Skip to main content

Susceptibility to MDS: DNA Repai r and Detoxification Genes

  • Chapter
  • First Online:
The Myelodysplastic Syndromes

Abstract

There are many environmental and genetic factors that are likely to predispose an individual to myelodysplastic syndrome (MDS). Factors influencing the level of DNA damage within a cell are particularly important in conferring disease susceptibility because, if expressed, DNA damage may result in genetic alterations and if these occur in haematopoietic stem cells (HSCs) a clonal disease can arise. Cells harbour detoxification systems which act to minimise the risk of damaging agents reaching the DNA or, if DNA damage occurs, complex repair systems exist to rid the genome of the damage. The bone marrow is at high risk from genotoxic agents and differences in how an individual detoxifies, and repairs damage from, harmful agents are important contributory factors in the development of bone marrow diseases including MDS. A large number of the genes involved in the detoxification and repair processes are polymorphic and may therefore contribute to inter-individual variability in the capacity to manage DNA damage. This chapter reviews our current knowledge of detoxification and DNA repair gene variants in MDS and whether they confer susceptibility to the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali-Osman F et al (1997) Molecular cloning, characterization, and expression in Escherichia coli of full-length cDNAs of three human glutathione S-transferase Pi gene variants. Evidence for differential catalytic activity of the encoded proteins. J Biol Chem 272:10004–10012

    Article  PubMed  CAS  Google Scholar 

  2. Allan JM et al (2001) Polymorphism in glutathione S-transferase P1 is associated with susceptibility to chemotherapy-induced leukemia. Proc Natl Acad Sci U S A 98:11592–11597

    Article  PubMed  CAS  Google Scholar 

  3. Allan JM et al (2004) Genetic variation in XPD predicts treatment outcome and risk of acute myeloid leukemia following chemotherapy. Blood 104:3872–3877

    Google Scholar 

  4. Antoniou AC et al (2007) RAD51 135G®C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies. Am J Hum Genet 81:1186–1200

    Article  PubMed  CAS  Google Scholar 

  5. Araujo FD et al (2002) Variant XRCC3 implicated in cancer is functional in homology-directed repair of double-strand breaks. Oncogene 21:4176–4180

    Article  PubMed  CAS  Google Scholar 

  6. Arruda VR et al (2001) Increased risk for acute myeloid leukaemia in individuals with glutathione S-transferase mu 1 (GSTM1) and theta 1 (GSTT1) gene defects. Eur J Haematol 66:383–388

    Article  PubMed  CAS  Google Scholar 

  7. Atoyebi W et al (1997) Glutathione S-transferase gene deletions in myelodysplasia. Lancet 349:1450–1451

    Article  PubMed  CAS  Google Scholar 

  8. Au WW et al (2003) Functional characterization of polymorphisms in DNA repair genes using cytogenetic challenge assays. Environ Health Perspect 111:1843–1850

    Article  PubMed  CAS  Google Scholar 

  9. Basu T et al (1997) Glutathione S-transferase theta 1 (GSTT1) gene defect in myelodysplasia and acute myeloid leukaemia. Lancet 349:1450

    Article  PubMed  CAS  Google Scholar 

  10. Baumann Kreuziger LM, Steensma DP (2008) RAD51 and XRCC3 polymorphism frequency and risk of myelodysplastic syndromes. Am J Hematol 83:822–823

    Article  Google Scholar 

  11. Bolufer P et al (2007) Profile of polymorphisms of drug-metabolising enzymes and the risk of therapy-related leukaemia. Br J Haematol 136:590–596

    Article  PubMed  CAS  Google Scholar 

  12. Boyer JC et al (1998) Stability of microsatellites in myeloid neoplasias. Cancer Genet Cytogenet 106:54–61

    Article  PubMed  CAS  Google Scholar 

  13. Broberg K et al (2007) Genetic variant of the human homologous recombination-associated gene RMI1 (S455N) impacts the risk of AML/MDS and malignant melanoma. Cancer Lett 258:38–44

    Article  PubMed  CAS  Google Scholar 

  14. Broberg K et al (2009) Association between polymorphisms in RMI1, TOP3A, and BLM and risk of cancer, a case-control study. BMC Cancer 9:140

    Article  PubMed  Google Scholar 

  15. Butkiewicz D et al (1998) Modulation of DNA adduct levels in human mononuclear white blood cells and granulocytes by CYP1A1 CYP2D6 and GSTM1 genetic polymorphisms. Mutat Res 415:97–108

    Article  PubMed  CAS  Google Scholar 

  16. Chen H et al (1996) Increased risk for myelodysplastic syndromes in individuals with glutathione transferase theta 1 (GSTT1) gene defect. Lancet 347:295–297

    Article  PubMed  CAS  Google Scholar 

  17. Chistiakov DA et al (2009) Ligase IV syndrome. Eur J Med Genet 52:373–378

    Article  PubMed  Google Scholar 

  18. Clarkson SG, Wood RD (2005) Polymorphisms in the human XPD (ERCC2) gene, DNA repair capacity and cancer susceptibility: an appraisal. DNA Repair (Amst) 4:1068–1074

    Article  CAS  Google Scholar 

  19. Coles BF et al (2001) Effect of polymorphism in the human glutathione S-transferase A1 promoter on hepatic GSTA1 and GSTA2 expression. Pharmacogenetics 11:663–669

    Article  PubMed  CAS  Google Scholar 

  20. Dahabreh IJ et al (2010) GSTT1 and GSTM1 polymorphisms and myelodysplastic syndrome risk: a systematic review and meta-analysis. Int J Cancer 126:1716–1723

    PubMed  CAS  Google Scholar 

  21. Duell EJ et al (2000) Polymorphisms in the DNA repair genes XRCC1 and ERCC2 and biomarkers of DNA damage in human blood mononuclear cells. Carcinogenesis 21:965–971

    Article  PubMed  CAS  Google Scholar 

  22. Economopoulou P et al (2010) Expression analysis of proteins involved in the non homologous end joining DNA repair mechanism, in the bone marrow of adult de novo myelodysplastic syndromes. Ann Hematol 89:233–239

    Article  PubMed  CAS  Google Scholar 

  23. Fabiani E et al (2009) Polymorphisms of detoxification and DNA repair enzymes in myelodyplastic syndromes. Leuk Res 33:1068–1071

    Article  PubMed  CAS  Google Scholar 

  24. Felix CA et al (1998) Association of CYP3A4 genotype with treatment-related leukemia. Proc Natl Acad Sci U S A 95:13176–13181

    Article  PubMed  CAS  Google Scholar 

  25. Fishel R et al (1993) The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75:1027–1038

    Article  PubMed  CAS  Google Scholar 

  26. Garte S et al (2001) Metabolic gene polymorphism frequencies in control populations. Cancer Epidemiol Biomarkers Prev 10:1239–1248

    PubMed  CAS  Google Scholar 

  27. Haase D et al (2002) Increased risk for therapy-associated hematologic malignancies in patients with carcinoma of the breast and combined homozygous gene deletions of glutathione transferases M1 and T1. Leuk Res 26:249–254

    Article  PubMed  CAS  Google Scholar 

  28. Harada S et al (1998) Microsatellite instability is rare in the clinical course of myelodysplastic syndrome studied with DNA from fresh and paraffin-embedded tissues. J Cancer Res Clin Oncol 124:231–235

    Article  PubMed  CAS  Google Scholar 

  29. Hasselbach L et al (2005) Characterisation of the promoter region of the human DNA-repair gene Rad51. Eur J Gynaecol Oncol 26:589–598

    PubMed  CAS  Google Scholar 

  30. Hayashi S et al (1991) Genetic polymorphisms in the 5′-flanking region change transcriptional regulation of the human cytochrome P450IIE1 gene. J Biochem 110:559–565

    PubMed  CAS  Google Scholar 

  31. Hung RJ et al (2005) Genetic polymorphisms in the base excision repair pathway and cancer risk: a HuGE review. Am J Epidemiol 162:925–942

    Article  PubMed  Google Scholar 

  32. Izzotti A et al (2001) Increased DNA alterations in atherosclerotic lesions of individuals lacking the GSTM1 genotype. FASEB J 15:752–757

    Google Scholar 

  33. Jankowska AM et al (2008) Base excision repair dysfunction in a subgroup of patients with myelodysplastic syndrome. Leukemia 22:551–558

    Article  PubMed  CAS  Google Scholar 

  34. Kaneko H et al (1995) Microsatellite instability is an early genetic event in myelodysplastic syndrome. Blood 86:1236–1237

    PubMed  CAS  Google Scholar 

  35. Kaneko H et al (1996) Microsatellite instability is an early genetic event in myelodysplastic syndrome but is infrequent and not associated with TGF-beta receptor type II gene mutation. Leukemia 10:1696–1699

    PubMed  CAS  Google Scholar 

  36. Klungland A, Bjelland S (2007) Oxidative damage to purines in DNA: role of mammalian Ogg1. DNA Repair (Amst) 6:481–488

    Google Scholar 

  37. Knudsen LE et al (2001) Risk assessment: the importance of genetic polymorphisms in man. Mutat Res 482:83–88

    Article  PubMed  CAS  Google Scholar 

  38. Kohno T et al (1998) Genetic polymorphisms and alternative splicing of the hOGG1 gene, that is involved in the repair of 8-hydroxyguanine in damaged DNA. Oncogene 16:3219–3225

    Article  PubMed  CAS  Google Scholar 

  39. Krskova-Honzatkova L et al (2002) Microsatellite instability in hematological malignancies. Leuk Lymphoma 43:1979–1986

    Article  PubMed  CAS  Google Scholar 

  40. Kuehl P et al (2001) Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 27:383–391

    Article  PubMed  CAS  Google Scholar 

  41. Kuptsova N et al (2007) Polymorphisms in DNA repair genes and therapeutic outcomes of AML patients from SWOG clinical trials. Blood 109:3936–3944

    Google Scholar 

  42. Kuramoto K et al (2002) Chromosomal instability and radiosensitivity in myelodysplastic syndrome cells. Leukemia 16:2253–2258

    Article  PubMed  CAS  Google Scholar 

  43. Larson RA et al (1999) Prevalence of the inactivating 609C®T polymorphism in the NAD(P)H:quinone oxidoreductase (NQO1) gene in patients with primary and therapy-related myeloid leukemia. Blood 94:803–807

    Google Scholar 

  44. Li Y et al (2009) Effect of the XRCC1 codon 399 polymorphism on the repair of vinyl chloride metabolite-induced DNA damage. J Carcinog 8:14

    Article  PubMed  Google Scholar 

  45. Lindh AR et al (2006) Mitotic defects in XRCC3 variants T241 M and D213 N and their relation to cancer susceptibility. Hum Mol Genet 15:1217–1224

    Article  PubMed  CAS  Google Scholar 

  46. Liu TC et al (2002) Polymorphism analysis of CYP3A5 in myeloid leukemia. Oncol Rep 9:327–329

    PubMed  CAS  Google Scholar 

  47. Lunn RM et al (1999) XRCC1 polymorphisms: effects on aflatoxin B1-DNA adducts and glycophorin A variant frequency. Cancer Res 59:2557–2561

    PubMed  CAS  Google Scholar 

  48. Ma SK et al (2000) Absence of microsatellite instability in primary myelodysplastic syndrome. Int J Mol Med 5:159–163

    PubMed  CAS  Google Scholar 

  49. Maeck L et al (2000) Genetic instability in myelodysplastic syndrome: detection of microsatellite instability and loss of heterozygosity in bone marrow samples with karyotype alterations. Br J Haematol 109:842–846

    Article  PubMed  CAS  Google Scholar 

  50. Monaco R et al (2007) Conformational effects of a common codon 399 polymorphism on the BRCT1 domain of the XRCC1 protein. Protein J 26:541–546

    Article  PubMed  CAS  Google Scholar 

  51. Moran JL et al (1999) A potential mechanism underlying the increased susceptibility of individuals with a polymorphism in NAD(P)H:quinone oxidoreductase 1 (NQO1) to benzene toxicity. Proc Natl Acad Sci U S A 96:8150–8155

    Google Scholar 

  52. Naoe T et al (2000) Analysis of genetic polymorphism in NQO1, GST-M1, GST-T1 and CYP3A4 in 469 Japanese patients with therapy-related leukemia/myelodysplastic syndrome and de novo acute meyloid leukemia. Clin Can Res 6:4091–4095

    Google Scholar 

  53. Nebert DW, Dalton TP (2006) The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat Rev Cancer 6:947–960

    Article  PubMed  CAS  Google Scholar 

  54. Nelson HH et al (2002) The XRCC1 Arg399Gln polymorphism, sunburn, and non-melanoma skin cancer: evidence of gene-environment interaction. Cancer Res 62:152–155

    PubMed  CAS  Google Scholar 

  55. Niedernhofer LJ (2008) DNA repair is crucial for maintaining hematopoietic stem cell function. DNA Repair (Amst) 7:523–529

    Article  PubMed  CAS  Google Scholar 

  56. Novotna B et al (2008) DNA instability in low-risk myelodysplastic syndromes: refractory anemia with or without ring sideroblasts. Hum Mol Genet 17:2144–2149

    Article  PubMed  CAS  Google Scholar 

  57. Novotna B et al (2009) Oxidative DNA damage in bone marrow cells of patients with low-risk myelodysplastic syndrome. Leuk Res 33:340–343

    Article  PubMed  CAS  Google Scholar 

  58. Offman J et al (2004) Defective DNA mismatch repair in acute myeloid leukemia/myelodysplastic syndrome after organ transplantation. Blood 104:822–828

    Google Scholar 

  59. Okada M et al (1997) Glutathione S-transferase theta 1 gene (GSTT1) defect in Japanese patients with myelodysplastic syndromes. Int J Hematol 66:393–394

    Article  PubMed  CAS  Google Scholar 

  60. Peddie CM et al (1997) Oxidative DNA damage in CD34+ myelodysplastic cells is associated with intracellular redox changes and elevated plasma tumour necrosis factor-alpha concentration. Br J Haematol 99:625–631

    Article  PubMed  CAS  Google Scholar 

  61. Pemble S et al (1994) Human glutathione S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem J 300 (Pt 1):271–276

    Google Scholar 

  62. Preudhomme C et al (1997) Glutathione S transferase theta 1 gene defects in myelodysplastic syndromes and their correlation with karyotype and exposure to potential carcinogens. Leukemia 11:1580–1582

    Article  PubMed  CAS  Google Scholar 

  63. Rebbeck TR et al (1998) Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J Natl Cancer Inst 90:1225–1229

    Google Scholar 

  64. Rothman N et al (1997) Benzene poisoning, a risk factor for hematological malignancy, is associated with the NQO1 609C®T mutation and rapid fractional excretion of chlorzoxazone. Cancer Res 57:2839–2842

    PubMed  CAS  Google Scholar 

  65. Rund D et al (2005) Therapy-related leukemia: clinical characteristics and analysis of new molecular risk factors in 96 adult patients. Leukemia 19:1919–1928

    Article  PubMed  CAS  Google Scholar 

  66. Sasai Y et al (1999) Genotype of glutathione S-transferase and other genetic configurations in myelodysplasia. Leuk Res 23:975–981

    Article  PubMed  CAS  Google Scholar 

  67. Seedhouse C, Russell N (2007) Advances in the understanding of susceptibility to treatment-related acute myeloid leukaemia. Br J Haematol 137:513–529

    Article  PubMed  CAS  Google Scholar 

  68. Seedhouse C et al (2002) The genotype distribution of the XRCC1 gene indicates a role for base excision repair in the development of therapy-related acute myeloblastic leukemia. Blood 100:3761–3766

    Google Scholar 

  69. Seedhouse C et al (2004) Polymorphisms in genes involved in homologous recombination repair interact to increase the risk of developing acute myeloid leukemia. Clin Cancer Res 10:2675–2680

    Article  PubMed  CAS  Google Scholar 

  70. Seidegard J et al (1988) Hereditary differences in the expression of the human glutathione transferase active on trans-stilbene oxide are due to a gene deletion. Proc Natl Acad Sci U S A 85:7293–7297

    Article  PubMed  CAS  Google Scholar 

  71. Sheikhha MH et al (2002) High level of microsatellite instability but not hypermethylation of mismatch repair genes in therapy-related and secondary acute myeloid leukaemia and myelodysplastic syndrome. Br J Haematol 117:359–365

    Article  PubMed  CAS  Google Scholar 

  72. Shen MR et al (1998) Nonconservative amino acid substitution variants exist at polymorphic frequency in DNA repair genes in healthy humans. Cancer Res 58:604–608

    PubMed  CAS  Google Scholar 

  73. Shields PG et al (1993) Polycyclic aromatic hydrocarbon-DNA adducts in human lung and cancer susceptibility genes. Cancer Res 53:3486–3492

    PubMed  CAS  Google Scholar 

  74. Siegel D et al (1999) Genotype-phenotype relationships in studies of a polymorphism in NAD(P)H:quinone oxidoreductase 1. Pharmacogenetics 9:113–121

    Article  PubMed  CAS  Google Scholar 

  75. Singh DK et al (2009) Roles of RECQ helicases in recombination based DNA repair, genomic stability and aging. Biogerontology 10:235–252

    Article  PubMed  CAS  Google Scholar 

  76. Spurdle AB et al (2002) The CYP3A4*1B polymorphism has no functional significance and is not associated with risk of breast or ovarian cancer. Pharmacogenetics 12:355–366

    Article  PubMed  CAS  Google Scholar 

  77. Stavropoulou C et al (2008) Low frequency of the glutathione-S-transferase T1-null genotype in patients with primary myelodysplastic syndrome and 5q deletion. Leukemia 22:1643–1646

    Article  PubMed  CAS  Google Scholar 

  78. Sutton JF et al (2004) Increased risk for aplastic anemia and myelodysplastic syndrome in individuals lacking glutathione S-transferase genes. Pediatr Blood Cancer 42:122–126

    Article  PubMed  Google Scholar 

  79. Traver RD et al (1992) NAD(P)H:quinone oxidoreductase gene expression in human colon carcinoma cells: characterization of a mutation which modulates DT-diaphorase activity and mitomycin sensitivity. Cancer Res 52:797–802

    PubMed  CAS  Google Scholar 

  80. Tsabouri SE et al (2000) Increased prevalence of GSTM(1) null genotype in patients with myelodysplastic syndrome: a case-control study. Acta Haematol 104:169–173

    Article  PubMed  CAS  Google Scholar 

  81. Varkonyi J et al (2008) Glutathione S-transferase enzyme polymorphisms in a Hungarian myelodysplasia study population. Pathol Oncol Res 14:429–433

    Article  PubMed  Google Scholar 

  82. Vodicka P et al (2004) Genetic polymorphisms in DNA repair genes and possible links with DNA repair rates, chromosomal aberrations and single-strand breaks in DNA. Carcinogenesis 25:757–763

    Article  PubMed  CAS  Google Scholar 

  83. Wang WW et al (2001) A single nucleotide polymorphism in the 5′ untranslated region of RAD51 and risk of cancer among BRCA1/2 mutation carriers. Cancer Epidemiol Biomarkers Prev 10:955–960

    PubMed  CAS  Google Scholar 

  84. Wang Y et al (2003) From genotype to phenotype: correlating XRCC1 polymorphisms with mutagen sensitivity. DNA Repair (Amst) 2:901–908

    Google Scholar 

  85. Westlind A et al (1999) Interindividual differences in hepatic expression of CYP3A4: relationship to genetic polymorphism in the 5′-upstream regulatory region. Biochem Biophys Res Commun 259:201–205

    Article  PubMed  CAS  Google Scholar 

  86. Wiencke JK et al (1990) Human glutathione S-transferase deficiency as a marker of susceptibility to epoxide-induced cytogenetic damage. Cancer Res 50:1585–1590

    PubMed  CAS  Google Scholar 

  87. Wiencke JK et al (1995) Gene deletion of glutathione S-transferase theta: correlation with induced genetic damage and potential role in endogenous mutagenesis. Cancer Epidemiol Biomarkers Prev 4:253–259

    PubMed  CAS  Google Scholar 

  88. Worrillow LJ et al (2003) An intron splice acceptor polymorphism in hMSH2 and risk of leukemia after treatment with chemotherapeutic alkylating agents. Clin Cancer Res 9:3012–3020

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the Nottinghamshire Leukaemia Appeal and the James Skillington Challenge for funding for their research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Seedhouse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Seedhouse, C., Russell, N. (2011). Susceptibility to MDS: DNA Repai r and Detoxification Genes. In: Várkonyi, J. (eds) The Myelodysplastic Syndromes. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0440-4_2

Download citation

Publish with us

Policies and ethics