. J Atmos Sol Terr Phys 32:1819–1830

    Google Scholar 

  • Sergeev V, Semenov V, Kubyshkina M, Ivanova V, Baumjohann W, Nakamura R, Penz T, Runov A, Zhang TL, Glassmeier K-H, Angelopoulos V, Frey H, Sauvaud J-A, Daly P, Cao JB, Singer H, Lucek E (2007) Observation of repeated intense near-earth reconnection on closed field lines with Cluster, Double Star, and other spacecraft. Geophys Res Lett 34:L02103. doi:10.1029/2006GL028452

    Google Scholar 

  • Sergeev VA, Apatenkov SV, Angelopoulos V, McFadden JP, Larson D, Bonnell JW, Kuznetsova M, Partamies N, Honary F (2008) Simultaneous THEMIS observations in the near-tail portion of the inner and outer plasma sheet flux tubes at substorm onset. J Geophys Res 113:A00C02. doi:10.1029/2008JA013527

    Google Scholar 

  • Sergeev V, Angelopoulos V, Apatenkov S, Bonnell J, Ergun R, Nakamura R, McFadden J, Larson D, Runov A (2009) Kinetic structure of the sharp injection/dipolarization front in the flow-braking region. Geophys Res Lett 36:L21105. doi:10.1029/2009GL040658

    Google Scholar 

  • Shiokawa K, Baumjohann W, Haerendel G (1997) Braking of high-speed flows in the near-Earth tail. Geophys Res Lett 24:1179–1182

    Google Scholar 

  • Shue J-H, Ieda A, Lui ATY, Parks GK, Mukai T, Ohtani S (2008) Two classes of earthward fast flows in the plasma sheet. J Geophys Res 113:A02205. doi:10.1029/2007JA012456

    Google Scholar 

  • Siscoe GL, Cummings WD (1969) On the cause of geomagnetic bays. Planet Space Sci 17:1795–1802

    Google Scholar 

  • Sitnov MI, Swisdak M, Divin AV (2009) Dipolarization fronts as a signature of transient reconnection in the magnetotail. J Geophys Res 114:A04202. doi:10.1029/2008JA013980

    Google Scholar 

  • Spanswick E, Donovan E, Liu W, Liang J, Blake JB, Reeves G, Friedel R, Jackel B, Cully C, Weatherwax A (2009) Global observations of substorm injection region evolution: 27 August 2001. Ann Geophys 27:2019–2025

    Google Scholar 

  • Takahashi K, Zanetti LJ, Lopez RE, McEntire RW, Potemra TA, Yumoto K (1987) Disruption of the magnetotail current sheet observed by AMPTE/CCE. Geophys Res Lett 14:1019–1022

    Google Scholar 

  • Tamao T (1964) The structure of three-dimensional hydromagnetic waves in a uniform cold plasma. J Geomagnetism Geoelectricity 18:89–114

    Google Scholar 

  • Tsyganenko NA (2002) A model of the near magnetosphere with a daw-dusk asymmetry, 2. Parameterization and fitting to observations. J Geophys Res 107:A8. 10.1029/2001JA000220

    Google Scholar 

  • Uritsky VM, Liang J, Donovan E, Spanswick E, Knudsen D, Liu W, Bonnell J, Glassmeier KH (2009) Longitudinally propagating arc wave in the pre-onset optical aurora. Geophys Res Lett 36:L21103. doi:10.1029/2009GL040777

    Google Scholar 

  • Vogiatzis II, Fritz TA, Zong Q-G, Baker DN, Sarris ET, Daly PW (2005) Fine-time energetic electron behavior observed by Cluster/RAPID in the magnetotail associated with X-line formation and subsequent current disruption. Ann Geophys 23:2265–2280

    Google Scholar 

  • Voronkov I, Rankin R, Frycz P, Tikhonchuk VT, Samson JC (1997) Coupling of shear flow and pressure gradient instabilities. J Geophys Res 102:9639–9650

    Google Scholar 

  • Vörös Z, Runov A, Leubner MP, Baumjohann W, Volwerk M (2010) Is current disruption associated with an inverse cascade? Nonlinear Processes Geophys 17:287–292

    Google Scholar 

  • Walker RJ, Erickson KN, Swanson RL, Winckler JR (1976) Substorm-associated particle boundary motion at synchronous orbit. J Geophys Res 81:5541–5550

    Google Scholar 

  • Yahnin AG, Kornilov IA, Kornilova TA, Sergeev VA, Lui ATY, Liou K, Meng C-I, Pajunpaa A (2000) Do the observations confirm the high-speed flow braking model for substorms? In: Proceedings of the fifth international conference on substorms, ESA SP-443, Paris, pp 345–348

    Google Scholar 

  • Yoon PH, Lui ATY, Bonnell JW (2009) Identification of plasma instability from wavelet spectra in a current disruption event. J Geophys Res 114:A04207. doi:10.1029/2008JA013816

    Google Scholar 

  • Zhou M, Ashour-Abdalla M, Deng X, Schiver D, El-Alaoui M, Pang Y (2009) THEMIS observation of multiple dipolarization fronts and associated wave characteristics in the near-earth magnetotail. Geophys Res Lett 36:L20107. doi:10.1029/2009GL040663

    Google Scholar 

  • Zhu P, Bhattacharjee A, Ma ZW (2004) Finite ky ballooning instability in the near-earth magnetotail. J Geophys Res 109:A11211. doi:10.1029/2004JA010505

    Google Scholar 

  • Zhu P, Raeder J, Germaschewski K, Hegna CC (2009) Initiation of ballooning instability in the near-Earth plasma sheet prior to the 23 March 2007 THEMIS substorm expansion onset. Ann Geophys 27:1129–1138

    Google Scholar 

Download references

Acknowledgments

This work was supported by the NSF grant ATM-0630912 and NASA grants NNX09AI53G and NNX07AQ50G to The Johns Hopkins University Applied Physics Laboratory. We acknowledge E. Donovan for NORSTAR data, S. B. Mende and E. Donovan for THEMIS GBO ASC data, H. Réme for Cluster/CIS data and V. Angelopoulos for THEMIS data through CDAWeb. Section 5.5 was added at the request of the reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony T.Y. Lui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lui, A.T. (2011). Physical Processes for Magnetospheric Substorm Expansion Onsets. In: Liu, W., Fujimoto, M. (eds) The Dynamic Magnetosphere. IAGA Special Sopron Book Series, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0501-2_5

Download citation

Publish with us

Policies and ethics