Skip to main content

Computerized Reconstruction of Prenatal Growth Trajectories in the Dentition: Implications for the Taxonomic Status of Neandertals

  • Chapter
  • First Online:
Continuity and Discontinuity in the Peopling of Europe

Part of the book series: Vertebrate Paleobiology and Paleoanthropology ((VERT))

Abstract

The hierarchical pattern of tooth formation means that successive phases of development can be identified in fully formed teeth offering a unique insight into ontogenetic processes. The spatial geometry of the cusps expressed in the topography of the dentin-enamel junction (DEJ) records the partitioning of cell proliferation and differentiation as well as the timing of these events. The final stage of development is expressed in the topography of the fully formed crown (OES). Here, the overlying shell of enamel increases crown volume, while modifying cusp relations seen at the DEJ reflecting local variations in enamel thickness.

Using serial scans taken with a micro-CT at 16 μm we have developed a three-dimensional model that enables us to identify, and more importantly quantify, all these developmental features. We have applied this model to reconstruct growth trajectories and their impact on tooth size and cusp relationships in teeth of varying size and tooth classes. The results are used to interpret the extent of developmental variation expressed in Neandertal molars. They indicate that the characteristic features of Neandertal teeth, expressed in intercusp distances and proportions, thin enamel and taurodont roots represent a different partitioning of cell division and differentiation from that observed in Homo sapiens sapiens.

Our findings indicate the existence of differences between Neandertals and other hominins in genes controlling the switch-on/switch-off mechanism that regulates the timing, rate and spatial organization of cell proliferation and differentiation of epithelial derived tissues. The thin Neandertal enamel results in teeth that wear down fast, resulting in loss of dental function. We propose that the changes observed in Neandertal teeth, may be secondary to those occurring in other organs developing from epithelial-mesenchymal interaction, with greater adaptive significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avishai, G., Muller, R., Gabet, Y., Bab, I., Zilberman, U., & Smith, P. (2004). New approach to quantifying developmental variation in the dentition using serial microtomographic imaging. Microscopy Research and Technique, 65(6), 263—269.

    Article  Google Scholar 

  • Bailey, S. E. (2002a). A closer look at Neanderthal postcanine dental morphology: The mandibular dentition. The Anatomical Record, 269(3), 148—156.

    Article  Google Scholar 

  • Bailey, S. E. (2002b). Neandertal dental morphology: Implications for modern human origins. Ph.D. thesis, Arizona State University, Tempe, Arizona.

    Google Scholar 

  • Bailey, S. E. (2005). Diagnostic dental differences between Neandertals and Upper Paleolithic modern humans: Getting to the root of the matter. In E. Zadzinska (Ed.), Current trends in dental morphology research (pp. 201—210). Lodz: University of Lodz Press.

    Google Scholar 

  • Bailey, S. E., & Hublin, J. J. (2006). Dental remains from the Grotte du Renne at Arcy-sur-Cure (Yonne). Journal of Human Evolution, 50(5), 485—508.

    Article  Google Scholar 

  • Butler, P. M. (1956). The ontogeny of molar patterns. Biological Reviews, 31, 30—70.

    Article  Google Scholar 

  • Butler, P. M. (1967). Comparison of the development of the second deciduous molar and first permanent molar in man. Archives of Oral Biology, 12(11), 1245—1260.

    Article  Google Scholar 

  • Butler, P. M. (2000). The relation of cusp development and calcification to growth In: J. Mayhall, & T. Heikkinen (Eds.), Proceedings of the 11th International Symposium on Dental Morphology (pp. 26—32). Oulu: Oulu University Press.

    Google Scholar 

  • Dahlberg, A. (1961). Relationship of tooth size to cusp number and groove conformation of occlusal surface patterns of lower molar teeth. Journal of Dental Research, 40, 34—36.

    Article  Google Scholar 

  • Dahlberg, A. (1985). Ontogeny and dental genetics in forensic problems. Forensic Science International, 30, 163—176.

    Article  Google Scholar 

  • Dean, M. C., Stringer, C. B., & Bromage, T. G. (1986). Age at death of the Neanderthal child from Devil’s Tower, Gibraltar and the implications for studies of general growth and development in Neanderthals. American Journal of Physical Anthropology, 70(3), 301—309.

    Article  Google Scholar 

  • Faerman, M., Kharitonov, V., Batsevich, B., Zilberman, U., & Smith, P. (1994). A Neanderthal infant from the Barakai Cave, Western Caucasus. Journal of Human Evolution, 27, 405—415.

    Article  Google Scholar 

  • Grine, F. (2005). Enamel thickness of deciduous and permanent molars in modern Homo sapiens. American Journal of Physical Anthropology, 126(1), 14—31.

    Article  Google Scholar 

  • Guatelli-Steinberg, D., Reid, D. J., Bishop, T. A., & Larsen, C. S. (2005). Anterior tooth growth periods in Neandertals were comparable to those of modern humans. Proceedings of the National Academy of Sciences, 102(40), 14197—14202.

    Article  Google Scholar 

  • Guatelli-Steinberg, D., Reid, D. J., & Bishop, T. A. (2007). Did the lateral enamel of Neandertal anterior teeth grow differently from that of modern humans? Journal of Human Evolution, 52(1), 72—84.

    Article  Google Scholar 

  • Gutiérrez, G., Sanchez, D., & Marin, A. (2002). A reanalysis of the ancient mitochondrial sequences recovered from Neandertal bones. Molecular Biology and Evolution, 19, 1459—1146.

    Article  Google Scholar 

  • Harvati, K. (2003). The Neanderthal taxonomic position: Models of intra- and inter-specific craniofacial variation. Journal of Human Evolution, 44(1), 107—142.

    Article  Google Scholar 

  • Hebsgaard, M. B., Wiuf, C., Gilbert, M. T., Glenner, H., & Willerslev, E. (2007). Evaluating Neanderthal genetics and phylogeny. Journal of Molecular Evolution, 64(1), 50—60.

    Article  Google Scholar 

  • Hrdlička, A. (1930). The skeletal remains of early man (Smithsonian Miscellaneous Collections, Vol. 83). Washington, DC: Smithsonian Institution.

    Google Scholar 

  • Hublin, J. J. (1998). Climatic changes, paleogeography and the evolution of the Neandertals. In T. Akazawa, K. Aoki, & O. Bar-Yosef (Eds.), Neandertals and modern humans in Western Asia (pp. 295—310). New York: Plenum.

    Google Scholar 

  • Hublin, J. J. (2011) Dental development and age at death of a Middle Paleolithic juvenile hominin from Obi-Rakhmat Grotto, Uzbekistan. In S. Condemi & G.-C. Weniger (Eds.), Continuity and discontinuity in the peopling of Europe (pp. 155—164). Dordrecht: Springer.

    Google Scholar 

  • Jernvall, J., & Thesleff, I. (2000). Return of lost structure in the developmental control of tooth shape. In M. F. Teaford, M. M. Smith, & M. W. J. Ferguson (Eds.), Development, function and evolution of teeth (pp. 14—22). Cambridge: Cambridge University Press.

    Google Scholar 

  • Jernvall, J., Keranen, S. V., & Thesleff, I. (2000). Evolutionary modification of development in mammalian teeth: Quantifying gene expression patterns and topography. Proceedings of the National Academy of Sciences, 97(26), 14444—14448.

    Article  Google Scholar 

  • Kallay, J. (1963). A radiographic study of the Neanderthal teeth from Krapina, Croatia. In D. R. Brothwell (Ed.), Dental anthropology (pp. 75—86). Oxford: Pergamon.

    Google Scholar 

  • Keinan, D., Smith, P., & Zilberman, U. (2006). Microstructure and chemical composition of primary teeth in children with down syndrome and cerebral palsy. Archives of Oral Biology, 51(10), 836—843.

    Article  Google Scholar 

  • Korenhof, C. A. (1979). The evolution of the lower molar pattern and remnants of the trigonid crests in man. Nederlands Tijdschrift voor Tandheelkunde, 86(Suppl 17), 6—31.

    Google Scholar 

  • Kraus, B. S. (1952). Morphological relationships between enamel and dentin surfaces of lower first molar tooth. Journal of Dental Research, 31, 248—256.

    Article  Google Scholar 

  • Kraus, B. S., & Jordan, R. E. (1965). The human dentition before birth. Philadelphia: Lea & Febiger.

    Google Scholar 

  • Legoux, P. (1966). Détermination de l’âge dentaire de fossiles de la lignée humaine. Paris: Maloine.

    Google Scholar 

  • Macchiarelli, R., Bondioli, L., Debenath, A., Mazurier, A., Tournepiche, J. F., Birch, W., & Dean, M. C. (2006). How Neanderthal molar teeth grew. Nature, 444(7120), 748—751.

    Article  Google Scholar 

  • Mann, A., Lampl, M., & Monge, J. (1990). Patterns of ontogeny in human evolution: Evidence from dental development. Yearbook of Physical Anthropology, 33, 11—150.

    Article  Google Scholar 

  • McCollum, M., & Sharpe, P. T. (2001). Evolution and development of teeth. Journal of Anatomy, 199(Pt 1—2), 153—159.

    Article  Google Scholar 

  • Molnar, S., Hildebolt, C., Molnar, I. M., Radovcic, J., & Gravier, M. (1993). Hominid enamel thickness: I. The Krapina Neandertals. American Journal of Physical Anthropology, 92(2), 141—148.

    Article  Google Scholar 

  • Pääbo, S., Poinar, H., Serre, D., Jaenicke-Despres, V., Hebler, J., Rohland, N., Kuch, M., Krause, J., Vigilant, L., & Hofreiter, M. (2004). Genetic analyses from ancient DNA. Annual Review of Genetics, 38, 645—679.

    Article  Google Scholar 

  • Plikus, M. V., Zeichner-David, M., Mayer, J. A., Reyna, J., Bringas, P., Thewissen, J. G., Snead, M. L., Chai, Y., & Chuong, C. M. (2005). Morphoregulation of teeth: Modulating the number, size, shape and differentiation by tuning Bmp activity. Evolution and Development, 7(5), 440—457.

    Article  Google Scholar 

  • Ramirez Rozzi, F. (1996). Comment on the causes of thin enamel in Neandertals. American Journal of Physical Anthropology, 99(4), 625—626.

    Article  Google Scholar 

  • Ramirez Rozzi, F. V., & Bermudez De Castro, J. M. (2004). Surprisingly rapid growth in Neanderthals. Nature, 428(6986), 936—939.

    Article  Google Scholar 

  • Rosas, A., Martinez-Maza, C., Bastir, M., Garcia-Tabernero, A., Lalueza-Fox, C., Huguet, R., Ortiz, J. E., Julia, R., Soler, V., de Torres, T., Martinez, E., Canaveras, J. C., Sanchez-Moral, S., Cuezva, S., Lario, J., Santamaria, D., de la Rasilla, M., & Fortea, J. (2006). Paleobiology and comparative morphology of a late Neandertal sample from El Sidron, Asturias, Spain. Proceedings of the National Academy of Sciences, 103(51), 19266—19271.

    Article  Google Scholar 

  • Sasaki, K., & Kanazawa, E. (2000). Morphological traits on the dentino-enamel junction of lower deciduous molar series. In J. Mayhall, & T. Heikkinen (Eds.), 1998: Proceedings of the 11th International Symposium on Dental Morphology (pp. 167—178). Oulu: Oulo University Press.

    Google Scholar 

  • Skinner, M. F., & Sperber, G. H. (1982). Atlas of radiographs of early man. New York: Alan R. Liss.

    Google Scholar 

  • Smith, P. (1990). Specialised features of Neanderthal teeth and the Latium Neanderthals. Quaternaria Nova, 1, 663—671.

    Article  Google Scholar 

  • Smith, F. H., Jankovic, I., & Karavanic, I. (2005). The assimilation model, modern human origins in Europe, and the extinction of Neandertals. Quaternary International, 147, 7—19.

    Article  Google Scholar 

  • Smith, P., Peretz, B., & Forte-Koren, R. (1995). The ontogeny of cusp morphology: The evidence from tooth germs. In R. Radlanski & H. Renz (Eds.), Proceedings of the 10th international symposium on dental morphology (pp. 49—53). Berlin: “M” Marketing Services.

    Google Scholar 

  • Smith, P., Gomorri, J. M., Spitz, S., & Becker, J. (1997). Model for the examination of evolutionary trends in tooth development. American Journal of Physical Anthropology, 102(2), 283—294.

    Article  Google Scholar 

  • Smith, P., Gomori, J., Shaked, R., Haydenblit, R., & Joskowicz, L. (2000). A computerized approach to reconstruction of growth patterns in hominid molar teeth. In J. Mayhall & T. Heikkinen (Eds.), Proceedings of the 11th international symposium on dental morphology (pp. 388—397). Oulo: Oulo University Press.

    Google Scholar 

  • Smith, P., Muller, R., Gabet, Y., & Avishai, G. (2007). A computerized model for reconstruction of dental ontogeny: A new tool for studying evolutionary trends in the dentition. In S. E. Bailey & J. J. Hublin (Eds.), Dental perspectives on human evolution (pp. 273—286). AA Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Soficaru, A., Dobos, A., & Trinkaus, E. (2006). Early modern humans from the Pestera Muierii, Baia de Fier, Romania. Proceedings of the National Academy of Sciences, 103(46), 17196—17201.

    Article  Google Scholar 

  • Stringer, C. B. (2002). Modern human origins — progress and prospects. Philosophical Transactions of the Royal Society, 357, 563—579.

    Article  Google Scholar 

  • Stringer, C., Pälike, H., van Andel, T., Huntley, B., Valdes, P., & Allen, J. R. M. (2004). Climatic stress and the extinction of the Neanderthals. In T. H. van Andel, & W. Davies (Eds.), Neanderthals and modern humans in the European landscape during the last glaciation (pp. 233—240). Cambridge: McDonald Institute Monographs. ­chapter 14.

    Google Scholar 

  • Suwa, G., & Kono, R. T. (2005). A micro-CT based study of linear enamel thickness in the mesial cusp section of human molars: Reevaluation of methodology and assessment of within-tooth, serial and individual variation. Anthropological Science, 114, 273—289.

    Article  Google Scholar 

  • Swindler, D. R., & McCoy, H. A. (1965). Primate odontogenesis. Journal of Dental Research, 44(SUPPL), 283—295.

    Article  Google Scholar 

  • Swindler, D. R., & Meekins, D. (1991). Dental development of the permanent mandibular teeth in the Baboon, Papio cynocephalus. American Journal of Human Biology, 3, 571—580.

    Article  Google Scholar 

  • Swindler, D. R., Orlosky, F. J., & Hendrickx, A. G. (1968). Calcification of the deciduous molars in baboons (Papio anubis) and other primates. Journal of Dental Research, 47(1), 167—170.

    Article  Google Scholar 

  • Thompson, J. L., & Nelson, A. J. (2000). The place of Neandertals in the evolution of hominid patterns of growth and development. Journal of Human Evolution, 38(4), 475—495.

    Article  Google Scholar 

  • Trinkaus, E., Moldovan, O., Milota, S., Bilgar, A., Sarcina, L., Athreya, S., Bailey, S. E., Rodrigo, R., Mircea, G., Higham, T., Ramsey, C. B., & van der Plicht, J. (2003). An early modern human from the Pestera cu Oase, Romania. Proceedings of the National Academy of Sciences, 100(20), 11231—11236.

    Article  Google Scholar 

  • Weiss, K. M., & Smith, F. H. (2007). Out of the veil of death rode the one million! Neandertals and their genes. Bioessays, 29(2), 105—110.

    Article  Google Scholar 

  • Winkler, L. A., Schwartz, J. H., & Swindler, D. R. (1996). Development of the orangutan permanent dentition: Assessing patterns and variation in tooth development. American Journal of Physical Anthropology, 99(1), 205—220.

    Article  Google Scholar 

  • Wolpoff, M. H., Hawks, J., Frayer, D. W., & Hunley, K. (2001). Modern human ancestry at the peripheries: A test of the replacement theory. Science, 291(5502), 293—297.

    Article  Google Scholar 

  • Zaho, Z., Weiss, K. M., & Stock, D. W. (2000). Development and evolution of dentition patterns and their genetic basis. In M. F. Teaford, M. M. Smith, & M. W. J. Ferguson (Eds.), Development function and evolution of teeth (pp. 152—172). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Zilberman, U., & Smith, P. (1992). A comparison of tooth structure in Neanderthals and early Homo sapiens sapiens: A radiographic study. Journal of Anatomy, 180(Pt 3), 387—393.

    Google Scholar 

  • Zilberman, U., Skinner, M., & Smith, P. (1992). Tooth components of mandibular deciduous molars of Homo sapiens sapiens and Homo sapiens neanderthalensis: A radiographic study. American Journal of Physical Anthropology, 87(3), 255—262.

    Article  Google Scholar 

Download references

Acknowledgements

Research supported by Grant No. 032-5302 from the Israel Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Patricia Smith or Gal Avishai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Smith, P., Avishai, G., Müller, R., Gabet, Y. (2011). Computerized Reconstruction of Prenatal Growth Trajectories in the Dentition: Implications for the Taxonomic Status of Neandertals. In: Condemi, S., Weniger, GC. (eds) Continuity and Discontinuity in the Peopling of Europe. Vertebrate Paleobiology and Paleoanthropology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0492-3_14

Download citation

Publish with us

Policies and ethics