Skip to main content

Self-Consistent Simulations of Plasma Waves and Their Effects on Energetic Particles

  • Chapter
  • First Online:
The Dynamic Magnetosphere

Part of the book series: IAGA Special Sopron Book Series ((IAGA,volume 3))

Abstract

Understanding wave-particle interactions and their effects on energetic particle dynamics in near-Earth space is needed to develop models with predictive space weather capabilities. The local acceleration and/or loss of relativistic electrons are associated with two dominant magnetospheric plasma waves, whistler mode chorus emissions and electromagnetic ion cyclotron (EMIC) waves. The generation and propagation characteristics of EMIC waves depend strongly on the presence of both cold and energetic heavy ions (mainly He+ and O+) in the plasmas, which varies significantly with geomagnetic and solar activity. We present self-consistent studies of the excitation of these waves during geomagnetic storms after the fresh injection of plasma sheet particles into the inner magnetosphere. We use our four-dimensional (4D) kinetic ring current-atmosphere interactions model (RAM), which includes time-dependent convective transport and radial diffusion, all major loss processes, and is coupled with a dynamic (2D) plasmasphere model. The boundary conditions are specified by a plasma sheet source population at geosynchronous orbit that varies both in space and time. We calculate the pitch angle anisotropy of ring current ions and electrons and identify equatorial regions for potential growth of EMIC waves and whistler mode chorus, respectively. We show that He+ band EMIC wave excitation may be significantly reduced by ring current O+ ions during storm peak conditions when O+ contribution increases. We find that the linear growth rate of chorus waves maximizes at large L shells in the midnight-to-dawn local time sector, while EMIC waves are most intense in the afternoon sector in agreement with previous satellite observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel B, Thorne R (1998) Electron scattering loss in Earth’s inner magnetosphere 1. Dominant physical processes. J Geophys Res 103:2385

    Article  Google Scholar 

  • Albert J (1999) Analysis of quasi‐linear diffusion coefficients. J Geophys Res 104:2429

    Article  Google Scholar 

  • Chen M, Schulz M (2001) Simulations of diffuse aurora with plasma sheet electrons in pitch angle diffusion less than everywhere strong. J Geophys Res 106:28949

    Article  Google Scholar 

  • Cornwall JM (1977) On the role of charge exchange in generating unstable waves in the ring current. J Geophys Res 82:1188

    Article  Google Scholar 

  • Frank L (1967) On the extraterrestrial ring current during geomagnetic storms. J Geophys Res 72:3753

    Article  Google Scholar 

  • Harel M, Wolf R, Reiff P, Spiro R, Burke W, Rich F, Smiddy M (1981) Quantitative simulation of a magnetospheric substorm, 1. Model logic and overview. J Geophys Res 86:2217

    Article  Google Scholar 

  • Horne RB, Glauert SA, Thorne RM (2003) Resonant diffusion of radiation belt electrons by whistler mode chorus. Geophys Res Lett. doi:10.1029/2003GL016963

    Google Scholar 

  • Horne RB, Thorne RM, Glauert SA, Albert JM, Meredith NP, Anderson RR (2005) Timescale for radiation belt electron acceleration by whistler mode chorus waves. J Geophys Res. doi:10.1029/2004JA010811

    Google Scholar 

  • Horne RB, Thorne RM, Glauert SA, Meredith NP, Pokhotelov D, Santolík O (2007) Electron acceleration in the Van Allen radiation belts by fast magnetosonic waves. Geophys Res Lett. doi:10.1029/2007GL030267

    Google Scholar 

  • Immel TJ, Mende SB, Frey HU, Peticolas LM, Carlson CW, Gerard J-C, Hubert B, Fuselier SA, Burch JL (2002) Precipitation of auroral protons in detached arcs. Geophys Res Lett. doi:10.1029/2001GL013847

    Google Scholar 

  • Jordanova VK, Miyoshi Y (2005) Relativistic model of ring current and radiation belt ions and electrons: initial results. Geophys Res Lett. doi:10.1029/2005GL023020

    Google Scholar 

  • Jordanova VK, Kozyra JU, Nagy AF (1996) Effects of heavy ions on the quasi-linear diffusion coefficients from resonant interactions with EMIC waves. J Geophys Res 101:19771

    Article  Google Scholar 

  • Jordanova VK, Kozyra JU, Nagy AF, Khazanov GV (1997) Kinetic model of the ring current-atmosphere interactions. J Geophys Res 102:14279

    Article  Google Scholar 

  • Jordanova VK, Farrugia CJ, Quinn JM, Torbert RB, Borovsky JE, Sheldon RB, Peterson WK (1999) Simulation of off-equatorial ring current ion spectra measured by POLAR for a moderate storm at solar minimum. J Geophys Res 104:429

    Article  Google Scholar 

  • Jordanova VK, Farrugia CJ, Thorne RM, Khazanov GV, Reeves GD, Thomsen MF (2001) Modeling ring current proton precipitation by electromagnetic ion cyclotron waves during the May 14–16, 1997, storm. J Geophys Res 106:7

    Article  Google Scholar 

  • Jordanova VK, Miyoshi YS, Zaharia S, Thomsen MF, Reeves GD, Evans DS, Mouikis CG, Fennell JF (2006) Kinetic simulations of ring current evolution during the geospace environment modeling challenge events. J Geophys Res. doi:10.1029/2006JA011644

    Google Scholar 

  • Jordanova VK, Spasojeviç M, Thomsen MF (2007) Modeling the electromagnetic ion cyclotron wave-induced formation of detached subauroral proton arcs. J Geophys Res. doi:10.1029/2006JA012215

    Google Scholar 

  • Jordanova VK, Albert J, Miyoshi Y (2008) Relativistic electron precipitation by EMIC waves from self-consistent global simulations. J Geophys Res. doi:10.1029/2008JA013239

    Google Scholar 

  • Jordanova VK, Thorne RM, Li W, Miyoshi Y (2010) Excitation of whistler mode chorus from global ring current simulations. J Geophys Res. doi:10.1029/2009JA014810

    Google Scholar 

  • Kennel C, Petschek H (1966) Limit on stably trapped particle fluxes. J Geophys Res, 71:1

    Google Scholar 

  • Kennel CF, Thorne RM (1967) Unstable growth of unducted whistlers propagating at an angle to the geomagnetic field. J Geophys Res 72:871

    Article  Google Scholar 

  • Kim H-J, Chan AA (1997) Fully-adiabatic changes in storm-time relativistic electron fluxes. J Geophys Res 102:22107

    Article  Google Scholar 

  • Kozyra JU, Cravens TE, Nagy AF, Fontheim EG, Ong RSB (1984) Effects of energetic ions on electromagnetic ion cyclotron wave generation in the plasmapause region. J Geophys Res 89:2217

    Article  Google Scholar 

  • Li W, Thorne RM, Meredith NP, Horne RB, Bortnik J, Shprits YY, Ni B (2008) Evaluation of whistler mode chorus amplification during an injection event observed on CRRES. J Geophys Res doi:10.1029/2008JA013129

    Google Scholar 

  • Li W, Thorne RM, Angelopoulos V, Bortnik J, Cully CM, Ni B, LeContel O, Roux A, Auster U, Magnes W (2009) Global distribution of whistler-mode chorus waves observed on the THEMIS spacecraft. Geophys Res Lett. doi:10.1029/2009GL037595

    Google Scholar 

  • Liu S, Chen MW, Roeder JL, Lyons LR, Schulz M (2005) Relative contribution of electrons to the stormtime total ring current energy content. Geophys Res Lett. doi:10.1029/2004GL021672

    Google Scholar 

  • Lyons LR, Thorne RM, Kennel CF (1972) Pitch angle diffusion of radiation belt electrons within the plasmasphere. J Geophys Res 77:3455

    Article  Google Scholar 

  • Mende SB et al (2000) Far ultraviolet imaging from the IMAGE spacecraft. 3. Spectral imaging of Lyman-a and OI 135.6 nm. Space Sci Rev 91:287

    Article  Google Scholar 

  • Meredith NP, Horne RB, Anderson RR (2001) Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies. J Geophys Res 106:13165

    Article  Google Scholar 

  • Meredith NP, Horne RB, Thorne RM, Anderson RR (2003) Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth’s outer radiation belt. Geophys Res Lett. doi:10.1029/2003GL017698

    Google Scholar 

  • Millan RM, Lin RP, Smith DM, Lorentzen KR, McCarthy MP (2002) X-ray observations of MeV electron precipitation with a balloon-borne germanium spectrometer. Geophys Res Lett. doi:10.1029/2002GL015922

    Google Scholar 

  • Miyoshi YS, Jordanova VK, Morioka A, Thomsen MF, Reeves GD, Evans DS, Green JC (2006) Observations and modeling of energetic electron dynamics during the October 2001 storm. J Geophys Res. doi:10.1029/2005JA011351

    Google Scholar 

  • Miyoshi Y, Morioka A, Kataoka R, Kasahara Y, Mukai T (2007) Evolution of the outer radiation belt during the November 1993 storms driven by corotating interaction regions. J Geophys Res. doi:10.1029/2006JA012148

    Google Scholar 

  • Nunn D, Demekhov A, Trakhtengerts V, Rycroft MJ (2003) VLF emission triggering by a highly anisotropic electron plasma. Ann Geophys 21:481

    Article  Google Scholar 

  • Omura Y, Summers D (2004) Computer simulations of relativistic whistler-mode wave-particle interactions. Phys Plasmas. doi:10.1063/1.1757457

    Google Scholar 

  • Paulikas GA, Blake JB (1979) Effects of the solar wind on magnetospheric dynamics: energetic electrons at the synchronous orbit. In: Olson W (ed.) Quantitative modeling of the magnetospheric processes. Geophysical monograph series, vol 21. AGU, Washington, DC, p 180

    Google Scholar 

  • Rasmussen CE, Guiter SM, Thomas SG (1993) Two-dimensional model of the plasmasphere: refilling time constants. Planet Space Sci 41:35

    Article  Google Scholar 

  • Rauch JL, Roux A (1982) Ray tracing of ULF waves in a multicomponent magnetospheric plasma: Consequences for the generation mechanism of the ion cyclotron waves. J Geophys Res 87:8191

    Article  Google Scholar 

  • Reeves GD, McAdams KL, Friedel RHW, O’Brien TP (2003) Acceleration and loss of relativistic electrons during geomagnetic storms. Geophys Res Lett. doi:10.1029/2002GL016513

    Google Scholar 

  • Richmond AD (1992) Assimilative mapping of ionospheric electrodynamics. Adv Space Res 12:669

    Article  Google Scholar 

  • Rostoker G, Skone S, Baker DN (1998) On the origin of relativistic electrons in the magnetosphere associated with some geomagnetic storms. Geophys Res Lett 25:3701

    Article  Google Scholar 

  • Santolik O, Gurnett DA, Pickett JS, Parrot M, Cornilleau-Wehrlin N (2003) Spatio-temporal structure of storm-time chorus. J Geophys Res. doi:10.1029/2002JA009791

    Google Scholar 

  • Shprits YY, Elkington SR, Meredith NP, Subbotin DA (2008a) Review of modeling of losses and sources of relativistic electrons in the outer radiation belt I: radial transport. J Atmos Sol Terr Phys. doi:10.1016/j.jastp.2008.06.008

    Google Scholar 

  • Shprits YY, Subbotin DA, Meredith NP, Elkington SR (2008b) Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: local acceleration and loss. J Atmos Sol Terr Phys. doi:10.1016/j.jastp.2008.06.014

    Google Scholar 

  • Solomon J, Picon O (1981) Charge exchange and wave-particle interaction in the proton ring current. J Geophys Res 86:3335

    Article  Google Scholar 

  • Spasojeviç M, Frey HU, Thomsen MF, Fuselier SA, Gary SP, Sandel BR, Inan US (2004) The link between a detached subauroral proton arc and a plasmaspheric plume. Geophys Res Lett. doi:10.1029/2003GL018389

    Google Scholar 

  • Spasojeviç M, Thomsen MF, Chi PJ, Sandel BR (2005) Afternoon subauroral proton precipitation resulting from ring current–plasmasphere interaction. In: Burch J, Schulz M, Spence H (eds) Inner magnetosphere interactions: new perspectives from imaging. AGU, Washington, DC, p 85

    Google Scholar 

  • Summers D, Thorne RM, Xiao F (1998) Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere. J Geophys Res 103:20487

    Article  Google Scholar 

  • Thorne RM, Kennel CF (1971) Relativistic electron precipitation during magnetic storm phase. J Geophys Res 76:4446

    Article  Google Scholar 

  • Thorne RM, Horne RB (1997) Modulation of electromagnetic ion cyclotron instability due to interaction with ring current O+ during magnetic storms. J Geophys Res 102:14155

    Article  Google Scholar 

  • Thorne RM, O’Brien TP, Shprits YY, Summers D, Horne RB (2005) Timescale for MeV electron microburst loss during geomagnetic storms. J Geophys Res. doi:10.1029/2004JA010882

    Google Scholar 

  • Toffoletto F, Sazykin S, Spiro R, Wolf R (2003) Inner magnetospheric modeling with the Rice Convection Model. Space Sci Rev 107:175

    Article  Google Scholar 

  • Tsurutani B, Smith E (1974) Postmidnight chorus: a substorm phenomenon. J Geophys Res 79:118

    Article  Google Scholar 

  • Tsyganenko NA (2002) A model of the near magnetosphere with a dawn-dusk asymmetry: 2. Parameterization and fitting to observations. J Geophys Res. doi:10.1029/2001JA000220

    Google Scholar 

  • Tsyganenko NA, Sitnov MI (2005) Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms. J Geophys Res. doi:10.1029/2004JA010798

    Google Scholar 

  • Weimer DR (2001) An improved model of ionospheric electric potentials including substorm perturbations and application to the Geospace Environment Modeling November 24, 1996, event. J Geophys Res 106:407

    Article  Google Scholar 

  • Zaharia S, Jordanova VK, Thomsen MF, Reeves GD (2006) Self-consistent modeling of magnetic fields and plasmas in the inner magnetosphere: application to a geomagnetic storm. J Geophys Res. doi:10.1029/2006JA011619

    Google Scholar 

Download references

Acknowledgments

This work was conducted under the auspices of the U. S. Department of Energy, with partial support from the NASA Theory, LWS and GI programs, and from a Los Alamos National Laboratory Directed Research and Development grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vania K. Jordanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Jordanova, V.K. (2011). Self-Consistent Simulations of Plasma Waves and Their Effects on Energetic Particles. In: Liu, W., Fujimoto, M. (eds) The Dynamic Magnetosphere. IAGA Special Sopron Book Series, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0501-2_10

Download citation

Publish with us

Policies and ethics