Skip to main content

Micronutrient-Efficient Genotypes for Crop Yield and Nutritional Quality in Sustainable Agriculture

  • Chapter
  • First Online:
Sustainable Agriculture Volume 2

Abstract

About 4 billion people will be added onto the present population by 2050. To meet further demand for food, agricultural production should increase on the existing land. Since the Green Revolution, higher crop production per unit area has resulted in greater depletion of soil phytoavailable micronutrients while less attention has been paid to micronutrients fertilization. Now, micronutrient deficiency has become a limiting factor for crop productivity in many agricultural lands worldwide. Furthermore, many food systems in developing countries can not provide sufficient micronutrient content to meet the demands of their citizens, especially low-income families. There are several solutions such as soil and foliar fertilization, crop systems, application of organic amendments to correct micronutrients deficiency and to increase their density in edible parts of plants. This review article presents (1) agronomic approaches to improve crop yield and micronutrient content of food crops, and (2)  genotypic variation in uptake and accumulation of micronutrients. Considering ecological concerns, cultivation and breeding of micronutrient-efficient genotypes in combination with proper agronomic management practices appear as the most sustainable and cost-effective solution for alleviating food-chain micronutrient deficiency. Micronutrient-efficient genotypes could provide a number of benefits such as reductions in the use of fertilizers, improvements in seedling vigor, and resistance to biotic and abiotic stresses. Using bioavailable micronutrient-dense staple crop cultivars can also be used to improve the micronutrient nutritional status of human.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedin M.J., Cotter-Howells J., Meharg A.A. (2002) Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water, Plant Soil 240, 311–319.

    CAS  Google Scholar 

  • ACC/SCN (1992) Second Report on the World Nutrition Situation, Vol. I, Global and Regional Results, in: Garcia M., Mason J. (Eds.), pp. 1–80. ACC/SCN, United Nations, Geneva, Switzerland.

    Google Scholar 

  • ACC/SCN (1997) United Nations Report on World Nutrition. The 3rd Report. Chapter 2: Micronutrients, pp. 19–52, ACC/SCN, United Nations, Geneva, Switzerland.

    Google Scholar 

  • ACC/SCN (2000) Ending malnutrition by 2020: An agenda for change in the millennium. Commission Report, pp. 1–110, ACC/SCN, United Nations, Geneva, Switzerland.

    Google Scholar 

  • Afyuni M., Khoshgoftarmanesh A.H., Dorostkar V., Moshiri R. (2007) Zinc and Cadmium content in fertilizers commonly used in Iran. International Conference of Zinc-Crops, May 24–28, Istanbul, Turkey.

    Google Scholar 

  • Ahmed A., Anjum F.M., Rehman S.Ur., Randhava M.A., Farooq U. (2008) Bioavailability of calcium, iron and zinc fortified whole wheat flour Chapatti, Plant Food. Hum. Nutr. 63, 7–13.

    CAS  Google Scholar 

  • Alam S.M. (1999) Nutrient uptake by plants under stress conditions, in: Pessarakli M. (Ed.), Handbook of plant and crops stress, Marcel Dekker, New York, pp. 285–313.

    Google Scholar 

  • Alexandratos N. (1995) World Agriculture Towards 2010: An FAO Study, John Wiley and Sons, Chichester, West Sussex.

    Google Scholar 

  • Allen L.H. (2000) Ending Hidden Hunger: the History of Micronutrient Deficiency Control. Background Analysis for the World Bank-UNICEF Nutrition Assessment Project World Bank.

    Google Scholar 

  • Alvarez J.M., Gonzalez D. (2006) Zinc transformations in neutral soil and zinc efficiency in maize fertilization, J. Agr. Food Chem. 54, 9488–9495.

    CAS  Google Scholar 

  • Alvey S., Bagayoko M., Neumann G., Buerkert A. (2001) Cereal/legume rotations affect chemical properties and biological activities in two West African soils, Plant Soil 231, 45–54.

    CAS  Google Scholar 

  • Andersson A. (1983) Composted municipal refuse as fertilizer and soil conditioner. Effects on the contents of heavy metals in soil and plant, as compared to sewage sludge, manure and commercial fertilizers, in: Berglund S., Davis R.D., L’Hermite P. (Eds.), Utilization of Sewage Sludge on Land: Rates of Application and Long-Term Effects of Metals, D. Reidel Publ., Dordrecht, pp. 146–156.

    Google Scholar 

  • Atta S.K., Mohammed S.A., van Cleemput O., Zayed A. (1996) Transformations of iron and manganese under controlled Eh, Eh-pH conditions and additions of organic matter, Soil Technol. 9, 223–237.

    Google Scholar 

  • Bagci S.A., Ekiz H., Yilmaz A., Cakmak I. (2007) Effects of zinc deficiency and drought on grain yield of field-grown wheat cultivars in Central Anatolia, J. Agron. Crop Sci. 193, 198–206.

    CAS  Google Scholar 

  • Baligar V.C., Duncan R.R., Fageria N.K. (1990) Soil-plant interactions on nutrient use efficiency in plants. An overview, in: Baligar V.C., Duncan R.R. (Eds.), Crops as enhancers of nutrient use, Academic Press, San Diego, California, pp. 351–373.

    Google Scholar 

  • Baligar V.C., Fageria N.K., He Z.L. (2001) Nutrient use efficiency in plants, Commun. Soil Sci. Plant Anal. 32, 921–950.

    CAS  Google Scholar 

  • Barker A.V., Pilbeam D.J. (2007) Handbook of Plant Nutrition, Taylor and Francis Group Press, Boca Raton, FL.

    Google Scholar 

  • Barnes J.P., Putnam A.R. (1986) Evidence for allelopathy by residues and aqueous extracts of rye (Secale cereale L.), Weed Sci. 34, 384–390.

    Google Scholar 

  • Barrier-Guillot B., Casado P., Maupetit P., Jondreville C., Gatel F. (1996) Wheat phosphorus availability. In vitro Study; Factors affecting endogenous phytasic activity and phytic phosphorus content, J. Sci. Food Agr. 70, 62–68.

    CAS  Google Scholar 

  • Bhowmik P.C., Doll J.D. (1984) Allelopathic effects of annual weed residues on growth and nutrient uptake of corn and soybeans, Agron. J. 76, 383–388.

    Google Scholar 

  • Black R. (2003) Micronutrient deficiency — an underlying cause for morbidity and mortality, B. World Health Organ. 2003, 81–79.

    Google Scholar 

  • Blair G. (1993) Nutrient efficiency-what do we really mean, in: Randall P.J., Delhaize E., Richards R.A., Munns R. (Eds.), Genetic aspects of mineral nutrition, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 205–213.

    Google Scholar 

  • Blum A. (1988) Plant Breeding for Stress environments, CRC Press, Florida, p. 212.

    Google Scholar 

  • Borlaug N.E., Dowswell C.R. (1993) Fertilizer: To nourish infertile soil that feeds a fertile population that crowds a fragile world, Fertil. News 387, 11–20.

    Google Scholar 

  • Bouis H. (1996) Enrichment of food staples through plant breeding: A new strategy for fighting micronutrient malnutrition, Nutr. Rev. 54, 131–137.

    CAS  Google Scholar 

  • Brabin B.J., Coulter J.B.S. (2003) Nutrition-associated disease, in: Cook G.C., Zumla A.I. (Eds.), Manson’s tropical diseases, Saunders, London, pp. 561–580.

    Google Scholar 

  • Brady N.C., Weil R.R. (2002) The nature and properties of soils, 13th edition, Prentice Hall, Upper Saddle River, New Jersey.

    Google Scholar 

  • Brennan R.F. (1992) Effect of zinc fertilizer on take-all and grain yield of wheat grown on zinc deficient soils of the esperance region, West. Aust. Fer. Res. 31, 215–216.

    CAS  Google Scholar 

  • Brennan R.F., Bolland M.D.A. (2006) Residual values of soil-applied zinc fertiliser for early vegetative growth of six crop species, Aust. J. Exp. Agr. 46, 1341–1347.

    CAS  Google Scholar 

  • Broadley M.R., White P.J., Bryson R.J., Meacham M.C., Bowen H.C., Johnson S.E., Hawkesford M.J., McGrath S.P., Zhao F.J., Breward N., Harriman M., Tucker M. (2006) Biofortification of UK food crops with selenium, Proc. Nutr. Soc. 65, 169–181.

    PubMed  CAS  Google Scholar 

  • Bronick C.J., Lal R. (2005) Manuring and rotation effects on soil organic carbon concentration for different aggregate size fractions on two soils in northeastern Ohio, USA, Soil Till. Res. 81, 239–252.

    Google Scholar 

  • Brown L.R. (1997) Facing the challenge of food scarcity: Can we raise grain yields fast enough? in: Ando T., Fujita K., Mae T., Matsumoto H., Mori S., Sekiya J. (Eds.), Plant nutrition for sustainable food production and environment, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 15–24.

    Google Scholar 

  • Buso G.S.C., Bliss F.A. (1988) Variability among lettuce cultivars grown at two levels of available phosphorus, Plant Soil 111, 67–73.

    CAS  Google Scholar 

  • Buyckx M. (1993) The international community’s commitment to combating micronutrient deficiencies, Food Nutr. Agr. 7, 2–7.

    Google Scholar 

  • Byrnes B.H., Bumb B.L. (1998) Population growth, food production and nutrient requirements, in: Rengel Z. (Ed.), Journal of Crop Production. The Haworth Press, New York, pp. 1–27.

    Google Scholar 

  • Cai S., Yue L., Jin T., Nordberg G. (1998) Renal dysfunction from cadmium contamination of irrigation water: Dose-response analysis in a Chinese population, B. World Health Organ. 76, 153–159.

    CAS  Google Scholar 

  • Cakmak I. (2002) Plant nutrition research: Priorities to meet human needs for food in sustainable ways, Plant Soil 247, 3–24.

    CAS  Google Scholar 

  • Cakmak I. (2008) Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil 302, 1–17.

    CAS  Google Scholar 

  • Cakmak I., Marschner H. (1986) Mechanism of phosphate induced zinc deficiency in cotton. I. Zinc deficiency-enhanced uptake rate of phosphorus, Physiol. Plant 68, 483–490.

    CAS  Google Scholar 

  • Cakmak I., Sari N., Marschner H., Ekiz H., Kalayci M., Yilmaz A., Braun H.J. (1996) Phytosiderophore release in bread and durum wheat genotypes differing in zinc efficiency, Plant Soil 180, 183–189.

    CAS  Google Scholar 

  • Cakmak I., Ekiz H., Yilmaz A., Torun B., Koleli N., Gultekin I., Alkan A., Eker S. (1997a) Differential response of rye, triticale, bread and durum wheats to zinc deficiency in calcareous soils, Plant Soil 188, 1–10.

    CAS  Google Scholar 

  • Cakmak I., Derici R., Torun B., Tolay I., Braun H.J., Schlegel R. (1997b) Role of rye chromosomes in improvement of zinc efficiency in wheat and triticale, Plant Soil 196, 249–253.

    CAS  Google Scholar 

  • Cakmak I., Torun B., Erenoglu B., Oztürk L., Marschner H., Kalayci M., Ekiz H., Yilmaz A. (1998) Morphological and physiological differences in cereals in response to zinc deficiency, Euphytica 100, 349–357.

    CAS  Google Scholar 

  • Caradus J.R. (1990) Mechanisms improving nutrient use by crop and herbage legumes, in: Baligar V.C., Duncan R.R. (Eds.), Crops as enhancers of nutrient use, San Diego, Academic Press, California, pp. 253–311.

    Google Scholar 

  • Carr A.J.H., Stoddart J.L. (1963) The ameliorating effect of zinc on symptoms of phyllody virus in white clover, Ann. Appl. Biol. 51, 259–268.

    CAS  Google Scholar 

  • Cary E.E., Norvell W.A., Grunes D.L., Welch R.M., Reid W.S. (1994) Iron and Manganese Accumulation by the brz Pea Mutant Grown in Soils, Agron. J. 86, 938–41.

    CAS  Google Scholar 

  • Chaney R.L., Ryan J.A. (1993) Heavy metals and toxic organic pollutants in MSW-composts: Research results on phytoavailability, bioavailability, etc., in: Hoitink H.A.J., Keener H.M. (Eds.), Science and Engineering of Composting: Design, Environmental, Microbiological and Utilization Aspects, Ohio State Univ., Columbus, OH, pp. 451–506.

    Google Scholar 

  • Chaney R.L., Reeves P.G., Ryan J.A., Simmons R.W., Welch R.M., Angle J.S. (2004) An improved understanding of soil Cd risk to humans and low cost methods to remediate soil Cd risks, BioMetals 17, 549–553.

    PubMed  CAS  Google Scholar 

  • Christian P., West K.P. Jr. (1998) Interactions between zinc vitamin A: An update, Am. J. Clin. Nutr. 68 (Suppl.), S435–S441.

    Google Scholar 

  • Clark R.B. (1990) Physiology of cereals for mineral nutrient uptake, use, and efficiency, in: Baligar V.C., Duncan R.R. (Eds.), Crops as enhancers of nutrient use, Academic Press, San Diego, California, pp. 131–209.

    Google Scholar 

  • Cobiac L., Baghurst K. (1993) Iron status and dietary iron intakes of Australians, CSIRO Astralia, Adelaide, SA.

    Google Scholar 

  • Combs G.F. Jr., Welch R.M. (1998) Creating Healful Food Systems: Linking Agriculture to Human Needs, Cornell International Institute for Food, Agriculture and Development, Cornell University, Ithaca, NY, pp. 1–34.

    Google Scholar 

  • Combs G.F. Jr., Welch R.M., Duxbury J.M., Uphoff N.T., Nesheim M.C. (1996) Food-Based Approaches to Preventing Micronutrient Malnutrition: an International Research Agenda. Cornell International Institute for Food, Agriculture, and Development, Cornell University, Ithaca, NY, pp. 1–68.

    Google Scholar 

  • Cottenie A., Kang B.T., Kieken, S.L., Sajjapongse A. (1981) Micronutrient status, in: Greenland D.J. (Ed.), Characterization of Soils, Clarendon, Oxford, UK, pp. 149–163.

    Google Scholar 

  • DellaPenna D. (1999) Nutritional genomics: manipulating plant micronutrients to improve human health, Science 285, 375–379.

    PubMed  CAS  Google Scholar 

  • Diekow J.J., Mielniczuk J., Knicker H., Bayer C., Dick D.P., Kögel-Knabner I. (2005) Soil C and N stocks as affected by cropping systems and nitrogen fertilisation in a southern Brazil Acrisol managed under no-tillage for 17 years, Soil Till. Res. 81, 87–95.

    Google Scholar 

  • Donald C.M., Prescott J.A. (1975) Trace elements in Australian crop and pasture production, in: Nicholas D.J.D., Egan R.A. (Eds.), Trace Elements in Soil-Plant-Animal Systems, Academic Press, New York, pp. 7–37.

    Google Scholar 

  • Drakakaki G., Marcel S., Glahn R.P., Lund E.K., Pariagh S., Fischer F., Christou P., Stoger E. (2005) Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron, Plant Mol. Biol. 59, 869–880.

    CAS  Google Scholar 

  • Eghball B., Ginting D., Gilley J.E. (2004) Residual effects of manure and compost applications on corn production and soil properties, Agron. J. 96, 442–447.

    Google Scholar 

  • Erdal I., Yilmaz A., Taban S., Eker S., Torun B., Cakmak I. (2002) Phytic acid and phosphorus concentrations in seeds of wheat cultivars grown with and without zinc fertilization, J. Plant Nutr. 25, 113–127.

    CAS  Google Scholar 

  • Fageria N.K. (2000a) Adequate and toxic levels of boron for rice, common bean, corn, soybean and wheat production in Cerrado soil, R. Bras. Eng. Agr. Ambiental. 4, 57–62.

    Google Scholar 

  • Fageria N.K. (2000b) Adequate and toxic levels of zinc for rice, common bean, corn, soybean and wheat production in Cerrado soil, R. Bras. Eng. Agr. Ambiental. 4, 390–395.

    Google Scholar 

  • Fageria N.K., Baligar V.C. (2003) Methodology for evaluation of lowland rice genotypes for nitrogen use efficiency, J. Plant Nutr. 26, 1315–1333.

    CAS  Google Scholar 

  • Fageria N.K., Barbosa Filho M.P. (2001) Nitrogen use efficiency in lowland rice genotypes, Commun. Soil Sci. Plan. 32, 2079–2089.

    CAS  Google Scholar 

  • Fageria N.K., Baligar V.C., Clark R.B. (2002) Micronutrients in crop production, Adv. Agron. 77, 185–268.

    CAS  Google Scholar 

  • Fageria N.K., Baligar V.C., Li Y.C. (2008) The role of nutrient efficient plants in improving crop yields in the twenty first Century, J. Plant Nutr. 31, 1121–1157.

    CAS  Google Scholar 

  • FAO (Food and Agriculture Organization) (1999) Yearbook of Fertilizers, Food and Agriculture Organization of the United Nations, Rome, Italy.

    Google Scholar 

  • Fernandez G.C.J. (1991) Analysis of cultivar × environment interaction by stability estimates, HortScience 26, 947–950.

    Google Scholar 

  • Fernandez G.C.J., Chen H.K., Miller J.C. Jr. (1989) Adaptation and environmental sensitivity of mungben genotypes evaluated in the International Mungbean Nursery, Euphytica 41, 253–261.

    Google Scholar 

  • Fischer R.A., Maurer R. (1978) Drought resistance in spring wheat cultivars. I. Grain yield responses, Aust. J. Agr. Res. 29, 897–912.

    Google Scholar 

  • Fleming G.A., Mordenti A. (1991) The Production of Animal Wastes, European Conference on Environment and Agriculture, Stock Farming in Europe, Mantua, Italy.

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (2004) Undernourishment around the world, in: The state of food insecurity in the world 2004, The Organization, Rome.

    Google Scholar 

  • Foy C.D. (1984) Physiological effects of hydrogen, aluminum and manganese toxicities in acid soils, in: Adams F. (Ed.), Soil Acidity and Liming, 2nd ed., American Society of Agronomy, Madison, WI, pp. 57–97.

    Google Scholar 

  • Foy C.D. (1992) Soil chemical factors limiting plant growth, Limitations to Plant Root Growth, in: Hatfield J.L., Stewart B.A. (Eds.), Adv. Soil Sci. 19, 97–149.

    CAS  Google Scholar 

  • Frey K.J. (1964) Adaption reaction of oat strains selected under stress and non-stress environmental condition, Crop Sci. 4, 55–58.

    Google Scholar 

  • Frossard E., Bucher M., Mächler F., Mozafar A., Hurrell R. (2000) Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition, J. Sci. Food Agr. 80, 861–879.

    CAS  Google Scholar 

  • Galrão E.Z. (1999) Methods of copper application and evaluation of its availability for soybean grown on a Cerrado red-yellow latosol, R. Bras. Ci. Solo. 23, 265–272.

    Google Scholar 

  • Gao M., Che F.C., Wei C.F., Xie D.T., Yang J.H. (2000) Effect of long-term application of manures on forms of Fe, Mn, Cu and Zn in purple paddy soil, Plant Nutr. Fertil. Sci. 6, 11–17.

    Google Scholar 

  • Garcia-Casal M.N., Layrisse M., Solano L., Baron M.A., Arguello F., LIovera D., Ramirez J., Leets I., Tropper E. (1998) Vitamin A and beta carotene can improve nonheme iron absorption from rice, wheat and corn by humans, J. Nutr. 128, 646–650.

    CAS  Google Scholar 

  • Gargari B.P., Mahboob S., Razavieh S.V. (2007) Content of phytic acid and its mole ratio to zinc in flour and breads consumed in Tabriz, Iran, Food Chem. 100, 1115–1119.

    CAS  Google Scholar 

  • Gerloff, Gabelman (1983) Genetic basis of inorganic plant nutrition, in: Lauchli A., Bieleski R.L. (Eds.), Inorganic Plant Nutrition. Encyclopedia and Plant Physiology New Series, Springer Verlag, New York, NY, Vol. 15B, pp. 453–480.

    CAS  Google Scholar 

  • Gibson R.S. (1994) Zinc nutrition in developing countries, Nutr. Res. Rev. 7, 151–173.

    PubMed  CAS  Google Scholar 

  • Gibson R.S. (2006) Zinc: the missing link in combating micronutrient malnutrition in developing countries, Proc. Nutr. Soc. 65, 51–60.

    PubMed  CAS  Google Scholar 

  • Gibson R.S., Sazawal S., Peerson J.M. (2003) Design and quality control issues related to dietary assessment, randomized clinical trials and meta-analysis of field-based studies in developing countries, J. Nutr. 133 (5 Suppl. 1), 1569s–1573s.

    Google Scholar 

  • Gibson R.S., Hess S.Y., Hotz C., Brown. K.H. (2008) Indicators of zinc status at the population level: a review of the evidence, Brit. J. Nutr. 99 (Suppl. 3), S14–S23.

    PubMed  CAS  Google Scholar 

  • Glass A.D.M. (1989) Physiological mechanisms involved with genotypic differences in ion adsorption and utilization, HortScience 24, 559–564.

    Google Scholar 

  • Godwin D.C., Blair G.J. (1991) Phosphorus efficiency in pasture species. V. A comparison of white clover accessions, Aust. J. Agr. Res. 42, 531–540.

    Google Scholar 

  • Gonzalez D., Obrador A., Alvarez J.M. (2007) Behavior of zinc from six organic fertilizers applied to a navy bean crop grown in a calcareous soil, J. Agr. Food Chem. 55, 7084–7092.

    CAS  Google Scholar 

  • Goto F., Yoshihara T., Shigemoto N., Toki S., Takaiwa F. (1999) Iron fortification of rice seed by the soybean ferritin gene, Nat. Biotechnol. 17, 282–286.

    CAS  Google Scholar 

  • Goto K., Tanimoto Y., Tamura T., Mochida K., Arai D., Asahara M., Suzuki M., Tanaka H., Inagaki K. (2002) Identification of thermoacidophilic bacteria and a new Alicyclobacillus genomic species isolated from acidic environments in Japan, Extremophiles 6, 333–340.

    PubMed  CAS  Google Scholar 

  • Gourley C.J.P., Allan D.L., Russelle M.P. (1994) Plant nutrient efficiency: A comparison of definitions and suggested improvement, Plant Soil 158, 29–37.

    CAS  Google Scholar 

  • Graham R.D. (1984) Breeding for nutritional characteristics in cereals, in: Tinker P.B., Lauchi A. (Eds.), Advances in plant nutrition, Vol. 1, Praeger Publisher, New York, pp. 57–102.

    Google Scholar 

  • Graham R.D., Webb M.J. (1991) Micronutirents and disease resistance and tolerance in plants, in: Mortvadt J.J., Cox F.R., Shuman L.M., Welch R.M. (Eds.), Micronutrients in Agriculture, 2nd ed., Soil Scienc Society American Book series No. 4, Madison, WI, pp. 329–370.

    Google Scholar 

  • Graham R.D., Rengel Z. (1993) Genotypic variation in zinc uptake and utilization by plants, in: Robson A.D. (Ed.), Zinc in Soils and Plants, Kluwer Academic Publishers, Dordrecht, pp. 107–118.

    Google Scholar 

  • Graham R.D., Welch R.M. (1996) Breeding for staple-food crops with high micronutrient density. Agricultural Strategies for Micronutrients. Working Paper No. 3, International Food Policy Research Institute, Washington, DC.

    Google Scholar 

  • Graham R.D., Ascher J.S., Hynes S.C. (1992) Selecting zinc efficient cereal genotypes for soils of low zinc status, Plant Soil 146, 241–250.

    CAS  Google Scholar 

  • Graham R.D., Senadhira D., Beebe S.E., Iglesias C., Ortiz-Monasterio I. (1999) Breeding for micronutrients density in edible portions of staple food crops: conventional approaches, Field Crop. Res. 60, 57–80.

    Google Scholar 

  • Graham R.D., Humphries J.M., Kitchen J.L. (2000) Nutritionally enhanced cereals: A sustainable foundation for a balanced diet, Asia Pac. J. Clin. Nutr. 9 (Suppl.), S91–S96.

    Google Scholar 

  • Graham R.D., Welch R.M., Bouis H.E. (2001) Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: Principles, perspectives and knowledge gaps, Adv. Agron. 70, 77–142.

    Google Scholar 

  • Grant C.A., Clarke J.M., Duguid S., Chaney R.L. (2008) Selection and breeding of plant cultivars to minimize cadmium accumulation, Sci. Total Environ. 390, 301–310.

    CAS  Google Scholar 

  • Grewal H.S., Graham R.D. (1999) Residual effects of subsoil zinc and oilseed rape genotype on the grain yield and distribution of zinc in wheat, Plant Soil 207, 29–36.

    Google Scholar 

  • Gunes A., Inal A., Adak M.S., Alpaslan M., Bagci E.G., Erol T., Pilbeam D.G. (2007) Mineral nutrition of wheat, chickpea and lentil as affected by mixed cropping and soil moisture, Nutr. Cycl. Agroecosys. 78, 83–96.

    CAS  Google Scholar 

  • Hacisalihoglu G. (2002) Physiological and biochemical mechanisms underlying zinc efficiency in monocot and dicot crop plants, PhD Thesis, Cornell University, Ithaca, New York, USA.

    Google Scholar 

  • Harris D., Rashid A., Miraj Gh., Arif M., Yunas M. (2008) ‘On-farm’ seed priming with zinc in chickpea and wheat in Pakistan, Plant Soil 306, 3–10.

    CAS  Google Scholar 

  • Harris D., Rashid A., Miraj Gh., Arif M., Shah H. (2007) ‘On-farm’ seed priming with zinc in chickpea and wheat in Pakistan, Plant Soil 306, 3–10.

    Google Scholar 

  • Hart J.J., Welch R.M., Norvell W.A., Kochian L.V. (2002) Transport interactions between cadmium and zinc in roots of bread and durum wheat seedlings, Physiol. Plantarum 116, 73–78.

    CAS  Google Scholar 

  • Hill C.H., Matrone G. (1970) Chemical parameters in the study of in vivo and in vitro interactions of transition elements, Fed Proc. 29, 1474–1481.

    PubMed  CAS  Google Scholar 

  • Hodges R.E., Saurberlich H.E., Canham J.E., Wallace D.L., Rucker R.B., Mejia L.A., Mohanram M. (1978) Hematopoietic studies in vitamin A deficiency, Am. J. Clin. Nutr. 31, 876–885.

    PubMed  CAS  Google Scholar 

  • House W.A. (1999) Trace element bioavailability as exemplified by iron and zinc, Field Crop. Res. 60, 115–141.

    Google Scholar 

  • Huber D.M., Abney, T.S. (1986) Soybean allelopathy and subsequent cropping, J. Agron. Crop Sci. 157, 73–78.

    Google Scholar 

  • Hylander L.D. (1995) Effects of lime, phosphorus, manganese, copper and zinc on plant mineral composition, yield of barley, and level of extractable nutrients for an acid Swedish mineral soil, Commun. Soil Sci. Plan. 26, 2913–2928.

    CAS  Google Scholar 

  • International Zinc Nutrition Consultative Group (IZiNCG) (2004) Assessment of the risk of zinc deficiency in populations and options for its control, in: Hotz C., Brown K.H. (Eds.), Food and nutrition bulletin, Vol. 25, No. 1, Suppl. 2, pp. S113–S118.

    Google Scholar 

  • Isfan D. (1993) Genotypic variability for physiological efficiency index of nitrogen in oats, Plant Soil 154, 53–59.

    Google Scholar 

  • Kalayci M., Torun B., Eker S., Aydin M., Ozturk L., Cakmak I. (1999) Grain yield, zinc efficiency and zinc concentration of wheat cultivars grown in a zinc-deficient calcareous soil in field and greenhouse, Field Crop. Res. 63, 87–98.

    Google Scholar 

  • Kang Y.L. (1988) Effects of organic matter and its anaerobic decomposition products on the growth and zinc uptake by Oryza sativa, Disser. Abst. Int. B (Sci., Eng.) 49, 953B.

    Google Scholar 

  • Kannenberg L.W., Falk D.E. (1995) Models for activation of plant genetic resources for crop breeding programs, Can. J. Plant Sci. 75, 45–53.

    Google Scholar 

  • Katyal J.C. (1977) Influence of organic matter on the chemical and electrochemical properties of some flooded soils, Soil Biol. Biochem. 9, 259–266.

    CAS  Google Scholar 

  • Katyal J.C., Vlek P.L.G. (1985) Micronutrient problems in tropical Asia, Fert. Res. 7, 69–94.

    CAS  Google Scholar 

  • Keller A., Schulin R. (2003) Modelling heavy metal and phosphorus balances for farming systems, Nutr. Cycl. Agroecosys. 66, 271–284.

    CAS  Google Scholar 

  • Khoshgoftarmanesh A.H., M. Kalbasi (2002) Effect of Municipal waste Leachate on soil properties and growth and yield of rice, Commun. Soil Sci. Plan. 33, 2011–2020.

    CAS  Google Scholar 

  • Khoshgoftar, A.H., HajiMozaffari E. (2006) Approaches to enhance iron concentration in wheat grain produced in Qom province. Iran. 2nd Central Asian Cereals Conference, June 13–16, 2006, Cholpon-Ata, Issyk Kul Lake, Kyrgyz Republic.

    Google Scholar 

  • Khoshgoftar A.H., Chaney R.L. (2007) Preceding crop affects grain cadmium and zinc of wheat grown in saline soils of central Iran, J. Environ. Qual. 36, 1132–1136.

    Google Scholar 

  • Khoshgoftarmanesh A.H., Shariatmadari H., Kalbasi M., Karimian N. (2004a) Zinc efficiency of wheat cultivars grown on a saline calcareous soil, J. Plant Nutr. 27, 1953–1962.

    CAS  Google Scholar 

  • Khoshgoftar A.H., Shariatmadari H., Karimian N., Kalbasi M., van der Zee S.E.A.T.M., Parker D.R. (2004b) Salinity and Zn application effects on phytoavailability of Cd and Zn, Soil Sci. Soc. Am. J. 68, 1885–1889.

    CAS  Google Scholar 

  • Khoshgoftar A.H., Shariatmadari H., Karimian N., and van der Zee S.E.A.T.M. (2006a) Cadmium and zinc in saline soil solutions and their concentrations in wheat, Soil Sci. Soc. Am. J. 70, 582–589.

    Google Scholar 

  • Khoshgoftar A.H., Shariatmadari H., Karimian N. (2006b) Responses of wheat genotypes to zinc fertilization under saline soil conditions, J. Plant Nutr. 27, 1–14.

    Google Scholar 

  • Khoshgoftarmanesh A.H., Sharifi H.R., Mirzapour M.H., Schulin R. (2007) Plant genotype and Zn fertilization effects on nutritional quality of wheat grain produced in saline soils. 9th International Conference of the Biochemistry of Trace Elements (ICOBTE), July 2007, Beijing, China.

    Google Scholar 

  • Kochian L.V. (1995) Cellular mechanisms of aluminum toxicity and resistance in plants, Annu. Rev. Plant Phys. 46, 237–260.

    CAS  Google Scholar 

  • Leon L.A., Lopez A.S., Vlek P.L.G. (1985) Micronutrient problems in tropical Latin America, Fert. Res. 7, 95–129.

    CAS  Google Scholar 

  • Liu X.J., Liao X.Y., Zhang Y.Z., Huang Y.X. (2002) Effects of ricebased cropping system on the distribution of manganese in the profile of paddy soil derived from red earth, Acta Ecol. Sin. 22, 1440–1445.

    Google Scholar 

  • Loneragen J.P. (1997) Plant nutrition in 20th and perspectives for the 21st century, Plant Soil 196, 163–174.

    Google Scholar 

  • Lopes A.S., Cox F.R. (1977) A survey of the fertility status of surface soils under ‘Cerrado’ vegetation in Brazil, Soil Sci. Soc. Am. J. 41, 742–747.

    CAS  Google Scholar 

  • Lucca P., Hurrell R.F., Potrykus I. (2001) Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains, Theor. Appl. Genet. 102, 392–397.

    CAS  Google Scholar 

  • Marschner H. (1995) Mineral Nutrition of Higher Plants, 2nd ed., Academic Press, London.

    Google Scholar 

  • Mason J.B., Garcia M. (1993) Micronutrient deficiency – the global situation, SCN News 9, 11–16.

    Google Scholar 

  • Martens D.C., Westerman D.T. (1991) Fertilizer applications for correcting micronutrient deficiencies, in: Mortvedt J.J., Cox F.R., Shuman L.M., Welch R.M. (Eds.), Micronutrients in Agriculture, 2nd ed., SSSA Book Series 4, SSSA, Madison, WI, pp. 549–592.

    Google Scholar 

  • Martens D.C., Lindsay W.L. (1990) Testing soils for copper, iron, manganese, and zinc, in: Westerman R.L. (Ed.), Soil Testing and Plant Analysis, Soil Science Society of America, Madison, WI, pp. 229–273.

    Google Scholar 

  • Mayer J.E., Pfeiffer W.H., Beyer P. (2008) Biofortified crops to alleviate micronutrient malnutrition, Curr. Opin. Plant Biol. 11, 166–170.

    PubMed  CAS  Google Scholar 

  • McGuire J. (1993) Addressing micronutrient malnutrition, SCN News 9, 1–10.

    Google Scholar 

  • McIntyre B.D., Bouldin D.R., Urey G.H., Kizito F. (2001) Modeling cropping strategies to improve human nutrition in Uganda, Agr. Syst. 67, 105–120.

    Google Scholar 

  • McLaughlin M.J., Parker D.R., Clarke J.M. (1999) Metals and micronutrients - Food safety issues, Field Crop. Res. 60, 143–163.

    Google Scholar 

  • Meharg A.A. (2004) Arsenic in rice - understanding a new disaster for South-East Asia, Trends Plant Sci. 9, 415–417.

    PubMed  CAS  Google Scholar 

  • Menzi H., Kessler J. (1998) Heavy metal content of manures in Switzerland, in: Proceedings of the Eighth International Conference of the FAO Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture (in press).

    Google Scholar 

  • Miller D., Waissman N., Melton B., Currier C., McCaslin B. (1987) Selection for increased phosphorus in alfalfa and effects on other characteristics, Crop Sci. 27, 22–26.

    CAS  Google Scholar 

  • Mitchell C.C., Entry J.A. (1998) Soil C, N and crop yields in Alabama’s long-term ‘old rotation’ cotton experiment, Soil Till. Res. 47, 331–338.

    Google Scholar 

  • Mortvedt J.J. (1985) Plant uptake of heavy metals in zinc fertilizers made from industrial by-products, J. Environ. Qual. 14, 424–427.

    CAS  Google Scholar 

  • Mortvedt J.J. (1994) Needs for controlled-availability micronutrient fertilizers, Fert. Res. 38, 213–221.

    CAS  Google Scholar 

  • Mortvedt, J.J. (1996) Heavy metal contaminants in inorganic and organic fertilizers, Fert. Res. 43, 55–61.

    Google Scholar 

  • Murray C.J.L., Lopez A.D. (1997) Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study, Lancet 349, 1436–42.

    PubMed  CAS  Google Scholar 

  • Nable R.O., Webb M.J. (1993) Further evidence that zinc is required throughout the root zone for optimal growth and development, Plant Soil 150, 247–253.

    CAS  Google Scholar 

  • Neidecker-Gonzales O., Nestel P., Bouis H. (2007) Estimating the global costs of vitamin A capsule supplementation: A review of the literature, Food Nutr. Bull. 28, 307–316.

    Google Scholar 

  • Nicholson F.A., Chambers B.J., Williams J.R., Unwin R.J. (1999) Heavy metal contents of livestock feeds and animal manures in England and Wales, Bioresource Technol. 70, 23–31.

    CAS  Google Scholar 

  • Nicklas T.A. (1995) Dietary studies of children: the Bogalu Heart Study experience, J. Am. Diet. Assoc. 95, 1127–1133.

    PubMed  CAS  Google Scholar 

  • Nogawa K., Kobayashi E., Okubo Y., Suwazono Y. (2004) Environmental cadmium exposure, adverse effects and preventive measures in Japan, BioMetals 17, 581–587.

    PubMed  CAS  Google Scholar 

  • Novack B., Schwyzer I., Schulin R. (2008) Uptake of Zn and Fe by Wheat (Triticum aestivum var. Greina) and Transfer to the Grains in the Presence of Chelating Agents (Ethylenediaminedisuccinic Acid and Ethylenediaminetetraacetic Acid), Agr. Food Chem. 56, 4643–4649.

    Google Scholar 

  • O’Dell B.L., de Boland A.R., Koirtyohann S.R. (1972) Distribution of phytate and nutritionally important elements among the morphological components of cereal grains, J. Agr. Food Chem. 20, 718–721.

    Google Scholar 

  • Pareek S., Pareek S. (1999) Effect of macro-and micro-nutrients on charcoal rot disease development of maize induced by Macrophominea phaseolina, Ann. Agr. Res. 20, 129–131.

    Google Scholar 

  • Pessarakli M. (ed.) (1999) Handbook of plant and crops stress, Marcel Dekker, New York.

    Google Scholar 

  • Pinstrup-Andersen P. (1999) Selected aspects of the future global food situation, in: 25th International Fertilizer Industry Association Enlarged Council Meeting, Rome, Italy.

    Google Scholar 

  • Prasad B. (1999) Conjoint use of fertilizers with organics, crop residues and green manuring for their efficient use in sustainable crop production, Fert. News 44, 67–73.

    Google Scholar 

  • Prasad B., Sinha M.K. (1981) The relative efficiency of zinc carriers on growth and zinc nutrition of corn, Plant Soil 62, 45–52.

    CAS  Google Scholar 

  • Prasad B., Sinha S.K. (1995a) Effect of recycling of crop residues and organic manure on capacity factor and diffusion rate of zinc in calcareous soil, J. Nucl. Agr. Biol. 24, 185–188.

    Google Scholar 

  • Prasad B., Sinha S.K. (1995b) Nutrient recycling through crop residues management for sustainable rice and wheat production in calcareous soil, Fert. News 40, 15–2325.

    Google Scholar 

  • Raboy V., Noaman M.W., Taylor G.A., Pickett S.G. (1991) Grain phytic acid and protein are highly correlated in winter wheat, Crop Sci. 31, 631–635.

    CAS  Google Scholar 

  • Raj H., Gupta V.K. (1986) Influence of organic manures and zinc on wheat yield and Zn concentration in wheat, Agr. Wastes 16, 255–263.

    CAS  Google Scholar 

  • Ramalingaswami V. (1995) New global perspectives on overcoming malnutrition, Am. J. Clin. Nutr. 61, 259–263.

    PubMed  CAS  Google Scholar 

  • Reeves P.G. Chaney R.L. (2008) Bioavailability as an issue in risk assessment and management of food cadmium: A review, Sci. Total Environ. 398, 13–19.

    Google Scholar 

  • Rengel Z. (2001) Genotypic differences in micronutrient use efficiency in crops, Commun. Soil Sci. Plan. 32, 1163–1186.

    CAS  Google Scholar 

  • Rengel Z., Graham R.D. (1995) Importance of seed Zn content for wheat growth on Zn-deficient soil. 2. Grain yield, Plant Soil 173, 267–274.

    CAS  Google Scholar 

  • Rengel Z., Batten G.G., Crowley D.E. (1999) Agronomic approaches for improving the micronutrient density in edible portions of field crops, Field Crop. Res. 60, 27–40.

    Google Scholar 

  • Reuter D.J., Alston A.M., McFarland J.D. (1988) Occurrence and correction of manganese deficiency in plants, in: Graham R.D., Hannan R.J., Uren N.C. (Eds.), Manganese in Soils and Plants, Kluwer Academic, Dordrecht, The Netherlands, pp. 205–224.

    Google Scholar 

  • Rice E.L. (1984) Allelopathy, 2nd ed, Academic Press, Orlando, FL, 422 p.

    Google Scholar 

  • Rose S.J., Burnside O.C., Specht J.E., Swisher B.A. (1984) Competition and allelopathy between soybeans and weeds, Agron. J. 76, 523–528.

    Google Scholar 

  • Rosegrant M.W., Leach N., Gerpacio R.V. (1999) Alternative future for world cereal and meat consumption, Proc. Nutr. Soc. 58, 219– 234.

    PubMed  CAS  Google Scholar 

  • Rosegrant M.W., Paisner M.S., Meijer S., Witcover J. (2001) 2020 Global Food Outlook; Trends, Alternatives, and Choices. A 2020 Vision for Food, Agriculture, and the Environment Initiative, International Food Policy Research Institute, Washington, DC.

    Google Scholar 

  • Rosielle A.A., Hamblin J. (1981) Theoretical aspects of selection for yield in stress and non-stress environments, Crop Sci. 21, 943–946.

    Google Scholar 

  • Sanghvi T.G. (1996) Economic Rationale for Investing in Micronutrient Programs. A Policy Brief Based on New Analyses. Office of Nutrition, Bureau for Research and Development, United States Agency for International Development, Washington, DC.

    Google Scholar 

  • Sauerbeck D.R., Helal H.M. (1990) Factors affecting the nutrient efficiency in plants, in: El Balsam N., Dambroth M., Loughman B.C. (Eds.), Genetic Aspects of Plant Mineral Nutrition, Kluwer Academic Publisher, Dordrecht the Netherlands, pp. 11–17.

    Google Scholar 

  • Schulin R., Khoshgoftarmanesh A., Afyuni M., Nowack B., Frossard E. (2009) Effect of soil management on zinc uptake and its bioavailability in plants, in: Banuelos G.S., Lin Z. (Eds.), Development and uses of biofortified agricultural products, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Shaver T.M., Westfall D.G., Ronaghi M. (2007) Zinc fertilizer solubility and its effects on zinc bioavailability over time, J. Plant Nutr. 30, 123–133.

    CAS  Google Scholar 

  • Siddiqi M.Y., Glass A.D. (1981) Utilization Index: A modified approach to the estimation and comparison of nutrient utilization efficiency in plants, J. Plant Nutr. 4, 289–302.

    Google Scholar 

  • Sillanpaa M. (1982) Micronutrients and Nutrient Status of Soils: A Global Study; Food and Agriculture Organization: Rome, FAO Soil Bull. No. 48.

    Google Scholar 

  • Sillanpaa M., Vlek P.L.G. (1985) Micronutrients and the agroecology of tropical and Mediterranean regions, Fert. Res. 7, 151–168.

    CAS  Google Scholar 

  • Sims J.T., Wolf D.C. (1994) Poultry waste management: Agricultural and Environmental issues, Adv. Agron. 52, 2–72.

    Google Scholar 

  • Singh G., Abrol I.P., Cheema S.S. (1989) Effects of gypsum application on mesquite (Prosopisjulitlora) and soil properties in an abandoned sodic soil, Forest. Ecol. Manag. 29, 1–14.

    Google Scholar 

  • Singh B., Natesan S.K.A., Singh B.K. Usha K. (2005) Improving zinc efficiency of cereals under zinc deficiency, Curr. Sci. 88, 36–44.

    Google Scholar 

  • Soil Science Society of America (1997) Glossary of soil science terms, Soil Science Society of America, Madison, Wisconsin.

    Google Scholar 

  • Solomons N.W., Russell R.M. (1980) The interaction of vitamin A and zinc: Implications for human nutrition, Am. J. Clin. Nutr. 33, 2031–2040.

    PubMed  CAS  Google Scholar 

  • Stein A.J. (2006) Micronutrient Malnutrition and the Impact of Modern Plant Breeding on Public Health in India: How Cost-effective is Biofortification? Cuvillier Verlag.

    Google Scholar 

  • Stein A.J., Nestel P., Meenakshi J.V., Qaim M., Sachdev H.P., Bhutta Z.A. (2007) Plant breeding to control zinc deficiency in India: how cost-effective is biofortification? Public Health Nutr. 10, 492–501.

    PubMed  Google Scholar 

  • Stevenson F.J. (1991) Organic matter-micronutrient reaction in soil, in: Mortvedt J.J. et al. (Eds.), Micronutrients in Agriculture, Soil Sci. Soc. Am., Madison, WI, pp. 145–186.

    Google Scholar 

  • Stevenson F.J. (1994) Humus chemistry; Genesis composition. Reaction, Wiley New York, p. 496.

    Google Scholar 

  • Stewart W.M., Dibb D.W., Johnston A.E., Smyth T.J. (2005) The contribution of commercial fertilizer nutrients to food production, Agron. J. 97, 1–6.

    Google Scholar 

  • Streeter J.G. (2001) Simple partial purification of D-pinitol from soybean leaves, Crop Sci. 41, 1985–1987.

    CAS  Google Scholar 

  • Swaddiwudhipong W., Limpatanachote P., Mahasakpan P., Krintratun S., Padungtod C. (2007) Cadmium-exposed population in Mae Sot District, Tak Province: 1. Prevalence of high urinary cadmium levels in the adults, J. Med. Assoc. Thai 90, 143–148.

    Google Scholar 

  • Tagwira F. (1993) Some chemical and physical factors that associated with micronutrient status and availability in Zimbabwean soils, Zimbabwean J. Agr. Res. 31, 1051–1059.

    Google Scholar 

  • Takkar P.N., Walker C.D. (1993) The distribution and correction of zinc deficiency, in: Robson A.D. (Ed.), Zinc in Soils and Plants, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 151–165.

    Google Scholar 

  • Thung M. (1988) Phosphorus: A limiting nutrient in bean (Phaseolus vulgaris L.) production in Latin America and field screening for efficiency and response, in: Bassam N., Dambroth M.C., Loughman B.C. (Eds.), Genetic Aspects of Plant Mineral Nutrition, Kluwer Academic Publishers, Dordrecht, pp. 501–521.

    Google Scholar 

  • Thongbai P., Hannam R.J., Graham R.D., Webb M.J. (1993) Interaction between zinc nutritional status of cereals and Rhizoctonia root rot severity. I. Field observation, Plant Soil 153, 207–214.

    CAS  Google Scholar 

  • Tillman D. (1999) Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices, Proc. Natl Acad. Sci. (USA) 96, 5995–6000.

    Google Scholar 

  • Timsina J., Connor D.J. (2001) Productivity and management of rice-wheat cropping systems: Isssues and challenges, Field Crop. Res. 69, 93–132.

    Google Scholar 

  • Torun A., Gültekin I., Kalayci M., Yilmaz A., Eker S., Cakmak I. (2001) Effects of zinc fertilization on grain yield and shoot concentrations of zinc, boron, and phosphorus of 25 wheat cultivars grown on a zinc-deficient and boron-toxic soil, J. Plant Nutr. 24, 1817–1829.

    CAS  Google Scholar 

  • UNICEF: Vitamin A Supplementation: A Decade of Progress (2007) The United Nations Children’s Fund (UNICEF).

    Google Scholar 

  • United Nations General Assembly (2000) United Nations Millennium Declaration, A/RES/55/2.

    Google Scholar 

  • United Nations Administrative Committee on Coordination – Subcommittee on Nutrition Situation (1992) Vol. 1. Global and Regional Results, World Health Organization, Geneva, Switzerland, pp. 1–80.

    Google Scholar 

  • US Department of Health and Human Services. Healthy people 2000, Nutrition Today (1990) November/December, 29–30.

    Google Scholar 

  • Verna T.S., Minhas R.S. (1987) Zinc and phosphorus interaction in a wheat-maize cropping system, Fert. Res. 13, 77–86.

    Google Scholar 

  • Vijayaraghavan K. (2002) Control of micronutrient deficiencies in India: obstacles and strategies, Nutr. Rev. 60, S73–S76.

    CAS  Google Scholar 

  • Walker D.W., Jenkins D.D. (1986) Influence of sweet potato plant residue on growth of sweet potato vine cuttings and cowpea plants, HortSci. 21, 426–428.

    Google Scholar 

  • Walker D.W., Hubbell T.J., Sedberry J.E. (1989) Influence of decaying sweet potato crop residues on nutrient uptake of sweet potato plants, Agr. Ecosyst. Environ. 26, 45–52.

    Google Scholar 

  • Wallace A., Mueller R.T. (1973) Effects of chelated and non-chelated cobalt and copper on yields and microelement composition of bush beans grown on calcareous soil in a glasshouse. Soil Sci. Soc. Am. Proc. 37, 904–908.

    Google Scholar 

  • Wallace G.A., Wallace A. (1982) Micronutrient uptake by leaves from foliar sprays of EDTA chelated metals, in: Nelson S.D. (Ed.), Iron Nutrition and Interactions in Plants, Marcel Dekker, Basel, pp. 975–978.

    Google Scholar 

  • Webber M.D., Webber L.R. (1983) Micronutrients and heavy metals in livestock and poultry manures, in: Farm Animal Manures in the Canadian Environment. Publication No. NRCC 18976 of the Environmental Secretariat, Ottawa, Canada, p. 59.

    Google Scholar 

  • Wei X., Hao M., Shao M., Gale W.J. (2006) Changes in soil properties and the availability of soil micronutrients after 18 years of cropping and fertilization, Soil Till. Res. 91, 120–130.

    Google Scholar 

  • Welch R.M. (1998) Fashioning healthful agricultural systems, in: Combs G.F. Jr., Welch R.M. (Eds.), Creating Healthful Food Systems: Linking Agriculture to Human Needs Cornell International Institute for Food, Agriculture and Development, Cornell University, Ithaca, NY, pp. 7–13.

    Google Scholar 

  • Welch RM. (1999) Importance of seed mineral nutrient reserves in crop growth and development, in: Rengel Z. (Ed.), Mineral Nutrition of Crops: Fundamental Mechanisms and Implications, Food Products Press, New York, pp. 205–226.

    Google Scholar 

  • Welch R.M. (2002) The impact of mineral nutrients in food crops on global human health, Plant Soil 247, 83–90.

    CAS  Google Scholar 

  • Welch R.M., Graham R.D. (1999) A new paradigm for world agriculture: meeting human needs – Productive, sustainable, nutritious, Field Crop. Res. 60, 1–10.

    Google Scholar 

  • Welch R.M., Graham R.D. (2000) A new paradigm for world agriculture: productive, sustainable, nutritious, healthful food systems, Food Nutr. Bull. 21, 361–366.

    Google Scholar 

  • Welch R.M., Graham R.D. (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective, J. Exp. Bot. 55, 353–364.

    PubMed  CAS  Google Scholar 

  • Welch R.M., Allaway W.H., House W.A., Kubota J. (1991) Geographic distribution of trace element problems, in: Mortvedt J.J., Cox F.R., Shuman L.M., Welch R.M. (Eds.), Micronutrients in Agriculture 2nd ed., Soil Sci. Soc. Am., Madison, WI, pp. 31–57.

    Google Scholar 

  • Welch R.M., Combs G.F. Jr., Duxbury J.M. (1997) Toward a “Greener” revolution, Issues Sci. Technol. 14, 50–58.

    Google Scholar 

  • White P.J., Broadley M.R. (2005) Biofortifying crops with essential mineral elements, Trends Plant Sci. 10, 586–593.

    PubMed  Google Scholar 

  • Williams C.H., David D.J. (1976) Effects of pasture improvement with subterranean clover and superphosphate on the availability of trace metals to plant, Aust. J. Soil Res. 14, 85–93.

    CAS  Google Scholar 

  • Williams P.N., Price A.H., Raab A., Hossain S.A., Feldmann J., Meharg A.A. (2005) Variation in arsenic speciation and concentration in paddy rice related to dietary exposure, Environ. Sci. Technol. 39, 5531–5540.

    PubMed  CAS  Google Scholar 

  • Woodbury P.B. (1992) Trace elements in municipal solid waste composts: A review of potential detrimental effects on plants, soil biota, and water quality, Biomass Bioenerg. 3, 239–259.

    CAS  Google Scholar 

  • World Health Organization (1992) Second report on the world nutrition situation. Global and regional results, United Nations Administrative Committee on Coordination – Subcommittee on Nutrition, Geneva, Switzerland, 1, pp. 1–80.

    Google Scholar 

  • World Health Organization (1996) Trace elements in human nutrition and health, Geneva, pp. 30–35, 90–91.

    Google Scholar 

  • World Health Organization (1999) Malnutrition Worldwide. http://www.who.int/nut/malnutrition–worldwide.htm, World Health Organization, Geneva, pp. 1–13.

  • Yang X.E., Chen W.R., Feng Y. (2007) Improving human micronutrient nutrition through biofortification in the soil-plant system: China as a case study, Environ. Geochem. Hlth 29, 413–428.

    CAS  Google Scholar 

  • Ye X., Al-Balil S., Kloli A., Zhang J., Lucca P., Beyer P., Potrykus I. (2000) Engineering the provitamine A (b-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm, Science 287, 303–305.

    PubMed  CAS  Google Scholar 

  • Yilmaz A., Ekiz H., Torun B. et al. (1997) Effects of different zinc application methods on grain yield and zinc concentrations in wheat grown on zinc-deficient calcareous soils in Central Anatolia, J. Plant Nutr. 20, 461–471.

    CAS  Google Scholar 

  • Yilmaz A., Ekiz H., Gültekin I., et al. (1998) Effect of seed zinc content on grain yield and zinc concentration of wheat grown in zinc-deficient soils, J. Plant Nutr. 21, 2257–2264.

    CAS  Google Scholar 

  • Yodkeaw M., De Datta S.K. (1989) Effects of organic matter and water regime on the kinetics of iron and manganese in two high pH rice soils, Soil Sci. Plant Nutr. 35, 323–335.

    CAS  Google Scholar 

  • Zuo Y., Zhang F. (2008) Effect of peanut mixed cropping with gramineous species on micronutrient concentrations and iron chlorosis of peanut plants grown in a calcareous soil, Plant Soil 306, 23–36.

    CAS  Google Scholar 

  • Zuo Y., Zhang F. (2009) Iron and zinc biofortification strategies in dicot plants by intercropping with gramineous species. A review, Agron. Sustain. Dev. 29, 63–71.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Hossein Khoshgoftarmanesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Khoshgoftarmanesh, A.H., Schulin, R., Chaney, R.L., Daneshbakhsh, B., Afyuni, M. (2011). Micronutrient-Efficient Genotypes for Crop Yield and Nutritional Quality in Sustainable Agriculture. In: Lichtfouse, E., Hamelin, M., Navarrete, M., Debaeke, P. (eds) Sustainable Agriculture Volume 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0394-0_13

Download citation

Publish with us

Policies and ethics