Skip to main content

The Magnetopause, Its Boundary Layers and Pathways to the Magnetotail

  • Chapter
  • First Online:
The Dynamic Magnetosphere

Part of the book series: IAGA Special Sopron Book Series ((IAGA,volume 3))

Abstract

We review the current understanding of the dynamics of the Earth’s magnetopause and boundary layers. We describe basic insights and recent advances concerning the main mechanisms that mediate solar wind energy, momentum and plasma transfer into the magnetosphere: magnetic reconnection, the Kelvin–Helmholtz instability and diffusive processes. We also present more global aspects of magnetopause and boundary layer dynamics, focusing specifically on recent studies of global solar wind–magnetosphere coupling and on solar wind plasma pathways to the magnetotail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avanov LA, Smirnov VN, Waite JH Jr, Fuselier SA, Vaisberg OL (2001) High-latitude magnetic reconnection in sub-Alfvénic flow: interball tail observations on May 29, 1996. J Geophys Res 106:29491

    Google Scholar 

  • Bauer TM, Treumann RA, Baumjohann W (2001) Investigation of the outer and inner low-latitude boundary layers. Ann Geophys 19:1065–1088

    Google Scholar 

  • Bavassano Cattaneo MB et al (2006) Kinetic signatures during a quasi-continuous lobe reconnection event: cluster ion spectrometer (CIS) observations. J Geophys Res 111:A09212. doi:10.1029/2006JA011623

    Google Scholar 

  • Belmont G, Chanteur G (1989) Advances in magnetopause Kelvin-Helmholtz instability studies. Phys Scr 40:124–128

    Google Scholar 

  • Berchem J, Russell CT (1984) Flux transfer events on the magnetopause: spatial distribution and controlling factors. J Geophys Res 89(A8):6689–6703

    Google Scholar 

  • Berchem J et al (2008) Reconnection at the dayside magnetopause: comparisons of global MHD simulation results with Cluster and Double Star observations. J Geophys Res 113:A07S12. doi:10.1029/2007JA012743

    Google Scholar 

  • Birn J et al (2001) Geospace Environmental Modeling (GEM) Magnetic Reconnection Challenge. J Geophys Res 106(A3):3715–3719

    Google Scholar 

  • Biskamp D (1986) Magnetic reconnection via current sheets. Phys Fluids 29:1520

    Google Scholar 

  • Borovsky JE (2008) The rudiments of a theory of solar wind/magnetosphere coupling derived from first principles. J Geophys Res 113:A08228. doi:10.1029/2007JA012646

    Google Scholar 

  • Borovsky JE, Denton MH (2006) Effect of plasmaspheric drainage plumes on solar-wind/magnetosphere coupling. Geophys Res Lett 33:L20101. doi:10.1029/2006GL026519

    Google Scholar 

  • Borovsky JE, Hesse M (2007) The reconnection of magnetic fields between plasmas with different densities: scaling relations. Phys Plasmas 14:102309

    Google Scholar 

  • Burton RK, McPherron RL, Russell CT (1975) An empirical relationship between interplanetary conditions and Dst. J Geophys Res 80(31):4204–4214

    Google Scholar 

  • Cargill PJ, Lavraud B, Owen CJ, Grison B, Dunlop MW, Cornilleau-Wehrlin N, Escoubet CP, Paschmann G, Phan TD, Rezeau L, Bogdanova Y, Nykyri K (2005) Cluster at the magnetospheric cusps. Space Sci Rev 118(1–4):321–366. doi:10.1007/s11214-005-3835-0

    Google Scholar 

  • Cassak PA, Shay MA (2007) Scaling of asymmetric magnetic reconnection: general theory and collisional simulations. Phys Plasmas 14:102114. doi:10.1063/1.2795630

    Google Scholar 

  • Chandler MO, Avanov LA (2003) Observations at low latitudes of magnetic merging signatures within a flux transfer event during a northward interplanetary magnetic field. J Geophys Res 108(A10):1358. doi:10.1029/2003JA009852

    Google Scholar 

  • Chapman S, Ferraro VC (1931) A new theory of magnetic storms. Terr Magn Atmos Elec 36:171

    Google Scholar 

  • Chaston CC, Johnson JR, Wilber M, Acuna M, Goldstein ML, Rème H (2009) Kinetic Alfvén wave turbulence and transport through a reconnection diffusion region. Phys Rev Lett 102:015001.1–015001.4. doi:10.1103/PhysRevLett.102.015001

    Google Scholar 

  • Chaston CC, Wilber M, Mozer FS, Fujimoto M, Goldstein ML, Acuna M, Rème H, Fazakerley A (2007) Mode conversion and anomalous transport in Kelvin-Helmholtz vortices and kinetic Alfven waves at the Earth’s magnetopause. Phys Rev Lett 99:175004.1–175004.4. doi:10.1103/PhysRevLett.99.175004

    Google Scholar 

  • Chaston C et al (2008) Turbulent heating and cross-field transport near the magnetopause from THEMIS. Geophys Res Lett 35:L17S08. doi:10.1029/2008GL033601

    Google Scholar 

  • Chen FF (1984) Introduction to plasma physics and controlled fusion. Kluwer, Dordrecht

    Google Scholar 

  • Claudepierre SG, Elkington SR, Wiltberger M (2008) Solar wind driving of magneto-spheric ULF waves: pulsations driven by velocity shear at the magnetopause. J Geophys Res 113:A05218. doi:10.1029/2007JA012890

    Google Scholar 

  • Collado-Vega YM, Kessel RL, Shao X, Boller RA (2007) MHD flow visualization of magnetopause boundary region vortices observed during high-speed streams. J Geophys Res 112:A06213. doi:10.1029/2006JA012104

    Google Scholar 

  • Cooling BMA, Owen CJ, Schwartz SJ (2001) Role of the magnetosheath flow in determining the motion of open flux tubes. J Geophys Res 106(A9):18763–18776

    Google Scholar 

  • Cowee MM, Winske D, Gary SP (2009) Two-dimensional hybrid simulations of superdiffusion at the magnetopause driven by Kelvin-Helmholtz instability. J Geophys Res 114:A10209. doi:10.1029/2009JA014222

    Google Scholar 

  • Cowley SWH (1976) Comments on the merging of non antiparallel field. J Geophys Res 81:3455–3458

    Google Scholar 

  • Cowley SWH (1982) The causes of convection in the Earth’s magnetosphere: A review of developments during the IMS. Rev Geophys 20(3):531–565

    Google Scholar 

  • Cowley SWH, Owen CJ (1989) A simple illustrative model of open flux tube motion over the dayside magnetopause. Planet Space Sci 37:1461–1475

    Google Scholar 

  • Crooker NU (1979) Dayside merging and cusp geometry. J Geophys Res 84:951–959

    Google Scholar 

  • Crooker NU, Eastman TE, Satiles GS (1979) Observations of plasma depletion in the magnetosheath at the dayside magnetopause. J Geophys Res 84:869

    Google Scholar 

  • Daum P, Wild JA, Penz T, Woodfield EE, Rème H, Fazakerley AN, Daly PW, Lester M (2008) Global MHD simulation of flux transfer events at the high-latitude magnetopause observed by the Cluster spacecraft and the SuperDARN radar system. J Geophys Res 113:A07S22. doi:10.1029/2007JA012749

    Google Scholar 

  • deHoffmann F, Teller E (1950) Magnetohydrodynamics shocks. Phys Rev 80:692

    Google Scholar 

  • De Keyser J (2005) The Earth’s magnetopause: reconstruction of motion and structure. Space Sci Rev 121(1–4):225–235

    Google Scholar 

  • De Keyser J, Roth M (2003) Structural analysis of periodic surface waves on the magnetospheric boundary. Planet Space Sci 51:757–768

    Google Scholar 

  • De Keyser J, Darrouzet F, Roth M (2002) Trying to bring the magnetopause to a standstill. Geophys Res Lett 29:93. doi:10.1029/2002GL015001

    Google Scholar 

  • De Keyser J, Dunlop MW, Owen CJ, Sonnerup BUÖ, Haaland S, Vaivads A, Lundin R, Rezeau L, Paschmann G (2005) Magnetopause and boundary layer. Space Sci Rev 118(1–4):231–320

    Google Scholar 

  • De Keyser J, Gustafsson G, Roth M et al (2004) Reconstruction of the magnetopause and low-latitude boundary layer topology using Cluster multi-point measurements. Ann Geophys 22(7):2381–2389

    Google Scholar 

  • Deng XH, Matsumoto H (2001) Rapid magnetic reconnection in the Earth’s magnetosphere mediated by whistler waves. Nature 410:557–560

    Google Scholar 

  • Dorelli JC, Bhattacharjee A (2009) On the generation and topology of flux transfer events. J Geophys Res 114:A06213. doi:10.1029/2008JA013410

    Google Scholar 

  • Drake JF, Swisdak M, Phan TD, Cassak PA, Shay MA, Lepri ST, Lin RP, Quataert E, Zurbuchen TH (2009) Ion heating resulting from pickup in magnetic reconnection exhausts. J Geophys Res 114:A05111. doi:10.1029/2008JA013701

    Google Scholar 

  • Drake JF et al (2006) Electron acceleration from contracting magnetic islands during reconnection. Nature 443(7111):553–556

    Google Scholar 

  • Dungey JW (1954) Electrodynamics of the outer atmospheres. Penn State Ionos Res Lab Sci Rep 69

    Google Scholar 

  • Dungey JW (1961) Interplanetary magnetic field and the auroral zones. Phys Rev Lett 6:47

    Google Scholar 

  • Dunlop MW, Balogh A, Glassmeier K-H (2002) Four-point Cluster application of magnetic field analysis tools: the discontinuity analyzer. J Geophys Res 107(A11):1385. doi:10.1029/2001JA005089

    Google Scholar 

  • Dunlop MW, Zhang QH, Xiao CJ et al (2009) Reconnection at high latitudes: antiparallel merging. Phys Rev Lett 102(7):075005

    Google Scholar 

  • Eastwood JP, Phan T-D, Mozer FS, Shay MA, Fujimoto M, Retinò A, Hesse M, Balogh A, Lucek EA, Dandouras I (2007) Multi-point observations of the Hall electromagnetic field and secondary island formation during magnetic reconnection. J Geophys Res 112:A06235. doi:10.1029/2006JA012158

    Google Scholar 

  • Eastwood JP, Phan TD, Øieroset M, Shay MA (2010) Average properties of the magnetic reconnection ion diffusion region in the Earth’s magnetotail: The 2001–2005 cluster observations and comparisons with simulations. J Geophys Res 115:A08215. doi:10.1029/2009JA014962

    Google Scholar 

  • Eriksson S et al (2009) Magnetic island formation between large-scale flow vortices at an undulating postnoon magnetopause for northward interplanetary magnetic field. J Geophys Res 114:A00C17. doi:10.1029/2008JA013505

    Google Scholar 

  • Escoubet CP, Smith MF, Fung SF, Anderson PC, Hoffman RA, Basinska EM, Bosqued J-M (1992) Staircase ion signature in the polar cusp – A case study. Geophys Res Lett 19:1735

    Google Scholar 

  • Fairfield DH, Farrugia CJ, Mukai T, Nagai T, Fedorov A (2003) Motion of the dusk flank boundary layer caused by solar wind pressure changes and the Kelvin-Helmholtz instability: 10–11 January 1997. J Geophys Res 108(A12):1460. doi:10.1029/2003JA010134

    Google Scholar 

  • Fairfield DH, Kuznetsova MM, Mukai T, Nagai T, Gombosi TI, Ridley AJ (2007) Waves on the dusk flank boundary layer during very northward interplanetary magnetic field conditions: observations and simulation. J Geophys Res 112:A8. doi:10.1029/2006JA012052

    Google Scholar 

  • Fairfield DH, Otto A, Mukai T, Kokubun S, Lepping RP, Steinberg JT, Lazarus AJ, Yamamoto T (2000) Geotail observations of the Kelvin-Helmholtz instability at the equatorial magnetotail boundary for parallel northward fields. J Geophys Res 105(A9):21159–21173

    Google Scholar 

  • Farrugia CJ, Gratton FT, Torbert RB (2001) Viscous-type processes in the solar wind-magnetosphere interaction. Space Sci Rev 95:443–456

    Google Scholar 

  • Farrugia CJ, Gratton FT, Torbert RB, Bender L, Gnavi G, Ogilvie KW, Lepping RP, Stauning P (2003) On the dependence of dayside Kelvin-Helmholtz activity on IMF orientation. Adv Space Res 31(4):1105

    Google Scholar 

  • Farrugia C, Gratton F, Bender L, Biernat H, Erkaev N, Quinn J, Torbert R, Dennisenko V (1998b) Charts of joint Kelvin–Helmholtz and Rayleigh–Taylor instabilites at the dayside magnetopause for strongly northward interplanetary magnetic field. J Geophys Res 103(A4):6703–6727

    Google Scholar 

  • Farrugia CJ, Sandholt PE, Denig WF, Torbert RB (1998a) Observation of a correspondence between poleward moving auroral forms and stepped cusp ion precipitation. J Geophys Res 103(A5):9309–9315

    Google Scholar 

  • Farrugia CJ et al (2000) Coordinated wind, interball/tail, and ground observations of Kelvin-Helmholtz waves at the near-tail, equatorial magnetopause at dusk: January 11, 1997. J Geophys Res 105:7639–7667

    Google Scholar 

  • Fear RC, Milan SE, Fazakerley AN, Fornaçon K-H, Carr CM, Dandouras I (2009) Simultaneous observations of flux transfer events by THEMIS, Cluster, Double Star, and SuperDARN: acceleration of FTEs. J Geophys Res 114:A10213. doi:10.1029/2009JA014310

    Google Scholar 

  • Fedder JA, Lyon JG (1995) The Earth’s magnetosphere is 165 RE long: self-consistent currents, convection, magnetospheric structure, and processes for northward interplanetary magnetic field. J Geophys Res 100(A3):3623–3635

    Google Scholar 

  • Fitzenreiter RJ, Ogilvie KW (1995) Kelvin-Helmholtz instability at the magnetopause: observations. In: Song P, Sonnerup BUÖ, Thomsen MF (eds) Physics of the magnetopause. Geophysical monograph, vol 90. American Geophysical Union, Washington, DC, p 277

    Google Scholar 

  • Forbes TG (1995) How does fast reconnection work? In: Meneguzzi M, Pouquet A, Sulem PL (eds) Small scale structures in three-dimensional hydro and magnetohydrodynamic turbulence. Lecture notes in physics, vol 462. Springer, Paris, pp 319–324

    Google Scholar 

  • Foullon C, Farrugia CJ, Fazakerley AN, Owen CJ, Gratton FT, Torbert RB (2008) Evolution of Kelvin-Helmholtz activity on the dusk flank magnetopause. J Geophys Res 113:A11203. doi:10.1029/2008JA013175

    Google Scholar 

  • Foullon C, Farrugia CJ, Fazakerley AN, Owen CJ, Gratton FT, Torbert RB (2010) On the multi-spacecraft determination of periodic surface wave phase speeds and wavelengths. J Geophys Res. doi: 10.1029/2009JA015189 (in press)

    Google Scholar 

  • Frey HU, Phan TD, Fuselier SA, Mende SB (2003) Continuous magnetic reconnection at Earth’s magnetopause. Nature 426:533–537

    Google Scholar 

  • Fujimoto M, Terasawa T (1994) Anomalous ion mixing within an MHD scale Kelvin-Helmholtz vortex. J Geophys Res 99:8601

    Google Scholar 

  • Fujimoto M, Terasawa T, Mukai T, Saito Y, Yamamoto T, Kokubun S (1998) Plasma entry from the flanks of the near-Earth magnetotail: geotail observations. J Geophys Res 103:4391

    Google Scholar 

  • Fuselier SA, Klumpar DM, Shelley EG (1991) Ion reflection and transmission during reconnection at the Earth’s subsolar magnetopause. Geophys Res Lett 18:139

    Google Scholar 

  • Fuselier SA, Petrinec SM, Trattner KJ (2000) Stability of the high-Latitude reconnection site for steady northward IMF. Geophys Res Lett 27:473

    Google Scholar 

  • Fuselier SA, Petrinec SM, Trattner KJ, Fujimoto M, Hasegawa H (2007) Simultaneous observations of fluctuating cusp aurora and low-latitude magnetopause reconnection. J Geophys Res 112:A11207. doi:10.1029/2007JA012252

    Google Scholar 

  • Fuselier SA, Trattner KJ, Petrinec SM, Owen CJ, Rème H (2005) Computing the reconnection rate at the Earth’s magnetopause using two spacecraft observations. J Geophys Res 110:A06212. doi:10.1029/2004JA010805

    Google Scholar 

  • Gonzalez WD, Mozer FS (1974) A quantitative model for the potential resulting from reconnection with an arbitrary interplanetary magnetic field. J Geophys Res 79(28):4186–4194

    Google Scholar 

  • Gosling JT (2009) Magnetic reconnection in the heliosphere: new insights from observations in the solar wind. In: Gopalswamy N, Webb DF (eds) Universal heliophysical processes. Proceedings of the International Astronomical Union, IAU Symposium 257(4), Cambridge University Press, Cambridge, pp 367–377. doi:10.1017/S1743921309029597

    Google Scholar 

  • Gosling JT, Asbridge JR, Bame SJ, Feldman WC, Paschmann G, Sckopke N, Russell CT (1982) Evidence for quasi-stationary reconnection at the dayside magnetopause. J Geophys Res 87(16):2147–2158

    Google Scholar 

  • Gosling JT, Thomsen MF, Bame SJ, Onsager TG, Russell CT (1990) The electron edge of the low-latitude boundary layer during accelerated flow events. Geophys Res Lett 17:1933

    Google Scholar 

  • Gosling J, Thomsen M, Bame S, Elphic R, Russell C (1991) Observations of reconnection of interplanetary and lobe magnetic field lines at the high-latitude magnetopause. J Geophys Res 96(A8):14097–14106

    Google Scholar 

  • Gosling JT, Eriksson S, Blush LM, Phan TD, Luhmann JG, McComas DJ, Skoug RM, Acuna MH, Russell CT, Simunac KD (2007) Five spacecraft observations of oppositely directed exhaust jets from a magnetic reconnection X-line extending > 4.26 × 106 km in the solar wind at 1 AU. Geophys Res Lett 34:L20108. doi:10.1029/2007GL031492

    Google Scholar 

  • Gratton FT, Farrugia CJ, Cowley SWH (1996) Is the dayside magnetopause Rayleigh-Taylor unstable sometimes? J Geophys Res 101:4929

    Google Scholar 

  • Gratton FT, Gnavi G, Farrugia CJ, Bender L (2003) The stability of the pristine magnetopause. Planet Space Sci 51:769

    Google Scholar 

  • Gratton FT, Bender L, Farrugia CJ, Gnavi G (2004) Concerning a problem related to the Kelvin-Helmholtz stability of the thin magnetopause. J Geophys Res 109(A4):A04211. doi:10.1029/2003JA010146

    Google Scholar 

  • Grocott A, Badman SV, Cowley SWH, Milan SE, Nichols JD, Yeoman TK (2009) Magnetosonic Mach number dependence of the efficiency of reconnection between planetary and interplanetary magnetic fields. J Geophys Res 114:A07219. doi:10.1029/2009JA014330

    Google Scholar 

  • Haaland S et al (2004) Four-spacecraft determination of magnetopause orientation, motion and thickness: comparison with results from single-spacecraft methods. Ann Geophys 22:1347

    Google Scholar 

  • Hapgood MA, Bryant DA (1992) Exploring the magnetospheric boundary layer. Planet Space Sci 40(10):1431–1459

    Google Scholar 

  • Hasegawa H, Sonnerup BUÖ, Dunlop MW, Balogh A, Haaland SE, Klecker B, Paschmann G, Lavraud B, Dandouras I, Rème H (2004a) Reconstruction of two-dimensional magnetopause structures from Cluster observations: verification of method. Ann Geophys 22:1251–1266

    Google Scholar 

  • Hasegawa H, Fujimoto M, Phan TD et al (2004b) Rolled-up Kelvin-Helmholtz vortices and associated solar wind entry at Earth’s magnetopause. Nature 430:755–758

    Google Scholar 

  • Hasegawa H, Sonnerup BUÖ, Owen CJ, Klecker B, Paschmann G, Balogh A, Rème H (2006a) The structure of flux transfer events recovered from Cluster data. Ann Geophys 24:603–618

    Google Scholar 

  • Hasegawa H, Fujimoto M, Takagi K, Saito Y, Mukai T, Rème H (2006b) Single-spacecraft detection of rolled-up Kelvin-Helmholtz vortices at the flank magnetopause. J Geophys Res 111:A09203. doi:10.1029/2006JA011728

    Google Scholar 

  • Hasegawa H, Sonnerup BUÖ, Fujimoto M, Saito Y, Mukai T (2007) Recovery of streamlines in the flank low-latitude boundary layer. J Geophys Res 112:A04213. doi:10.1029/2006JA012101

    Google Scholar 

  • Hasegawa H et al (2009) Boundary layer plasma flows from high-latitude reconnection in the summer hemisphere for northward IMF: THEMIS multi-point observations. Geophys Res Lett 36:L15107. doi:10.1029/2009GL039410

    Google Scholar 

  • Hasegawa H, Wang J, Dunlop MW, Pu ZY, Zhang QH, Lavraud B, Taylor MG, Constantinescu DO, Berchem J, Angelopoulos V, McFadden JP, Frey HU, Panov EV, Volwerk M, Bogdanova YV (2010) Evidence for a flux transfer event generated by multiple X-line reconnection at the magnetopause. Geophys Res Lett 37:L16101. doi:10.1029/2010GL044219

    Google Scholar 

  • Hau L-N, Sonnerup BUÖ (1999) Two-dimensional coherent structures in the magnetopause: recovery of static equilibria from single-spacecraft data. J Geophys Res 104:6899–6917

    Google Scholar 

  • Hu Q, Sonnerup BUÖ (2003) Reconstruction of two-dimensional structures in the magnetopause: method improvements. J Geophys Res 108(A1):1011. doi:10.1029/2002JA009323

    Google Scholar 

  • Johnson JR, Cheng CZ (1997) Kinetic Alfvén waves and plasma transport at the magnetopause. Geophys Res Lett 24(11):1423–1426

    Google Scholar 

  • Johnson JR, Cheng CZ (2001) Stochastic ion heating at the magnetopause due to kinetic Alfvén waves. Geophys Res Lett 28(23):4421–4424

    Google Scholar 

  • Karimabadi H, Sipes TB, Wang Y, Lavraud B, Roberts A (2009) A new multivariate time series data analysis technique: automated detection of flux transfer events using cluster data. J Geophys Res 114:A06216. doi:10.1029/2009JA014202

    Google Scholar 

  • Kawano H, Kokubun S, Yamamoto T, Tsuruda K, Hayakawa H, Nakamura M, Okada T, Matsuoka A, Nishida A (1994) Magnetopause characteristics during a four-hour interval of multiple crossings observed with GEOTAIL. Geophys Res Lett 21(25):2895–2898

    Google Scholar 

  • Kessel RL, Chen S-H, Green JL et al (1996) Evidence of high-latitude reconnection during northward IMF: Hawkeye observations. Geophys Res Lett 23(5):583–586

    Google Scholar 

  • Kivelson MG, Chen S-H (1995) The magnetopause: surface waves and instabilities and their possible dynamical consequences. In: Song P, Sonnerup BUÖ, Thomsen MF (eds) Physics of the magnetopause. Geophysical monograph, vol 90. American Geophysical Union, Washington, DC, p 257

    Google Scholar 

  • Lavraud B, Borovsky JE (2008) Altered solar wind-magnetosphere interaction at low Mach numbers: coronal mass ejections. J Geophys Res 113:A00B08. doi:10.1029/2008JA013192

    Google Scholar 

  • Lavraud B, Phan TD, Dunlop MW, Taylor MGGT, Cargill PJ, Bosqued J-M, Dandouras I, Rème H, Sauvaud J-A, Escoubet CP, Balogh A, Fazakerley A (2004) The exterior cusp and its boundary with the magnetosheath under northward IMF: cluster multi-event analysis. Ann Geophys 22(8):3039–3054

    Google Scholar 

  • Lavraud B, Fedorov A, Budnik E, Thomsen MF, Grigoriev A, Cargill PJ, Dunlop MW, Rème H, Dandouras I, Balogh A (2005a) High-altitude cusp flows dependence on IMF orientation: a three-year cluster statistical study. J Geophys Res 110:A02209. doi:10.1029/2004JA010804

    Google Scholar 

  • Lavraud B, Thomsen MF, Taylor MGGT, Wang YL, Phan TD, Schwartz SJ, Elphic RC, Fazakerley A, Rème H, Balogh A (2005b) Characteristics of the magnetosheath electron boundary layer under northward interplanetary magnetic field: implications for high-latitude reconnection. J Geophys Res 110:A06209. doi:10.1029/2004JA010808

    Google Scholar 

  • Lavraud B, Thomsen MF, Lefebvre B, Schwartz SJ, Seki K, Phan TD, Wang YL, Fazakerley A, Rème H, Balogh A (2006) Evidence for newly closed magnetosheath field lines at the dayside magnetopause under northward IMF. J Geophys Res 111:A05211. doi:10.1029/2005JA011266

    Google Scholar 

  • Lavraud B et al (2009) Tracing solar wind plasma entry into the magnetosphere using ion-to-electron temperature ratio. Geophys Res Lett 36:L18109. doi:10.1029/2009GL039442

    Google Scholar 

  • Le G, Russell CT, Gosling JT, Thomsen MF (1996) ISEE observations of low-latitude boundary layer for northward interplanetary magnetic field: Implications for cusp reconnection. J Geophys Res 101(A12):27239–27249

    Google Scholar 

  • Le G et al (2008) Flux transfer events simultaneously observed by Polar and Cluster: flux rope in the subsolar region and flux tube addition to the polar cusp. J Geophys Res 113:A01205. doi:10.1029/2007JA012377

    Google Scholar 

  • Lee LC, Johnson JR, Ma ZW (1994) Kinetic Alfvén waves as a source of plasma transport at the dayside magnetopause. J Geophys Res 99(A9):17405–17411

    Google Scholar 

  • Lemaire J, Roth M (1978) Penetration of solar wind plasma elements into the magnetosphere. J Atmos Sol Terr Phys 40:331

    Google Scholar 

  • Levy RH, Petschek HE, Siscoe GL (1964) Aerodynamic aspects of the magnetospheric flow. AIAA J 2:2065

    Google Scholar 

  • Li WH, Raeder J, Dorelli J et al (2005) Plasma sheet formation during long period of northward IMF, Geophys Res Lett 32(12):L12S08, doi:10.1029/2004GL021524

    Google Scholar 

  • Li W, Raeder J, Thomsen MF, Lavraud B (2008) Solar wind plasma entry into the magnetosphere under northward IMF conditions. J Geophys Res 113:A04204. doi:10.1029/2007JA012604

    Google Scholar 

  • Li W, Raeder J, Øieroset M, Phan TD (2009) Cold dense magnetopause boundary layer under northward IMF: results from THEMIS and MHD simulations. J Geophys Res 114:A00C15. doi:10.1029/2008JA013497

    Google Scholar 

  • Liu J, Angelopoulos V, Sibeck D, Phan T, Pu ZY, McFadden J, Glassmeier KH, Auster HU (2008) THEMIS observations of the dayside traveling compression region and flows surrounding flux transfer events. Geophys Res Lett 35:L17S07. doi:10.1029/2008GL033673

    Google Scholar 

  • Lockwood M, Smith MF (1992) The variation of reconnection rate at the dayside magnetopause and cusp ion precipitation, J Geophys Res 97:14841

    Google Scholar 

  • Lockwood M et al (2001) Coordinated Cluster and ground-based instrument observations of transient changes in the magnetopause boundary layer during an interval of predominantly northward IMF: relation to reconnection pulses and FTE signatures. Ann Geophys 19:1613–1640

    Google Scholar 

  • Lockwood M, Lanchester BS, Frey HU, Throp K, Morley SK, Milan SE, Lester M (2003) IMF control of cusp proton emission intensity and dayside convection: implications for component and anti-parallel reconnection. Ann Geophys 21:955–982

    Google Scholar 

  • Lopez RE, Wiltberger M, Hernandez S, Lyon JG (2004) Solar wind density control of energy transfer to the magnetosphere. Geophys Res Lett 31:L08804. doi:10.1029/2003GL018780

    Google Scholar 

  • Luhmann JR, Walker RJ, Russell CT, Crooker NU, Speiter JR, Stahara SS (1984) Patterns of potential magnetic field merging sites on the dayside magnetopause. J Geophys Res 89:1739–1742

    Google Scholar 

  • Lui ATY (2001) Current controversies in magnetospheric physics. Rev Geophys 39:535

    Google Scholar 

  • Lui ATY et al (2008) Reconstruction of a magnetic flux rope from THEMIS observations. Geophys Res Lett 35:L17S05. doi:10.1029/2007GL032933

    Google Scholar 

  • Lundin R (1997) Observational and theoretical aspects of processes other than merging and diffusion governing plasma transport across the magnetopause. Space Sci Rev 80(1–2):269–304

    Google Scholar 

  • Lundin R, Sauvaud J-A, Rème H, Balogh A, Dandouras I, Bosqued JM, Carlson C, Parks GK, Moebius E, Kistler LM, Klecker B, Amata E, Formisano V, Dunlop MW, Eliasson L, Korth A, Lavraud B, McCarthy M (2003) Evidence for impulsive solar wind plasma penetration through the dayside magnetopause. Ann Geophys 21(2):457–472

    Google Scholar 

  • Matsumoto Y, Hoshino M (2006) Turbulent mixing and transport of collsionless plasmas across a stratified velocity shear layer. J Geophys Res 111:A05213. doi:10.1029/2004JA010988

    Google Scholar 

  • Matsumoto Y, Seki K (2007) The secondary instability initiated by the three-dimensional nonlinear evolution of the Kelvin-Helmholtz instability. J Geophys Res 112:A06223. doi:10.1029/2006JA012114

    Google Scholar 

  • McFadden JP, Carlson CW, Larson D, Bonnell J, Mozer FS, Angelopoulos V, Glassmeier K-H, Auster U (2008) Structure of plasmaspheric plumes and their participation in magnetopause reconnection: first results from THEMIS. Geophys Res Lett 35:L17S10. doi:10.1029/2008GL033677

    Google Scholar 

  • Milan SE, Lester M, Greenwald RA, Sofko G (1999) The ionospheric signature of transient dayside reconnection and the associated pulsed convection return flow. Ann Geophys 17:1166–1171

    Google Scholar 

  • Min KW, Kim T, Lee H (1997) Effects of magnetic reconnection in the Kelvin-Helmholtz instability at the magnetospheric boundary. Planet Space Sci 45(4):495–510

    Google Scholar 

  • Mishin VV (1993) Accelerated motions of the magnetopause as a trigger of the Kelvin-Helmholtz instability. J Geophys Res 98(A12):21365–21371

    Google Scholar 

  • Miura A (1984) Anomalous transport by magnetohydrodynamic Kelvin-Helmholtz instabilities in the solar wind-magnetosphere interaction. J Geophys Res 89:818

    Google Scholar 

  • Miura A (1995a) Kelvin-Helmholtz instability at the magnetopause: computer simulations. In: Song P, Sonnerup BUÖ, Thomsen MF (eds) Physics of the magnetopause. Geophysical monograph, vol 90. American Geophysical Union, Washington, DC, p 285

    Google Scholar 

  • Miura A (1995b) Dependence of the magnetopause Kelvin-Helmholtz instability on the orientation of the magnetosheath magnetic field. Geophys Res Lett 22(21):2993–2996

    Google Scholar 

  • Moore TE, Fok M-C, Chandler MO (2002) The dayside reconnection X line. J Geophys Res 107(A10):1332. doi:10.1029/2002JA009381

    Google Scholar 

  • Moore TE et al (2005) Plasma sheet and ring current formation from solar and polar wind sources. J Geophys Res 110:A02210. doi:10.1029/2004JA010563

    Google Scholar 

  • Moore TE, Fok M-C, Delcourt DC, Slinker SP, Fedder JA (2007) Global aspects of solar wind–ionosphere interactions. J Atmos Sol Terr Phys 69:265. doi:10.1016/j.jastp.2006.08.009

    Google Scholar 

  • Moore TE, Fok M-C, Delcourt DC, Slinker SP, Fedder JA (2008) Plasma plume circulation and impact in an MHD substorm. J Geophys Res 113:A06219. doi:10.1029/2008JA013050

    Google Scholar 

  • Mozer FS, Retinò A (2007) Quantitative estimates of magnetic field reconnection properties from electric and magnetic field measurements. J Geophys Res 112:A10206. doi:10.1029/2007JA012406

    Google Scholar 

  • Mozer FS, Pritchett PL (2009) Regions associated with electron physics in asymmetric magnetic field reconnection. Geophys Res Lett 36:L07102. doi:10.1029/2009GL037463

    Google Scholar 

  • Mozer FS, Hayakawa H, Kokubun S, Nakamura M, Okada T, Yamamoto T, Tsuruda K (1994) The morningside low-latitude boundary layer as determined from electric and magnetic field measurements on Geotail. Geophys Res Lett 21(25):2983–2986

    Google Scholar 

  • Mozer FS, Angelopoulos V, Bonnell J, Glassmeier KH, McFadden JP (2008) THEMIS observations of modified Hall fields in asymmetric magnetic field reconnection. Geophys Res Lett 35:L17S04. doi:10.1029/2007GL033033

    Google Scholar 

  • Nagai T, Shinohara I, Fujimoto M, Hoshino M, Saito Y, Machida S, Mukai T (2001) Geotail observations of the Hall current system: evidence of magnetic reconnection in the magnetotail. J Geophys Res 106(A11):25929–25949

    Google Scholar 

  • Nakamura T, Fujimoto M (2005) Magnetic reconnection within rolled-up MHD-scale Kelvin-Helmholtz vortices: two-fluid simulations including finite electron inertial effects. Geophys Res Lett 32:L21102. doi:10.1029/2005GL023362

    Google Scholar 

  • Newell PT, Onsager TG (2003) Earth’s low-latitude boundary layer. Geophysical monograph series, vol 133

    Google Scholar 

  • Newell PT, Sotirelis T, Liou K, Meng C-I, Rich FJ (2007) A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J Geophys Res 112:A01206. doi:10.1029/2006JA012015

    Google Scholar 

  • Newell PT, Sotirelis T, Liou K, Rich FJ (2008) Pairs of solar wind-magnetosphere coupling functions: combining a merging term with a viscous term works best. J Geophys Res 113:A04218. doi:10.1029/2007JA012825

    Google Scholar 

  • Nishino MN, Fujimoto M, Terasawa T, Ueno G, Mukai T, Saito Y (2007a) Origin of temperature anisotropies in the cold plasma sheet: geotail observations around the Kelvin-Helmholtz votices. Ann Geophys 25:2069–2086

    Google Scholar 

  • Nishino MN, Fujimoto M, Terasawa T, Ueno G, Maezawa K, Mukai T, Saito Y (2007b) Geotail observations of temperature anisotropy of the two-component protons in the dusk plasma sheet. Ann Geophys 25:769–777

    Google Scholar 

  • Nishino MN, Fujimoto M, Terasawa T, Ueno G, Maezawa K, Mukai T, Saito Y (2007c) Temperature anisotropies of electrons and two-component protons in the dusk plasma sheet. Ann Geophys 25:71417–71432

    Google Scholar 

  • Nykyri K, Otto A (2001) Plasma transport at the magnetospheric boundary due to reconnection in Kelvin-Helmholtz vortices. Geophys Res Lett 28(18):3565–3568

    Google Scholar 

  • Nykyri K, Otto A, Lavraud B, Mouikis C, Kistler LM, Balogh A, Rème H (2006) Cluster observations of reconnection due to the Kelvin-Helmholtz instability at the dawnside magnetospheric flank. Ann Geophys 24(10):2619–2643

    Google Scholar 

  • Ogino T, Walker RJ, Ashour-abdalla M (1994) A global magnetohydrodynamic simulation of the response of the magnetosphere to a northward turning of the interplanetary magnetic field. J Geophys Res 99(A6):11027–11042

    Google Scholar 

  • Øieroset M, Phan TD, Fujimoto M, Lin RP, Lepping RP (2001) In situ detection of collisionless reconnection in Earth’s magnetotail. Nature 412:414–417

    Google Scholar 

  • Øieroset M, Raeder J, Phan TD et al (2005) Global cooling and densification of the plasma sheet during an extended period of purely northward IMF on October 22–24, 2003. Geophys Res Lett 32(12):L12S07. doi:10.1029/2004GL021523

    Google Scholar 

  • Øieroset M, Phan TD, Angelopoulos V, Eastwood JP, McFadden J, Larson D, Carlson CW, Glassmeier K-H, Fujimoto M, Raeder J (2008) THEMIS multi-spacecraft observations of magnetosheath plasma penetration deep into the dayside low-latitude magnetosphere for northward and strong by IMF. Geophys Res Lett 35:L17S11. doi:10.1029/2008GL033661

    Google Scholar 

  • Onsager TG et al (1991) Model of electron and ion distributions in the plasma sheet boundary layer. J Geophys Res 96:20999

    Google Scholar 

  • Onsager TG, Scudder JD, Lockwood M, Russell CT (2001) Reconnection at the high latitude magnetopause during northward interplanetary magnetic field conditions. J Geophys Res 106(A11):25,467– 25,488

    Google Scholar 

  • Otto A, Fairfield DH (2000) Kelvin-Helmholtz instability at the magnetotail boundary: MHD simulation and comparison with Geotail observations. J Geophys Res 105(A9):21175–21190

    Google Scholar 

  • Owen CJ, Fazakerley AN, Carter PJ, Coates AJ, Krauklis IC, Szita S, Taylor MGGT, Travnicek P, Watson G, Wilson RJ, Balogh A, Dunlop MW (2001) CLUSTER PEACE observations of electrons during magnetosheric flux transfer events. Ann Geophys 19:1509–1522

    Google Scholar 

  • Owen CJ, Taylor MGGT, Krauklis IC, Fazakerley AN, Dunlop MW, Bosqued JM (2004) Cluster observations of surface waves on the dawn flank magnetopause. Ann Geophys 22:971–983

    Google Scholar 

  • Parker EN (1963) The solar flare phenomenon and the theory of reconnection and annihilation of magnetic fields. Astrophys J Suppl Ser 8:177

    Google Scholar 

  • Paschmann G (1997) Observational evidence for transfer of plasma across the magnetopause. Space Sci Rev 80(1–2):217–234

    Google Scholar 

  • Paschmann G (2008) Recent in-situ observations of magnetic reconnection in near-Earth space. Geophys Res Lett 35:L19109. doi:10.1029/2008GL035297

    Google Scholar 

  • Paschmann G, Sonnerup BUÖ, Papamastorakis I, Sckopke N, Haerendel G, Bame SJ, Asbridge JR, Gosling JT, Russell CT, Elphic RC (1979) Plasma acceleration at the Earth’s magnetopause: evidence for magnetic reconnection. Nature 282:243

    Google Scholar 

  • Penz T, Farrugia CJ, Ivanov VV, Ivanova VV, Semenov VS, Semenov VS, Biernat HK, Torbert R (2008) Two-spacecraft observations of reconnection at the magnetopause: model results and data comparison. Adv Space Res 41(10):1551–1555

    Google Scholar 

  • Perreault P, Akasofu S-I (1978) A study of geomagnetic storms. Geophys JR Astron Soc 54:547–573

    Google Scholar 

  • Petschek HE (1964) Magnetic field annihilation. In: Proceedings of AAS-NASA Symposium on Physics of Solar Flares, NASA Special Publication, SP-50, p 425

    Google Scholar 

  • Phan T-D, Paschmann G, Baumjohann W, Sckopke N, Lühr H (1994) The magnetosheath region adjacent to the dayside magnetopause: AMPTE/IRM observations. J Geophys Res 99(A1):121–141

    Google Scholar 

  • Phan TD, Sonnerup BUÖ, Lin RP (2001) Fluid and kinetics signatures of reconnection at the dawn tail magnetopause: wind observations. J Geophys Res 106:25489

    Google Scholar 

  • Phan T, Frey HU, Frey S, Peticolas L, Fuselier S, Carlson C, Rème H, Bosqued J-M, Balogh A, Dunlop M, Kistler L, Mouikis C, Dandouras I, Sauvaud J-A, Mende S, J McFadden, Parks G, Moebius E, Klecker B, Paschmann G, Fujimoto M, Petrinec S, Marcucci MF, Korth A, Lundin R (2003) Simultaneous cluster and IMAGE observations of cusp reconnection and auroral proton spot for northward IMF. Geophys Res Lett 30:1509. doi:10.1029/2003GL016885

    Google Scholar 

  • Phan TD, Dunlop MW, Paschmann G, Klecker B, Bosqued JM, Rème H, Balogh A, Twitty C, Mozer FS, Carlson CW, Mouikis C, Kistler LM (2004) Cluster observations of continuous reconnection at the magnetopause under steady interplanetary magnetic field conditions. Ann Geophys 22:2355–2367

    Google Scholar 

  • Phan TD, Escoubet CP, Rezeau L, Treumann RA, Vaivads A, Paschmann G, Fuselier SA, Attié D, Rogers B, Sonnerup BUÖ (2005) Magnetopause processes. Space Sci Rev 118(1–4):367–424

    Google Scholar 

  • Phan TD et al (2006) A magnetic x-line extending more than 390 Earth radii in the solar wind. Nature 439:175

    Google Scholar 

  • Pitout F, Newell PT, Buchert SC (2002) Simultaneous high- and low-latitude reconnection: ESR and DMSP observations. Ann Geophys 20(9):1311–1320

    Google Scholar 

  • Priest ER, Forbes TG (1992) Does fast magnetic reconnection exist? J Geophys Res 97:16757–16772

    Google Scholar 

  • Provan G, Yeoman TK (1999) Statistical observations of the MLT, latitude and size of pulsed ionospheric flows with the CUTLASS Finland radar. Ann Geophys 17:855–867

    Google Scholar 

  • Pu Z, Yei M, Liu Z (1990) Generation of vortex-induced tearing mode instability at the magnetopause. J Geophys Res 95(A7):10559–10566

    Google Scholar 

  • Pu ZY et al (2007) Global view of dayside magnetic reconnection with the dusk-dawn IMF orientation: a statistical study for Double Star and Cluster data. Geophys Res Lett 34:L20101. doi:10.1029/2007GL030336

    Google Scholar 

  • Raeder J (2006) Flux transfer events: 1. Generation mechanism for strong southward IMF. Ann Geophys 24:381–392

    Google Scholar 

  • Raeder J, Berchem J, Ashour-Abdalla M et al (1997) Boundary layer formation in the magnetotail: geotail observations and comparisons with a global MHD simulation. Geophys Res Lett 24(8):951–954

    Google Scholar 

  • Rijnbeek RP, Cowley SWH, Southwood DJ, Russell CT (1984) A survey of dayside flux transfer events observed by Isee 1 and 2 magnetometers. J Geophys Res 89(A2):786–800

    Google Scholar 

  • Rosenqvist L, Vaivads A, Retino A, Phan T, Opgenoorth HJ, Dandouras I, Buchert S (2008) Modulated reconnection rate and energy conversion at the magnetopause under steady IMF conditions. Geophys Res Lett 35:L08104. doi:10.1029/2007GL032868

    Google Scholar 

  • Roth M (1992) On impulsive penetration of solar wind plasmoids into the geomagnetic field. Planet Space Sci 40:193

    Google Scholar 

  • Russell CT, Elphic RC (1978) Initial ISEE magnetometer results: magnetopause observations. Space Sci Rev 22:681–715

    Google Scholar 

  • Safrankova J, Nemecek Z, Sibeck DG, Prech L, Merka J, Santolik O (1998) Two-point observation of high-latitude reconnection. Geophys Res Lett 25:4301–4304

    Google Scholar 

  • Safrankova J, Nemecek Z, Prech L, Simunek J, Sibeck D, Sauvaud J-A (2007) Variations of the flank LLBL thickness as response to the solar wind dynamic pressure and IMF orientation. J Geophys Res 112:A07201. doi:10.1029/2006JA011889

    Google Scholar 

  • Sandholt PE, Deehr CS, Egeland A et al (1986) Signatures in the dayside aurora of plasma transfer from the magnetosheath. J Geophys Res 91:10063

    Google Scholar 

  • Sandholt PE, Farrugia CJ, Cowley SWH, Denig WF (1999) Capture of magnetosheath plasma by the magnetosphere during northward IMF. Geophys Res Lett 26:2833

    Google Scholar 

  • Sauvaud J-A et al (2001) Intermittent thermal plasma acceleration linked to sporadic motions of the magnetopause, first Cluster results. Ann Geophys 19:1523

    Google Scholar 

  • Scholer M (1995) Models of flux transfer events. In: Song P, Sonnerup BUÖ, Thomsen MF (eds) Physics of the magnetopause. Geophysical monograph series, vol 90. AGU, Washington, DC, pp 235–245

    Google Scholar 

  • Scholer M, Treumann RA (1997) The low latitude boundary layer at the flanks of the magnetopause. Space Sci Rev 80(1–2):341–367

    Google Scholar 

  • Scurry L, Russell CT (1991) Proxy studies of energy transfer to the magnetosphere. J Geophys Res 96(A6):9541–9548

    Google Scholar 

  • Sharp DH (1984) An overview of Rayleigh-Taylor instability. Physica D 12(1–3):3–18

    Google Scholar 

  • Shi QQ, Shen C, Pu ZY, Dunlop MW, Zong Q-G, Zhang H, Xiao CJ, Liu ZX, Balogh A (2005) Dimensional analysis of observed structures using multipoint magnetic field measurements: application to Cluster. Geophys Res Lett 32:L12105. doi:10.1029/2005GL022454

    Google Scholar 

  • Sibeck DG (2009) Concerning the occurrence pattern of flux transfer events on the dayside magnetopause. Ann Geophys 27(2):895–903

    Google Scholar 

  • Sibeck DG, Lin RQ (2010) Concerning the motion of flux transfer events generated by component reconnection across the dayside magnetopause. J Geophys Res 115:A04209. doi:10.1029/2009JA014677

    Google Scholar 

  • Sibeck DG et al (1999) Chapter 5: plasma transfer processes at the magnetopause. Space Sci Rev 88(1–2):207–283

    Google Scholar 

  • Sibeck DG et al (2008) Crater FTEs: simulation results and THEMIS observations. Geophys Res Lett 35:L17S06. doi:10.1029/2008GL033568

    Google Scholar 

  • Siscoe G, Crooker N (1974) A theoretical relation between Dst and the solar wind merging electric field. Geophys Res Lett 1(1):17–19

    Google Scholar 

  • Smets R, Belmont G, Delcourt D, Rezeau L (2007) Diffusion at the Earth magnetopause: enhancement by Kelvin-Helmholtz instability. Ann Geophys 25:271–282

    Google Scholar 

  • Song P, Russell CT (1992) Model of the formation of the low-latitude boundary layer for strongly northward interplanetary magnetic field. J Geophys Res 97(A2):1411–1420

    Google Scholar 

  • Song P, Sonnerup BUÖ, Thomsen MF (1995) Physics of the magnetopause. Geophysical monograph series, vol 90

    Google Scholar 

  • Sonnerup BUÖ (1974) The reconnecting magnetopause. In: McCormac BM, Reidel D (eds) Magnetospheric physics. Norwell, MA, p 23

    Google Scholar 

  • Sonnerup BUÖ, Cahill LJ (1967) Magnetopause structure and attitude from Explorer 12 observations. J Geophys Res 72:171

    Google Scholar 

  • Sonnerup BUÖ, Guo M (1996) Magnetopause transects. Geophys Res Lett 23:3679–3682

    Google Scholar 

  • Sonnerup BUÖ, Scheible M (1998) Minimum and maximum variance analysis. In: Multi-spacecraft analysis methods, Int. Space Sci. Inst. Scientific Report Book, p 185

    Google Scholar 

  • Sonnerup BUÖ, Hasegawa H (2005) Orientation and motion of two-dimensional structures in a space plasma. J Geophys Res 110:A06208. doi:10.1029/2004JA010853

    Google Scholar 

  • Sonnerup BUÖ, Paschmann G, Papamastorakis I, Sckopke N, Haerendel G, Bame SJ, Asbridge JR, Gosling JT, Russell CT (1981) Evidence for magnetic field reconnection at the Earth’s magnetopause. J Geophys Res 86(15):10049–10067

    Google Scholar 

  • Sonnerup BUÖ, Papamastorakis I, Paschmann G, Luehr H (1987) Magnetopause properties from AMPTE/IRM observations of the convection electric field – method development. J Geophys Res 92:12137

    Google Scholar 

  • Sonnerup BUÖ, Paschmann G, Phan T-D (1995) Fluid aspects of reconnection at the magnetopause: in situ observations. In: Song P, Sonnerup BUÖ, Thomsen MF (eds) Physics of the magnetopause. Geophysical monograph series, vol 90. AGU, Washington, DC, pp 167–180

    Google Scholar 

  • Sonnerup BUÖ, Hasegawa H, Paschmann G (2004) Anatomy of a flux transfer event seen by Cluster. Geophys Res Lett 31:L11803. doi:10.1029/2004GL020134

    Google Scholar 

  • Sonnerup BUÖ, Hasegawa H, Teh W-L, Hau L-N (2006) Grad-Shafranov reconstruction: an overview. J Geophys Res 111:A09204. doi:10.1029/2006JA011717

    Google Scholar 

  • Southwood DJ (1968) The hydrodynamic stability of the magnetospheric boundary. Planet Space Sci 16:587

    Google Scholar 

  • Southwood DJ (1979) Magnetopause Kelvin-Helmholtz instability. In: Proceedings of magnetospheric boundary layers conference, ESA SP-148, pp 357–364

    Google Scholar 

  • Spreiter JR, Summers AL, Alksne AY (1966) Hydromagnetic flow around the magnetosphere. Planet Space Sci 14(3):223–253

    Google Scholar 

  • Su YJ, Borovsky JE, Thomsen MF, Elphic RC, McComas DJ (2000) Plasmaspheric material at the reconnecting magnetopause. J Geophys Res 105:7591

    Google Scholar 

  • Sweet PA (1958) The neutral point theory of solar flares. IAU Symp 6:123

    Google Scholar 

  • Swisdak M, Drake JF (2007) Orientation of the reconnection X-line. Geophys Res Lett 34:L11106. doi:10.1029/2007GL029815

    Google Scholar 

  • Taylor MGGT, Lavraud B (2008) Observation of three distinct ion populations at the Kelvin-Helmholtz-unstable magnetopause. Ann Geophys 26(6):1559–1566

    Google Scholar 

  • Taylor MGGT et al (2008) The plasma sheet and boundary layers under northward IMF: a multi-point and multi-instrument perspective. Adv Space Res 41(10):1619–1629

    Google Scholar 

  • Terasawa T, Fujimoto M, Mukai T, Shinohara I, Saito Y, Yamamoto T, Machida S, Kokubun S, Lazarus AJ, Steinberg JT, Lepping RP (1997) Solar wind control of density and temperature in the near-Earth plasma sheet: WIND/GEOTAIL collaboration. Geophys Res Lett 24:935

    Google Scholar 

  • Thomas VA, Winske D (1993) Kinetic simulations of the Kelvin-Helmholtz instability at the magnetopause. J Geophys Res 98:11425

    Google Scholar 

  • Trattner KJ, Fuselier SA, Peterson WK, Sauvaud JA, Stenuit H, Dubouloz N, Kovrazhkin RA (1999) On spatial and temporal structures in the cusp. J Geophys Res 104:28411

    Google Scholar 

  • Trattner KJ, Fuselier SA, Peterson WK, Boehm M, Klumpar D, Carlson CW, Yeoman TK (2002) Temporal versus spatial interpretation of cusp ion structures observed by two spacecraft. J Geophys Res 107(A10):1287. doi:10.1029/2001JA000181

    Google Scholar 

  • Trattner KJ, Fuselier SA, Yeoman TK, Korth A, Fraenz M, Mouikis C, Kucharek H, Kistler LM, Escoubet CP, Rème H, Dandouras I, Sauvaud JA, Bosqued JM, Klecker B, Carlson C, Phan T, McFadden JP, Amata E, Eliasson L (2003) Cusp structures: combining multi-spacecraft observations with ground-based observations. Ann Geophys 21:2031–2041

    Google Scholar 

  • Trattner KJ, Mulcock JS, Petrinec SM, Fuselier SA (2007a) Location of the reconnection line at the magnetopause during southward IMF conditions. Geophys Res Lett 34:L03108. doi:10.1029/2006GL028397

    Google Scholar 

  • Trattner KJ, Mulcock JS, Petrinec SM, Fuselier SA (2007b) Probing the boundary between antiparallel and component reconnection during southward interplanetary magnetic field conditions. J Geophys Res 112:A08210. doi:10.1029/2007JA012270

    Google Scholar 

  • Trenchi L, Marcucci MF, Pallocchia G, Consolini G, Bavassano Cattaneo MB, Di Lellis AM, Rème H, Kistler L, Carr CM, Cao JB (2008) Occurrence of reconnection jets at the dayside magnetopause: double Star observations. J Geophys Res 113:A07S10. doi:10.1029/2007JA012774

    Google Scholar 

  • Treumann RA (1997) Theory of super-diffusion for the magnetopause. Geophys Res Lett 24:727

    Google Scholar 

  • Vaivads A et al (2004) Structure of the magnetic reconnection diffusion region from four-spacecraft observations. Phys Rev Lett 93:105001. doi:10.1103/PhysRevLett.93.105001

    Google Scholar 

  • Vaivads A, Retinò A, André M (2006) Microphysics of magnetic reconnection. Space Sci Rev 122:19–27. doi:10.1007/s11214-006-7019-3

    Google Scholar 

  • Wang YL, Elphic RC, Lavraud B, Taylor MGGT, Birn J, Raeder J, Russell CT, Kawano H, Zong Q-G, Zhang H, Zhang XX, Friedel RH (2005) Initial results of high-latitude magnetopause and low-latitude flank flux transfer events from three years of Cluster observations. J Geophys Res 110(A11):A11221. doi:10.1029/2005JA011150

    Google Scholar 

  • Wang YL, Elphic RC, Lavraud B, Taylor MGGT, Birn J, Russell CT, Raeder J, Kawano H, Zhang XX (2006) The dependence of flux transfer events on solar wind conditions from three years of Cluster observations. J Geophys Res 111(A4):A04224. doi:10.1029/2005JA011342

    Google Scholar 

  • Wendel DE, Reiff PH (2009) Magnetopause reconnection impact parameters from multiple spacecraft magnetic field measurements. Geophys Res Lett 36:L20108. doi:10.1029/2009GL040228

    Google Scholar 

  • Wild JA et al (2001) First simultaneous observations of flux transfer events at the high-latitude magnetopause by the Cluster spacecraft and pulsed radar signatures in the conjugate ionosphere by the CUTLASS and EISCAT radars. Ann Geophys 19:1491

    Google Scholar 

  • Wing S, Johnson JR, Fujimoto M (2006) Timescale for the formation of the cold-dense plasma sheet: a case study. Geophys Res Lett 33(23):L23106

    Google Scholar 

  • Wygant JR et al (2005) Cluster observations of an intense normal component of the electric field at a thin reconnecting current sheet in the tail and its role in the shock-like acceleration of the ion fluid into the separatrix region. J Geophys Res 110:A09206. doi:10.1029/2004JA010708

    Google Scholar 

  • Zhang H, Khurana KK, Kivelson MG, Angelopoulos V, Pu ZY, Zong Q-G, Liu J, Zhou X-Z (2008) Modeling a force-free flux transfer event probed by multiple Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft. J Geophys Res 113:A00C05. doi:10.1029/2008JA013451

    Google Scholar 

  • Zheng Y, Le G, Slavin JA, Goldstein ML, Cattell C, Balogh A, Lucek EA, Rème H, Eastwood JP, Wilber M, Parks G, Retino A, Fazakerley A (2005) Cluster observation of continuous reconnection at dayside magnetopause in the vicinity of cusp. Ann Geophys 23:2199–2215

    Google Scholar 

  • Zhou X-Z, Zong Q-G, Pu ZY, Fritz TA, Dunlop MW, Shi QQ, Wang J, Wei Y (2006) Multiple Triangulation Analysis: another approach to determine the orientation of magnetic flux ropes. Ann Geophys 24:1759–1765

    Google Scholar 

  • Zhou X-Z, Pu ZY, Zong Q-G, Xie L (2007) Energy filter effect for solar wind particle entry to the plasma sheet via flank regions during southward interplanetary magnetic field. J Geophys Res 112:A06233. doi:10.1029/2006JA012180

    Google Scholar 

  • Zwan BJ, Wolf RA (1976) Depletion of solar wind plasma near a planetary boundary. J Geophys Res 81(10):1636–1648

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the reviewer for his/her constructive comments. CF acknowledges financial support from the UK STFC on the CFSA Rolling Grant. CJF acknowledges support from NASA grant NNX08AD11G. JPE holds an STFC Advanced Fellowship at ICL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Lavraud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lavraud, B., Foullon, C., Farrugia, C.J., Eastwood, J.P. (2011). The Magnetopause, Its Boundary Layers and Pathways to the Magnetotail. In: Liu, W., Fujimoto, M. (eds) The Dynamic Magnetosphere. IAGA Special Sopron Book Series, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0501-2_1

Download citation

Publish with us

Policies and ethics