Skip to main content

The Mechanism of Metal Cation and Anion Biosorption

  • Chapter
  • First Online:
Microbial Biosorption of Metals

Abstract

The passive, not metabolically mediated, biosorption uptake of metals by (dead) biomass appears as a powerful tool for somewhat selectively removing heavy metals from solution. Immobilization of dissolved toxic heavy metals and their physical removal by biosorption in a water puricication process is not only technically feasible but it may prove to be economically quite attractive. In order to effectively optimize such a process, the mechanisms involved in metal biosorption need to be well understood and the metal speciation in aqueous solutions has to be taken into consideration as it plays an important role.

As phenomena of complexation, coordination, chelation, ion exchange, adsorption, inorganic microprecipitation may all be involved in the overall metal uptake by biosorption, the configuration and state of the active binding site in the biomass have to be well understood. The state and effectiveness of the binding site is, to a large degree, also affected by the environmental conditions such as pH, temperature and ionic strength of the solution. Because of the multiparameter complexity of the sorption system it is most useful to express the interdependence of the key parameters mathematically whereby the set of equations could be organized into a model of the sytem that could be used for predicting its metal uptake performance under different conditions. The elements and fundamentals of the approach are discussed and outlined in the chapter.

When the microprecipitation phenomenon and physical collection of insolubilized metal is excluded, extensive research results indicate that ion exchange tends to be the dominant metal immobilization mechanism in biosorption. The fact that this phenomenon is in most cases reversible offers an attractive possibility of effective wash-release of the deposited metal, resulting in a highly concentrated regeneration solution suitable for some conventional metal recovery and a refreshed biosorbent material ready for another metal uptake cycle. This feature undoubtedly reinforces the feasibility and competitiveness of the metal biosorption process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahrland S, Chatt J, Davis NR (1958) The relative affinities of ligand atoms for acceptor molecules and ions. Q Rev Chem 12:265–276

    Article  CAS  Google Scholar 

  • Aldor I, Fourest E, Volesky B (1995) Desorption of cadmium from algal biosorbent. Can J Chem Eng 73:516–522

    Article  CAS  Google Scholar 

  • Baes CFJ, Mesmer RE (1976) The hydrolysis of cations. Wiley, New York

    Google Scholar 

  • Beveridge TJ (1986) The immobilization of soluble metals by bacterial walls. In: Ehrlich HL, Holmes DS (eds) Biotechnology and bioengineering symposium no. 16: biotechnology for the mining, metal-refining, and fossil fuel processing industries. Wiley, New York, pp 127–140

    Google Scholar 

  • Beveridge TJ (1990) Interactions of metal ions with components of bacterial cell walls and their biomineralization. In: Poole RK, Gadd GM (eds) Metal-microbe interactions. IRL Press, Oxford, pp 65–83

    Google Scholar 

  • Brierley CL (1990a) Metal immobilization using bacteria. In: Ehrlich HL, Brierley CL (eds) Microbial mineral recovery. McGraw-Hill, New York, pp 303–324

    Google Scholar 

  • Brierley JA (1990b) Production and application of a Bacillus-based product for use in metals biosorption. In: Volesky (ed) Biosorption of heavy metals. CRC Press, Boca Raton, pp 305–312

    Google Scholar 

  • Brizzolara RA, Boyd JL, Tate AE (1997) Evidence for covalent attachment of purple membrane to a gold surface via genetic modification of bacteriorhodopsin. J Vac Sci Technol A 15:773–778

    Article  CAS  Google Scholar 

  • Campos-Takaki GM, Beakes GW, Dietrich SMC (1983) Electron microscopie X-ray microprobe and cytochemical study of isolated cell walls of Mucoralean fungi. Trans Br Mycol Soc 80:536–541

    Article  CAS  Google Scholar 

  • Chen XH, Gosset T, Thevenot DR (1990) Batch copper ion binding and exchange properties of peat. Water Res 24:1463–1471

    Article  CAS  Google Scholar 

  • Collins YE, Stotzky G (1992) Heavy metals alter the electrokinetic properties of bacteria, yeast and clay minerals. Appl Environ Microbiol 58:1592–1600

    PubMed  CAS  Google Scholar 

  • Crist RH, Oberholser K, Shank N, Nguyen M (1981) Nature of bonding between metallic ions and algal cell walls. Environ Sci Technol 15:1212–1217

    Article  CAS  Google Scholar 

  • Crist RH, Martin JR, Joseph C (1996) Uptake of metal ions on peat moss: and ion-exchange process. Environ Sci Technol 30:2456–2461

    Article  CAS  Google Scholar 

  • Dambies L, Roze A, Roussy J, Guibal E (1999) As(V) removal from dilute solutions using MICB (molybdate-impregnated chitosan beads). In: Amils R, Ballester A (eds) Biohydrometallurgy and the environment toward the mining of the 21st century (Part B). International biohydrometallurgy symposium—proceedings. Elsevier, Amsterdam, pp 277–287

    Google Scholar 

  • Davis TA, Llanes F, Volesky B, Diaz-Pulido G, McCook L, Mucci A (2003a) A 1H-NMR spectroscopic characterization of sodium alginates extracted from Sargassum spp. and its relevance to heavy metal biosorption. Appl Biochem Biotechnol 110:75–90

    Article  CAS  Google Scholar 

  • Davis TA, Mucci A, Volesky B (2003b) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330

    Article  CAS  Google Scholar 

  • Diniz V, Volesky B (2005) Effect of counterions on lanthanum biosorption by Sargassum polycystum. Water Res 39:2229–2236

    Article  PubMed  CAS  Google Scholar 

  • Domard A (1987) pH and c.d. measurements on a fully deacetylated chitosan: application to CuII—polymer interactions. Int J Biol Macromol 9:98–104

    Article  CAS  Google Scholar 

  • Figueira MM, Volesky B, Ciminelli VST (1997) Assessment of interference in biosorption of heavy metals. Biotechnol Bioeng 54:344–350

    Article  PubMed  CAS  Google Scholar 

  • Figueira MM, Volesky B, Mathieu HJ (1999) Instrumental analysis study of iron species biosorption by Sargassum biomass. Environ Sci Technol 33:1840–1846

    Article  CAS  Google Scholar 

  • Gadd GM (1990) Fungi and yeasts for metal binding. In: Ehrlich HL, Brierley CL (eds) Microbial mineral recovery. McGraw-Hill, New York, pp 249–276

    Google Scholar 

  • Gai Z, Gao Z, Peng B, Yu X (1981) Microbial hydroxylation of 6a-;methyl-17a-hydroxyprogesterone and 6a-methyl-17a-hydroxy-11-deoxycorticosterone-21-acetate Yaoxue Xuebao 16:342–348; Chem Abstr (1982) 97:90333

    Google Scholar 

  • Giles CH, Hassan ASA (1958) A study of the adsorption of dyes and other organic solutes by cellulose and chitin. J Soc Dyers Colour 74:846–857

    Article  CAS  Google Scholar 

  • Giles CH, Hassan ASA, Subramanian RVR (1958) Adsorption at organic surfaces. J Soc Dyers Colour 74:681–688

    Google Scholar 

  • Greene B, Henzl MT, Hosea JM, Darnall DW (1986) Elimination of bicarbonate interference in the binding of U(VI) in mill waters to freeze-dried Chlorella vulgaris. Biotechnol Bioeng 28:764–767

    Article  PubMed  CAS  Google Scholar 

  • Greene B, McPherson R, Darnall DW (1987) Algal sorbents for selective metal ion recovery. In: Patterson JW, PasinoR (eds) Metals speciation separation and recovery. Lewis Chelsea, Rome, pp 315–338

    Google Scholar 

  • Guibal E, Milot C, Tobin JM (1998) Metal-anion sorption by chitosan beads: Equilibrium and kinetic studies. Ind Eng Chem Res 37:1454–1463

    Article  Google Scholar 

  • Guibal E, Milot C, Roussy J (1999) Molybdate sorption by cross-linked chitosan beads: dynamic studies. Water Environ Res 71:10–17

    Article  CAS  Google Scholar 

  • Haug A, Smidsrod O (1970) Selectivity of some anionic polymers for divalent metal ions. Acta Chem Scand 24:843–854

    Article  CAS  Google Scholar 

  • Hayes KF, Leckie JO (1987) Modelling ionic strength effects of cation adsorption at hydrous ohide/solution interfaces. J Colloid Interface Sci 115:564–572

    Article  CAS  Google Scholar 

  • Helfferich F (1995) Ion exchange. Dover Publications Inc, New York, p 168

    Google Scholar 

  • Holan ZR, Volesky B (1995) Accumulation of cadmium, lead and nickel by fungal and wood biosorbents. Appl Biochem Biotechnol 53:133–142

    Article  CAS  Google Scholar 

  • Hunt S (1986) Diversity of biopolymer structure and its potential for ionbinding applications. In: Eccles H, Hunt S (eds) Immobilisation of Ions by bio-sorption. Ellis Horwood, Chichester, pp 15–45

    Google Scholar 

  • Jilek R, Docekalova H, Slovak Z (1979) Selective sorbents based on Penicillium chrysogenum mycelium. Sorption of cationts (in Czech). Chem Prum 29:139–143

    CAS  Google Scholar 

  • Kratochvil D (1997) Biosorption of heavy metals by Sargassum seaweed biomass. Ph.D. thesis, chemical engineering, McGill University, Montreal, Canada

    Google Scholar 

  • Kuyucak N, Volesky B (1989a) Accumulation of cobalt by marine alga. Biotechnol Bioeng 33:809–814

    Article  CAS  Google Scholar 

  • Kuyucak N, Volesky B (1989b) The mechanism of cobalt biosorption. Biotechnol Bioeng 33:823–831

    Article  CAS  Google Scholar 

  • Kuyucak N, Volesky B (1989c) The mechanism of gold biosorption. Biorecovery 1:219–1235

    CAS  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1402

    Google Scholar 

  • Leibfritz D (1972) X-Ray photoelectron spectroscopy of iron-containing proteins—the valency of iron in ferredoxins. Angew Chem Internat Edit 11:232–234

    Article  CAS  Google Scholar 

  • Macaskie LE, Empson RM, Cheetham AK, Grey CP, Skarnulis AJ (1992) Uranium bioaccumulation by a Citrobacter sp. as a result of an ezymatically mediated growth of polycrystalline HUO2PO4. Science 257:782–784

    Article  PubMed  CAS  Google Scholar 

  • McLean RJC, Beveridge TJ (1990) Metal binding capacity of bacterial surfaces and their ability to form mineralized aggregates. In: Ehrlicg HL, Brierley CL (eds) Microbial mineral recovery. McGraw-Hill, New York, pp 185–222

    Google Scholar 

  • Mueller E, Loeffler W (1976) Mycology. Thieme, Stuttgart

    Google Scholar 

  • Muzzarelli RAA (1977) Chitin. Pergamon Press, London

    Google Scholar 

  • Myers D (1991) Surfaces, interfaces, colloids principles and applications. VCH, Weinheim

    Google Scholar 

  • Naja G, Volesky B (2006) Multi-metal biosorption in a fixed-bed flow-through column. Colloid Surf A-Physicochem Eng Asp 281:194–201

    Article  CAS  Google Scholar 

  • Naja G, Mustin C, Berthelin J, Volesky B (2005a) Lead biosorption study with Rhizopus arrhizus using a metal-based titration technique. J Colloid Interface Sci 292:537–543

    Article  CAS  Google Scholar 

  • Naja G, Mustin C, Volesky B, Berthelin J (2005b) A high resolution titrator: a new approach to studying binding sites of microbial biosorbents. Water Res 39:579–586

    Article  CAS  Google Scholar 

  • Naja G, Mustin C, Volesky B, Berthelin J (2006) Association constants of Pb2+ with binding sites of fungal biomass using metal-based titrations. Environ Technol 27:109–117

    Article  PubMed  CAS  Google Scholar 

  • Naja G, Mustin C, Volesky B, Berthelin J (2008) Biosorption study in a mining wastewater reservoir. Int J Environ Poll 34:14–27

    Article  CAS  Google Scholar 

  • Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordination compounds. Part B: Application in coordination organometallicand bioinorganic chemistry. Wiley, New York

    Google Scholar 

  • Nieboer E, Richardson DHS (1980) The replacement of the nondescript term “heavy metals” by a biologically and chemically significant classification of metal ions. Environ Poll B 1(1):3–26

    Google Scholar 

  • Niu H, Volesky B (2003) Characteristics of anionic metal species biosorption with waste crab shells. Hydrometallurgy 71:209–215

    Article  CAS  Google Scholar 

  • Niu H, Xu XS, Wang JH, Volesky B (1993) Removal of lead from aqueous solutions by Penicillium biomass. Biotechnol Bioeng 42:785–787

    Article  PubMed  CAS  Google Scholar 

  • Pagenkopf GK (1978) Introduction to natural water chemistry. Marcel Dekker, New York

    Google Scholar 

  • Pearson RG (1967) Hard and soft acids and bases. Chem Br 3:103–107

    CAS  Google Scholar 

  • Pearson RG, Songstad J (1967) Application of the principle of hard and soft acids and bases to organic chemistry. J Am Chem Soc 89:1827–1836

    Article  CAS  Google Scholar 

  • Plette ACC, Haanstra L, Van Riemsdijk WV (1993) Influence of pH on sorption of cadmium and zinc by soil bacteria. In: Bauda P (ed) Metals-microorganisms relationships and applications—FEMS symposium. Societe Francaise de Microbiologie, Paris, France, p 8

    Google Scholar 

  • Raize O, Argaman Y, Yannai S (2004) Mechanisms of biosorption of different heavy metals by brown marine macroalgae. Biotechnol Bioeng 87:451–458

    Article  PubMed  CAS  Google Scholar 

  • Remacle J (1990) The cell wall and metal binding. In: Volesky B (ed) Biosorption of heavy metals. CRC Press, Boca Raton, pp 82–92

    Google Scholar 

  • Roberts GAF (1992a) Chitin chemistry. Macmillan, London, p 213

    Google Scholar 

  • Roberts GAF (1992b) Chitin cvhemistry. Macmillan, London, p 495

    Google Scholar 

  • Russell JB (1980) General chemistry. McGraw-Hill, New York, pp 314–316

    Google Scholar 

  • Schecher WD (1998) MINEQL+: a chemical equilibrium modeling system, user’s manual, version 4.0. Environmental Research Software, Hallowell, ME, USA

    Google Scholar 

  • Schiewer S (1996) Ion exchange in metal biosorption. Ph.D. thesis, chemical engineering, McGill University, Montreal, Canada

    Google Scholar 

  • Schiewer S, Volesky B (1997) Ionic strength and electrostatic effects in biosorption of divalent metal ions and protons. Environ Sci Technol 31:1863–1871

    Article  CAS  Google Scholar 

  • Schiewer S, Volesky B (2000) Biosorption process for heavy metal removal. In: Lovley DR (ed) Environmental microbe-metal interactions. ASM Press, Washington, pp 329–362

    Google Scholar 

  • Smith JM (1981) Chemical engineering kinetics. McGraw-Hill, New York, pp 310–322

    Google Scholar 

  • Stumm W, Morgan JJ (1970) Aquatic chemistr. Wiley, New York, p 583

    Google Scholar 

  • Stumm W, Morgan JJ (1996a) Aquatic chemistry. Wiley, New York, p 103

    Google Scholar 

  • Stumm W, Morgan JJ (1996b) Aquatic chemistry. Wiley, New York, pp 49–51

    Google Scholar 

  • Tobin JM, Cooper DG, Neufeld RJ (1984) Uptake of metal ions by Rhizopus arrhizus biomass. Appl Environ Microbiol 47:821–824

    PubMed  CAS  Google Scholar 

  • Volesky B (1990) Biosorption by fungal biomass. In: Volesky B (ed) Biosorption of heavy metals. CRC Press, Boca Raton, pp 139–172

    Google Scholar 

  • Volesky B (2003) Sorption and biosorption. BV Sorbex Inc., Montreal, pp 72–80

    Google Scholar 

  • Volesky B, Yang J, Niu H (2001) Biosorption of metal cations and anions. In: SenGupta AK, Marcus Y (eds) Ion exchange and solvent extraction, vol 14. Marcel Dekker, New York, pp 119–168

    Google Scholar 

  • Weppen P, Hornburg A (1995) Calorimetric studies on interactions of divalent-cations and microorganisms or microbial envelopes. Thermochim Acta 269/270:393–404

    Google Scholar 

  • Yamada H, Oshima Y, Miyazaki T (1982) Characterization of fucomannopeptide and mannoprotein from Absidia cylin- drospora. Carbohydr Res 110:113–126

    Article  CAS  Google Scholar 

  • Yang J (2000) Biosorption of uranium and cadmium on Sargassum seaweed biomass. Ph.D. thesis, chemical engineering, McGill University, Montreal, Canada

    Google Scholar 

  • Yang J, Volesky B (1999) Biosorption of uranium by Sargassum biomass. Water Res 33:3357–3363

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghinwa Naja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Naja, G., Volesky, B. (2011). The Mechanism of Metal Cation and Anion Biosorption. In: Kotrba, P., Mackova, M., Macek, T. (eds) Microbial Biosorption of Metals. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0443-5_3

Download citation

Publish with us

Policies and ethics