Skip to main content

Heavy Ion Energization, Transport, and Loss in the Earth’s Magnetosphere

  • Chapter
  • First Online:
The Dynamic Magnetosphere

Part of the book series: IAGA Special Sopron Book Series ((IAGA,volume 3))

Abstract

The magnetic field of the Earth acts like a shield against the solar wind, leading to a magnetopause position many planetary radii away from the planet, in contrast to the situation at non- or weakly magnetized planets such as Mars and Venus. Despite this there is significant ion outflow from the cusp and polar cap regions of the Earth’s ionosphere. Effective interaction regions form, in particular in the ionospheric projection of the cusp, where ionospheric plasma flows up along the field-lines in response to magnetospheric energy input. Strong wave particle interaction at altitudes above the ionosphere further accelerates the particles so that gravity is overcome. For the particles to enter a direct escape path they must be accelerated along open magnetic field lines so that they cross the magnetopause or reach a distance beyond the return flow region in the tail. Else the Earth’s magnetic field will guide the transport of the particles back towards the Earth. This return flow may also be either lost to space or returned to the atmosphere. Throughout this transport chain the heating and acceleration experienced by the particles will have an influence on the final fate of the particles, as well as determine which populations can be measured by particle instruments. We will present quantitative estimates of centrifugal acceleration and perpendicular heating along the escape path from the cusp, through the high altitude polar cap/mantle. Finally we will compare this with the situation at the unmagnetized planets Mars and Venus and discuss to what extent a magnetic field protects an atmosphere from loss through solar wind interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • André M, Crew GB, Peterson WK, Persoon AM, Pollock CJ (1990) Ion heating by broadband low-frequency waves in the cusp/cleft. J Geophys Res 95:20809–20823. doi:10.1029/JA095iA12p20809

    Article  Google Scholar 

  • Arvelius S, Yamauchi M, Nilsson H, Lundin R, Hobara Y, Rème H, Bavassano-Cattaneo MB, Paschmann G, Korth A, Kistler L, Parks GK (2005) Statistics of high-altitude and high-latitude ion outflows observed by Cluster/CIS. Ann Geophys 23:1909–1916

    Article  Google Scholar 

  • Axford WI (1968) The polar wind and the terrestrial helium budget. J Geophys Res 73:6855–6859. doi:10.1029/JA073i021p06855

    Article  Google Scholar 

  • Banks PM, Holzer TE (1968) The polar wind. J Geophys Res 73:6846–6854. doi:10.1029/JA073i021p06846

    Article  Google Scholar 

  • Barabash S, Fedorov A, Lundin R, Sauvaud JA (2007) Martian atmospheric erosion rates. Science 315:501–503

    Article  Google Scholar 

  • Barghouthi IA (2008) A Monte Carlo study for ion outflows at high altitude and high latitude: Barghouthi model. J Geophys Res (Space Phys) 113:8209–+. doi:10.1029/2008JA013274

    Article  Google Scholar 

  • Blelly PL, Robineau A, Alcaydé D (1996) Numerical modelling of intermittent ion outflow events above EISCAT. J Atmos Sol Terr Phys 58:273–285

    Article  Google Scholar 

  • Bouhram M, Klecker B, Miyake W, Rème H, Sauvaud JA, Malingre M, Kistler L, Blăgău A (2004) On the altitude dependence of transversely heated distributions in the cusp/cleft. Ann Geophys 22:1787–1798

    Article  Google Scholar 

  • Chang T, Crew GB, Hershkowitz N, Jasperse JR, Retterer JM (1986) Transverse acceleration of oxygen ions by electromagnetic ion cyclotron resonance with broad band left-hand polarized waves. Geophys Res Lett 13:636–639. doi 10.1029/GL013i007p00636

    Article  Google Scholar 

  • Chappell CR, Giles BL, Moore TE, Delcourt DC, Craven PD, Chandler MO (2000) The adequacy of the ionospheric source in supplying magnetospheric plasma. J Atmos Sol Terr Phys 62:421–436. doi:10.1016/S1364-6826(00)00021-3

    Article  Google Scholar 

  • Chaston CC, Bonnell JW, Carlson CW, McFadden JP, Ergun RE, Strangeway RJ, Lund EJ (2004) Auroral ion acceleration in dispersive Alfvén waves. J Geophys Res 109(A04205). doi:10.1029/2003JA010053

    Article  Google Scholar 

  • Cladis JB (1986) Parallel acceleration and transport of ions from polar ionosphere to plasmasheet. J Geophys Res 13:893–896

    Google Scholar 

  • Cowley SWH (1995) Theoretical perspectives of the magnetopause: a tutorial review. In: Song P, Sonnerup BUO, Thomsen MF (eds) Physics of the magnetopause, vol 90. The American Geophysical Union, Washington, DC, pp 29–43

    Google Scholar 

  • Cully CM, Donovan EF, Yau AW, Arkos GG (2003a) Akebono/Suprathermal mass spectrometer observations of low-energy ion outflow: Dependence on magnetic activity and solar wind conditions. J Geophys Res (Space Phys) 108:1093–+. doi:10.1029/2001JA009200

    Article  Google Scholar 

  • Cully CM, Donovan EF, Yau AW, Opgenoorth HJ (2003b) Supply of thermal ionospheric ions to the central plasma sheet. J Geophys Res (Space Phys) 108:1092–+. doi:10.1029/2002JA009457

    Article  Google Scholar 

  • Dubinin E, Modolo R, Fraenz M, Woch J, Duru F, Akalin F, Gurnett D, Lundin R, Barabash S, Plaut JJ, Picardi G (2008) Structure and dynamics of the solar wind/ionosphere interface on Mars: MEX-ASPERA-3 and MEX-MARSIS observations. Geophys Res Lett 35. doi:10.1029/2008GL033730

    Google Scholar 

  • Ebihara Y, Yamauchi M, Nilsson H, Lundin R, Ejiri M (2001) Wedge-like dispersion of sub-keV ions in the dayside magnetosphere: Particle simulation and viking observation. J Geophys Res 106:29571–29584. doi 10.1029/2000JA000227

    Article  Google Scholar 

  • Ebihara Y, Yamada M, Watanabe S, Ejiri M (2006) Fate of upflowing suprathermal oxygen ions that originate in the polar ionosphere. J Geophys Res 111(A04219). doi:10.1029/2005JA011403

    Article  Google Scholar 

  • Elphic RC, Lockwood M, Cowley SWH, Sandholt PE (1990) Flux transfer events at the magnetopause and in the ionosphere. Geophys Res Lett 17(12):2241–2344

    Article  Google Scholar 

  • Engwall E, Eriksson AI, Cully CM, André M, Puhl-Quinn PA, Vaith H, Torbert R (2009a) Statistics of the cold hidden component of ionospheric outflow determined from 5 to 19 in the Earth’s magnetotail. Ann Geophys 27:3185–3201

    Article  Google Scholar 

  • Engwall E, Eriksson AI, Cully CM, André M, Torbert R, Vaith H (2009b) Earth’s ionospheric outflow dominated by hidden cold plasma. Nat Geosci 2:24–27

    Article  Google Scholar 

  • Escoubet CP, Fehringer M, Goldstein M (2001) Introduction The cluster mission. Ann Geophys 19:1197–1200

    Article  Google Scholar 

  • Guglielmi A, Lundin R (2001) Ponderomotive upward acceleration of ions by ion cyclotron and Alfvén waves over the polar regions. J Geophys Res 106:13219–13236

    Article  Google Scholar 

  • Hoffman JH, Dodson WH (1980) Light ion concentrations and fluxes in the polar regions during magnetically quiet times. J Geophys Res 85:626–632. doi:10.1029/JA085iA02p00626

    Article  Google Scholar 

  • Huddleston MM, Chappell CR, Delcourt DC, Moore TE, Giles BL, Chandler MO (2005) An examination of the process and magnitude of ionospheric plasma supply to the magnetosphere. J Geophys Res (Space Phys) 110:12202–+. doi:10.1029/2004JA010401

    Article  Google Scholar 

  • Lammer H, Lichtenegger HIM, Biernat HK, Erkaev NV, Arshukova IL, Kolb C, Gunell H, Lukyanov A, Holmström M, Barabash S, Zhang TL, Baumjohann W (2006) Loss of hydrogen and oxygen from the upper atmosphere of Venus. Planet Space Sci. 54:1445–1456. doi:10.1016/j.pss.2006.04.022

    Article  Google Scholar 

  • Lockwood M, Waite JH Jr, Moore TE, Chappell CR, Johnson JFE (1985) A new source of suprathermal ions near the dayside polar cap boundary. J Geophys Res 90:4099–4116

    Article  Google Scholar 

  • Lockwood M, Sandholt PE, Cowley SWH, Oguti T (1989) Interplanetary magnetic field control of dayside auroral activity and the transfer of momentum across the dayside magnetopause. Planet Space Sci 37:1347–1365

    Article  Google Scholar 

  • Lockwood M, Denig WF, Farmer AD, Davda VN, Cowley SWH, Lühr H (1993) Ionospheric signatures of pulsed reconnection at the Earth’s magnetopause. Nature 361:424–428

    Article  Google Scholar 

  • Luhmann JG (1990) The solar wind interaction with unmagnetized planets – A tutorial. Geophysical monograph series, vol 58. American Geophysical Union, Washington, DC, pp 401–411

    Google Scholar 

  • Lundin R, Guglielmi A (2006) Ponderomotive Forces in Cosmos. Space Sci Rev 127:1–116. doi:10.1007/s11214-006-8314-8

    Article  Google Scholar 

  • Lundin R, Zakharov A, Pellinen R, Hultqvist B, Borg H, Dubinin E, Barabash S, Pissarenko N, Koskinen H, Liede I (1989) First results of the ionospheric plasma escape from Mars. Nature 341:609–612

    Article  Google Scholar 

  • Lundin R, Barabash S, Holmström M, Nilsson H, Yamauchi M, Fraenz M, Dubinin EM (2008) A comet-like escape of ionospheric plasma from Mars. Geophys Res Lett 35. doi:10.1029/2008GL034811

    Google Scholar 

  • Maggiolo R, Sauvaud JA, Fontaine D, Teste A, Grigorenko E, Balogh A, Fazakarley A, Paschmann G, Rème H (2006) A multi-satellite study of accelerated ionospheric ion beams above the polar cap. Ann Geophys 24:1665–1684

    Article  Google Scholar 

  • Moen J, Oksavik K, Carlson HC (2004) On the relationship between ion upflow events and cusp auroral transients. Geophys Res Lett 31(L11808). doi:10.1029/2004GL020129

    Article  Google Scholar 

  • Moore TE, Chappell CR, Chandler MO, Craven PD, Giles BL, Pollock CJ, Burch JL, Young DT, Waite JH Jr, Nordholt JE, Thomsen MF, McComas DJ, Berthelier JJ, Williamson WS, Robson R, Mozer FS (1997) High-altitude observations of the polar wind. Science 277:349–351. doi 10.1126/science.277.5324.349

    Article  Google Scholar 

  • Moore TE, Lundin R, Alcayde D, André M, Ganguli SB, Temerin M, Yau A (1999) Source processes in the high-altitude ionosphere. Space Sci Rev 88:7–84

    Article  Google Scholar 

  • Nagai T, Waite JH Jr, Green JL, Chappell CR, Olsen RC, Comfort RH (1984) First measurements of supersonic polar wind in the polar magnetosphere. Geophys Res Lett 11:669–672. doi 10.1029/GL011i007p00669

    Article  Google Scholar 

  • Nilsson H, Kirkwood S, Eliasson L, Norberg O, Clemmons J, Boehm M (1994) The ionospheric signature of the cusp: A case study using Freja and the Sondrestrom radar. Geophys Res Lett 21:1923–1926

    Article  Google Scholar 

  • Nilsson H, Yamauchi M, Eliasson L, Norberg O, Clemmons J (1996) The ionospheric signature of the cusp as seen by incoherent scatter radar. J Geophys Res 101:10947–10963

    Article  Google Scholar 

  • Nilsson H, Kirkwood S, Moretto T (1998) Incoherent scatter radar observations of the cusp acceleration region and cusp field–aligned currents. Geophys J Res 103:26721–26730

    Article  Google Scholar 

  • Nilsson H, Joko S, Lundin R, Rème H, Sauvaud JA, Dandouras I, Balogh A, Carr C, Kistler LM, Klecker B, Carlson CW, Bavassano-Cattaneo MB, Korth A (2004) The structure of high altitude energization and outflow: a case study. Ann Geophys 22:2497–2506

    Article  Google Scholar 

  • Nilsson H, Waara M, Arvelius S, Marghitu O, Bouhram M, Hobara Y, Yamauchi M, Lundin R, Rème H, Sauvaud JA, Dandouras I, Balogh A, Kistler LM, Klecker B, Carlson CW, Bavassano-Cattaneo MB, Korth A (2006) Characteristics of high altitude oxygen ion energization and outflow as observed by cluster; a statistical study. Ann Geophys 24:1099–1112

    Article  Google Scholar 

  • Nilsson H, Waara M, Marghitu O, Yamauchi M, Lundin R, Rème H, Sauvaud JA, Dandouras I, Lucek E, Kistler LM, Klecker B, Carlson CW, Bavassano-Cattaneo MB, Korth A (2008a) Transients in oxygen outflow above the polar cap as observed by the Cluster spacecraft. Ann Geophys 26:3365–3373

    Article  Google Scholar 

  • Nilsson H, Waara M, Marghitu O, Yamauchi M, Lundin R, Rème H, Sauvaud JA, Dandouras I, Lucek E, Kistler LM, Klecker B, Carlson CW, Bavassano-Cattaneo MB, Korth A (2008b) An assessment of the role of the centrifugal acceleration mechanism in high altitude polar cap oxygen ion outflow. Ann Geophys 26:145–157

    Article  Google Scholar 

  • Nilsson H, Carlsson E, Brain D, Yamauchi M, Holmström M, Barabash S, Lundin R, Futaana Y (2010) Ion escape from mars as a function of solar wind conditions: A statistical study. Icarus 206:40–49. doi:10.1016/j.icarus.2009.03.006

    Article  Google Scholar 

  • Nilsson H, Engwall E, Eriksson A, Puhl-Quinn PA, Arvelius S (2010) Centrifugal acceleration in the magnetotail lobes. Ann Geophys 28:569–576

    Article  Google Scholar 

  • Norqvist P, André M, Tryland M (1998) A statistical study of ion energization mechanisms in the auroral region. J Geophys Res 103:23459–23474

    Article  Google Scholar 

  • Northrop TG (1963) The adiabatic motion of charged particles. Interscience, New York, NY

    Google Scholar 

  • Nykyri K, Grison B, Cargill PJ, Lavraud B, Lucek E, Dandouras I, Balogh A, Cornilleau-Wehrlin N, Rème H (2006) Origin of the turbulent spectra in the high-altitude cusp: Cluster spacecraft observations. Ann Geophys 24:1057–1075

    Article  Google Scholar 

  • Ogawa Y, Fujii R, Buchert SC, Nozawa S, Ohtani S (2003) Simultaneous EISCAT Svalbard radar and DMSP observations of ion upflow in the dayside polar ionosphere. J Geophys Res 108(1101). doi:10.1029/2002JA009590

    Article  Google Scholar 

  • Øieroset M, Yamauchi M, Liszka L, Christon SP (2000) Energetic ion outflow from the dayside ionosphere and its relationship to the interplanetary magnetic field and substorm activity. J Atmos Sol Terr Phys 62:485–493. doi 10.1016/S1364-6826(00)00016-X

    Article  Google Scholar 

  • Paschmann G, Quinn JM, Torbert RB, Vaith H, McIlwain CE, Haerendel G, Bauer OH, Bauer T, Baumjohann W, Fillius W, Förster M, Frey S, Georgescu E, Kerr SS, Kletzing CA, Matsui H, Puhl-Quinn P, Whipple EC (2001) The Electron Drift Instrument on Cluster: overview of first results. Ann Geophys 19:1273–1288

    Article  Google Scholar 

  • Peterson WK, Andersson L, Callahan BC, Collin HL, Scudder JD, Yau AW (2008) Solar-minimum quiet time ion energization and outflow in dynamic boundary related coordinates. J Geophys Res (Space Phys) 113:7222–+. doi 10.1029/2008JA013059

    Article  Google Scholar 

  • Rème H, Aoustin C, Bosqued JM, Dandouras I, Lavraud B, Sauvaud JA, Barthe A, Bouyssou J, Camus T, Coeur-Joly O, Cros A, Cuvilo J, Ducay F, Garbarowitz Y, Medale JL, Penou E, Perrier H, Romefort D, Rouzaud J, Vallat C, Alcaydé D, Jacquey C, Mazelle C, d’Uston C, Möbius E, Kistler LM, Crocker K, Granoff M, Mouikis C, Popecki M, Vosbury M, Klecker B, Hovestadt D, Kucharek H, Kuenneth E, Paschmann G, Scholer M, Sckopke N, Seidenschwang E, Carlson CW, Curtis DW, Ingraham C, Lin RP, McFadden JP, Parks GK, Phan T, Formisano V, Amata E, Bavassano-Cattaneo MB, Baldetti P, Bruno R, Chionchio G, Lellis AD, Marcucci MF, Pallocchia G, Korth A, Daly PW, Graeve B, Rosenbauer H, Vasyliunas V, McCarthy M, Wilber M, Eliasson L, Lundin R, Olsen S, Shelley EG, Fuselier S, Ghielmetti AG, Lennartsson W, Escoubet CP, Balsiger H, Friedel R, Cao JB, Kovrazhkin RA, Papamastorakis I, Pellat R, Scudder J, Sonnerup B (2001) First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS) experiment. Ann Geophys 19:1303–1354

    Article  Google Scholar 

  • Rosenqvist L, Opgenoorth HJ, Rastaetter L, Vaivads A, Dandouras I, Buchert S (2008) Comparison of local energy conversion estimates from Cluster with global MHD simulations. Geophys Res Lett 35:21104–+. doi 10.1029/2008GL035854

    Article  Google Scholar 

  • Schunk RW, Raitt WJ, Banks PM (1975) Effect of electric fields on the daytime high-latitude e and f regions. J Geophys Res 80:3121–3130

    Article  Google Scholar 

  • Seki K, Hirahara M, Terasawa T, Mukai T, Saito Y, Machida S, Yamamoto T, Kokubun S (1998) Statistical properties and possible supply mechanisms of tailward cold beams in the lobe/mantle regions. Geophys J Res 103:4477– 4489

    Article  Google Scholar 

  • Seki K, Elphic RC, Hirahara M, Terasawa T, Mukai T (2001) On atmospheric loss of oxygen ions from Earth through magnetospheric processes. Science 291:1939–1941

    Article  Google Scholar 

  • Strangeway R, Ergun RE, Su YJ, Carlson CW, Elphic RC (2005) Factors controlling ionospheric outflows as observed at intermediate altitudes. J Geophys Res 110(A3). doi:10.1029/2004JA010829

    Article  Google Scholar 

  • Su YJ, Horwitz JL, Moore TE, Giles BL, Chandler MO, Craven PD, Hirahara M, Pollock CJ (1998) Polar wind survey with the Thermal Ion Dynamics Experiment/Plasma Source Instrument suite aboard POLAR. J Geophys Res 103:29305–29338. doi 10.1029/98JA02662

    Article  Google Scholar 

  • Sundkvist D, Vaivads A, André M, Wahlund J, Hobara Y, Joko S, Krasnoselskikh VV, Bogdanova YV, Buchert SC, Cornilleau-Wehrlin N, Fazakerley A, Hall J, Rème H, Stenberg G (2005) Multi-spacecraft determination of wave characteristics near the proton gyrofrequency in high-altitude cusp. Ann Geophys 23:983–995

    Article  Google Scholar 

  • Trotignon JG, Décréau PME, Rauch JL, Randriamboarison O, Krasnoselskikh V, Canu P, Alleyne H, Yearby K, Le Guirriec E, Séran HC, Sené FX, Martin P, Lévêque M, Fergeau P (2001) How to determine the thermal electron density and the magnetic field strength from the Cluster/Whisper observations around the Earth. Ann Geophys 19: 1711–1720

    Article  Google Scholar 

  • Tsyganenko NA (1989) A magnetospheric model with a warped tail current. Planet Space Sci 37:5–20

    Article  Google Scholar 

  • Verigin MI, Shutte NM, Galeev AA, Gringauz KI, Kotova GA, Remizov AP, Rosenbauer H, Hemmerich P, Livi S, Richter AK, Apathy I, Szego K, Riedler W, Schwingenschuh K, Steller M, Yeroshenko YG (1991) Ions of planetary origin in the martian magnetosphere (phobos 2/taus experiment). Planet Space Sci 39:131–137

    Article  Google Scholar 

  • Vontrat-Reberac A, Fontaine D, Blelly P, Galand M (2001) Theoretical predictions of the effect of cusp and dayside precipitation on the polar ionosphere. J Geophys Res 106:28857–28866. doi 10.1029/2001JA900131

    Article  Google Scholar 

  • Waara M, Nilsson H, Stenberg G, André M, Réme H (2010) Oxygen ion energization observed at high altitudes. Ann Geophys 28:907–916

    Article  Google Scholar 

  • Yamauchi M, Lundin R (2006) Sub-keV ring current ions as the tracer of substorm injection. Ann Geophys 24:355–366

    Article  Google Scholar 

  • Yamauchi M, Brandt PC, Ebihara Y, Dandouras I, Nilsson H, Lundin R, Rème H, Vallat C, Lindqvist P, Balogh A, Daly PW (2006) Source location of the wedge-like dispersed ring current in the morning sector during a substorm. J Geophys Res (Space Phys) 111:11–+. doi :10.1029/2006JA011621

    Google Scholar 

  • Yamauchi M, Ebihara Y, Dandouras I, Rème H (2009) Dual source populations of substorm-associated ring current ions. Ann Geophys 27:1431–1438

    Article  Google Scholar 

  • Yordanova E, Sundkvist D, Buchert SC, André M, Ogawa Y, Morooka M, Margithu O, Amm O, Fazakerley AN, Réme H (2007) Energy input from the exterior cusp into the ionosphere: Correlated ground-based and satellite observations. Geophys Res Lett 34:4102–+. doi 10.1029/2006GL028617

    Article  Google Scholar 

  • Yuan Z, Deng X, Wang J (2008) DMSP/GPS observations of intense ion upflow in the midnight polar ionosphere associated with the SED plume during a super geomagnetic storm. Geophys Res Lett 35:19110–+. doi 10.1029/2008GL035462

    Article  Google Scholar 

  • Zeng W, Horwitz JL (2008) Storm enhanced densities (SED) as possible sources for Cleft Ion Fountain dayside ionospheric outflows. Geophys Res Lett 35:4103–+. doi 10.1029/2007GL032511

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Nilsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Nilsson, H. (2011). Heavy Ion Energization, Transport, and Loss in the Earth’s Magnetosphere. In: Liu, W., Fujimoto, M. (eds) The Dynamic Magnetosphere. IAGA Special Sopron Book Series, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0501-2_17

Download citation

Publish with us

Policies and ethics