Skip to main content

Probiotic-Pathogen Interactions and Enteric Cytoprotection

  • Chapter
  • First Online:
Probiotic Bacteria and Enteric Infections

Abstract

The intestinal epithelium forms a physicochemical barrier that impedes enteric pathogens from invading the epithelium and cause disease. In order for a particular pathogen to colonise the intestinal mucosa, it needs to break and cross this barrier. The barrier consists of a low pH area mainly resulting from carbohydrate fermentation, a mucus layer along the epithelial surface, an epithelial mechanical barrier maintained by intercellular tight junctions, an apical actin cytoskeleton, and the presence of stable microbiota. In addition, this barrier produces inflammatory mediators, mainly cytokines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Salam MH, Saleh FA, Kholif AM, El-Sayed EM, Abdou SM, El-Shibiny S (2004) Isolation and characterization of bacteriocins produced by Bifidobacterium lactis BB-12 and Bifidobacterium longum BB-46. 9th Egyptian conference for dairy science and technology, Cairo, Egypt, 9–11 Oct

    Google Scholar 

  • Adam T, Arpin M, Prevost MC, Gounon P, Sansonetti PJ (1995) Cytoskeletal rearrangement and the functional role of T-plastin during entry of Shigella flexneri into HeLa cells. J Cell Biol 129:367–381

    PubMed  CAS  Google Scholar 

  • Amaretti A, Tamburini E, Bernardi T, Pompei A, Zanoni S, Vaccari G, Matteuzzi D, Rossi M (2006) Substrate preference of Bifidobacterium adolescentis MB 239: compared growth on single and mixed carbohydrates. Appl Microbiol Biotechnol 73:654–662

    PubMed  CAS  Google Scholar 

  • Asanuma N, Kawato M, Hino T (2001) Presence of Butyrivibrio fibrisolvens in the digestive tract of dogs and cats, and its contribution to butyrate production. J Gen Appl Microbiol 47:313–319

    PubMed  CAS  Google Scholar 

  • Ballongue J (1998) Bifidobacteria and probiotic action. In: Salminen S, Von Wright A (eds) Lactic acid bacteria: microbiology and functional aspects. Marcel Dekker, New York, pp 519–587

    Google Scholar 

  • Bernbom N, Licht TR, Saadbye P, Vogensen FK, Norrung B (2006) Lactobacillus plantarum inhibits growth of Listeria monocytogenes in an in vitro continuous flow gut model, but promotes invasion of L. monocytogenes in the gut of gnotobiotic rats. Int J Food Microbiol 108:10–14

    PubMed  CAS  Google Scholar 

  • Bernet MF, Brassart D, Neeser JR, Servin AL (1994) Lactobacillus acidophilus LA 1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria. Gut 35:483–489

    PubMed  CAS  Google Scholar 

  • Berninghausen O, Leippe M (1997) Necrosis versus apoptosis as the mechanism of target cell death induced by Entamoeba histolytica. Infect Immun 65:3615–3621

    PubMed  CAS  Google Scholar 

  • Bielecka M, Biedrzycka E, Biedrzycka E, Smoragiewicz W, Smieszek M (1998) Interaction of Bifidobacterium and Salmonella during associated growth. Int J Food Microbiol 45:151–155

    PubMed  CAS  Google Scholar 

  • Blocker A, Gounon P, Larquet E, Niebuhr K, Cabiaux V, Parsot C, Sansonetti P (1999) The tripartite type III secreton of Shigella flexneri inserts IpaB and IpaC into host membranes. J Cell Biol 147:683–693

    PubMed  CAS  Google Scholar 

  • Candela M, Perna F, Carnevali P, Vitali B, Ciati R, Gionchetti P, Rizzello F, Campieri M, Brigidi P (2008) Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production. Int J Food Microbiol 125:286–292

    PubMed  CAS  Google Scholar 

  • Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, Geurts L, Naslain D, Nevrinck A, Lambert DM, Muccioli GG, Delzenne NM (2009) Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58:1091–1103

    PubMed  CAS  Google Scholar 

  • Carey CM, Kostrzynska M, Ojha S, Thompson S (2008) The effect of probiotics and organic acids on Shiga-toxin 2 gene expression in enterohemorrhagic Escherichia coli O157:H7. J Microbiol Methods 73:125–132

    PubMed  CAS  Google Scholar 

  • Cheikhyoussef A, Pogori N, Chen W, Zhang H (2008) Antimicrobial proteinaceous compounds obtained from bifidobacteria: from production to their application. Int J Food Microbiol 125:215–222

    PubMed  CAS  Google Scholar 

  • Clerc P, Sansonetti PJ (1987) Entry of Shigella flexneri into HeLa cells: evidence for directed phagocytosis involving actin polymerization and myosin accumulation. Infect Immun 55:2681–2688

    PubMed  CAS  Google Scholar 

  • Cole K, Farnell MB, Donoghue AM, Stern NJ, Svetoch EA, Eruslanov BN, Volodina LI, Kovalev YN, Perelygin VV, Mitsevich EV, Mitsevich IP, Levchuk VP, Pokhilenko VD, Borzenkov VN, Svetoch OE, Kudryavtseva TY, Reyes-Herrera I, Blore PJ, De Los Santos FS, Donoghue DJ (2006) Bacteriocins reduce Campylobacter colonization and alter gut morphology in turkey poults. Poultry Sci 85:1570–1575

    CAS  Google Scholar 

  • Collado MC, Meriluoto J, Salminen S (2007) Role of commercial probiotic strains against human pathogen adhesion to intestinal mucus. Lett Appl Microbiol 45:454–460

    PubMed  CAS  Google Scholar 

  • Corr SC, Li Y, Riedel CU, O’toole PW, Hill C, Gahan CGM (2007) Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci U S A 104:7617–7621

    PubMed  CAS  Google Scholar 

  • Donnenberg MS (2000) Pathogenic strategies of enteric bacteria. Nature 406:768–774

    PubMed  CAS  Google Scholar 

  • Donnenberg MS, Kaper JB, Finlay BB (1997) Interactions between enteropathogenic Escherichia coli and host epithelial cells. Trends Microbiol 5:109–114

    PubMed  CAS  Google Scholar 

  • Evans DG, Silver RP, Evans DJ Jr, Chase DG, Gorbach SL (1975) Plasmid-controlled colonization factor associated with virulence in Escherichia coli enterotoxigenic for humans. Infect Immun 12:656–667

    PubMed  CAS  Google Scholar 

  • FAO/WHO (2002) Joint working group report on guidelines for the evaluation of probiotics in food, London, Ontario, Canada, April 30 and May 1. http:www.who.int/foodsafety/publications/fs_management/probiotics2/en/index.html

    Google Scholar 

  • Fayol-Messaoudi D, Berger CN, Coconnier-Polter MH, Liévin-Le Moal V, Servin AL (2005) pH-, lactic acid-, and non-lactic acid-dependent activities of probiotic lactobacilli against Salmonella enterica serovar Typhimurium. Appl Environ Microbiol 71:6008–6013

    PubMed  CAS  Google Scholar 

  • Fleckenstein JM, Kopecko DJ (2001) Breaching the mucosal barrier by stealth: an emerging pathogenic mechanism for enteroadherent bacterial pathogens. J Clin Invest 107:27–30

    PubMed  CAS  Google Scholar 

  • Francis CL, Ryan TA, Jones BD, Smith SJ, Falkow S (1993) Ruffles induced by Salmonella and other stimuli direct macropinocytosis of bacteria. Nature 364:639–642

    PubMed  CAS  Google Scholar 

  • Fu YX, Galán JE (1999) A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401:293–297

    PubMed  CAS  Google Scholar 

  • Fujiwara S, Hashiba H, Hirota T, Forstner JF (1997) Proteinaceous factor(s) in culture supernatant fluids of bifidobacteria which prevents the binding of enterotoxigenic Escherichia coli to gangliotetraosylceramide. Appl Environ Microbiol 63:506–512

    PubMed  CAS  Google Scholar 

  • Fujiwara S, Hashiba H, Hirota T, Forstner JF (2001) Inhibition of the binding of enterotoxigenic Escherichia coli Pb176 to human intestinal epithelial cell line HCT-8 by an extracellular protein fraction containing BIF of Bifidobacterium longum SBT2928: suggestive evidence of blocking of the binding receptor gangliotetraosylceramide on the cell surface. Int J Food Microbiol 67:97–106

    PubMed  CAS  Google Scholar 

  • Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66:365–378

    PubMed  CAS  Google Scholar 

  • Giannella RA (2006) Infectious enteritis and proctocolitis and food poisoning. In: Feldman M (ed) Sleisenger & Fordtran’s gastrointestinal and liver disease, 8th edn. WB Saunders, Philadelphia, pp 2333–2391

    Google Scholar 

  • Gibson GR, Wang X (1994) Regulatory effects of bifidobacteria on the growth of othercolonic bacteria. J Appl Bacteriol 77:412–420

    PubMed  CAS  Google Scholar 

  • González-Mariscal L, Betanzos A, Nava P, Jaramillo BE (2003) Tight junction proteins. Prog Biophys Mol Biol 81:1–44

    Google Scholar 

  • Gopal PK, Prasad J, Smart J, Gill HS (2001) In vitro adherence properties of Lactobacillusrhamnosus DR20 and Bifidobacterium lactis DR10 strains and theirantagonistic activity against an enterotoxigenic Escherichia coli. Int J Food Microbiol 67:207–216

    PubMed  CAS  Google Scholar 

  • Granum PE (1990) Clostridium perfringens toxins involved in food poisoning. Int J Food Microbiol 10:101–112

    PubMed  CAS  Google Scholar 

  • Griffin PM (2002) Escherichia coli O157:H7 and other enterohemorrhagic E. coli. In: Blaser M (ed) Infections of the GI tract, 2nd edn. Lippincott Williams & Wilkins, Philadelphia, pp 627–642

    Google Scholar 

  • Guarino A, Canani RB, Casola A, Pozio E, Russo R, Bruzzese E, Fontana M, Rubino A (1995) Human intestinal cryptosporidiosis: secretory diarrhoea and enterotoxic activity in Caco-2 cells. J Infect Dis 171:976–983

    PubMed  CAS  Google Scholar 

  • Hartemink R, Van Laere KM, Rombouts FM (1997) Growth of enterobacteria on fructo-oligosaccharides. J Appl Microbiol 83:367–374

    PubMed  CAS  Google Scholar 

  • Hill DR (1990) Giardia lamblia. In: Mandell GL et al (eds) Principles and practice of infectious diseases. Churchill Livingstone, Philadelphia, pp 2487–2493

    Google Scholar 

  • Hu L, Kopecko DJ (2000) Interactions of Campylobacter with eukaryotic cells: gut luminal colonization and mucosal invasion mechanisms. In: Nachamkin I, Blaser MJ (eds) Campylobacter, 2nd edn. ASM Press, Washington, pp 191–205

    Google Scholar 

  • Huang DB, Okhuysen PC, Jiang ZD, DuPont HL (2004) Enteroaggregative Escherichia coli: an emerging enteric pathogen. Am J Gastroenterol 99:383–389

    PubMed  Google Scholar 

  • Jolivet-Reynaud C, Popoff MR, Vinit MA, Ravisse P, Moreau H, Alouf JE (1986) Enteropathogenicity of Clostridium perfringens b-toxin and other clostridial toxins. Zb Bacteriol Microbiol Hyg Suppl 15:145–151

    Google Scholar 

  • Koninkx JFJG, Stemerdink AFE, Mirck MH, Egberts HJA, van Dijk JE, Mouwen JVJM (1988a) Histochemical changes in the composition of mucins in goblet cells during methotrexate-induced atrophy in rats. Exp Pathol 34:125–133

    CAS  Google Scholar 

  • Koninkx JFJG, Mirck MH, Hendriks HGCJM, Mouwen JMVM, van Dijk JE (1988b) Nippostrongylus brasiliensis: Histochemical changes in the composition of mucins in goblet cells during infection in rats. Exp Parasitol 65:84–90

    CAS  Google Scholar 

  • Kopecný J, Zorec M, Mrázek J, Kobayashi Y, Marinsek-Logar R (2003) Butyrivibrio hungatei sp. nov. and Pseudobutyrivibrio xylanivorans sp. nov., butyrate-producing bacteria from the rumen. Int J Syst Evol Microbiol 53:201–209

    PubMed  Google Scholar 

  • Koyasu S, Nishida E, Kadowaki T, Matsuzaki F, Iida K, Harada F, Kasuga M, Sakai H, Yahara I (1986) Two mammalian heat shock proteins, HSP90 and HSP100, are actin binding proteins. Proc Natl Acad Sci U S A 83:8054–8058

    PubMed  CAS  Google Scholar 

  • Kravtsov EG, Yermolavev AV, Anokhina IV, Yashina NV, Chesnokova VL, Dalin MV (2008) Adhesion characteristics of lactobacillus is a criterion of the probiotic choice. Bull Exp Biol Med 145:232–234

    PubMed  CAS  Google Scholar 

  • Kullisaar T, Zilmer M, Mikelsaar M, Vihalemm T, Annuk H, Kairane C, Kilk A (2002) Two antioxidative lactobacilli strains as promising probiotics. Int J Food Microbiol 72:215–224

    PubMed  CAS  Google Scholar 

  • Lan RT, Reeves PR (2002) Escherichia coli in disguise: molecular origins of Shigella. Microb Infect 4:1125–1132

    CAS  Google Scholar 

  • Langer RC, Schaefer DA, Riggs MW (2001) Characterization of an intestinal epithelial cell receptor recognized by the Cryptosporidium parvum sporozoite ligand CSL. Infect Immun 69:1661–1670

    PubMed  CAS  Google Scholar 

  • Lavoie JN, Gingras-Breton G, Tanguy RM, Landry J (1993) Induction of Chinese hamster HSP27 gene expression in mouse cells confers resistance to heat shock. HSP27 stabilization of the microfilament organization. J Biol Chem 268:3420–3429

    PubMed  CAS  Google Scholar 

  • Lee YK, Puong KY (2002) Competition for adhesion between probiotics and human gastrointestinal pathogens in the presence of carbohydrate. Br J Nutr 88(Suppl 1):S101–S108

    PubMed  CAS  Google Scholar 

  • Lee YJ, Yu WK, Heo TR (2003) Identification and screening for antimicrobial activity against Clostridium difficile of Bifidobacterium and Lactobacillus species isolatedfrom healthy infant faeces. Int J Antimicrob Agents 21:340–346

    PubMed  CAS  Google Scholar 

  • Liang P, MacRae TH (1997) Molecular chaperones and the cytoskeleton. J Cell Sci 110:1431–1440

    PubMed  CAS  Google Scholar 

  • Liévin V, Peiffer I, Hudault S, Rochat F, Brassart D, Neeser JR, Servin AL (2000) Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity. Gut 47:646–652

    PubMed  Google Scholar 

  • Liévin-Le Moal V, Amsellem R, Servin AL, Coconnier MH (2002) Lactobacillus acidophilus (strain LB) from the resident adult human gastrointestinal microflora exerts activity against brush border damage promoted by a diarrhoeagenic Escherichia coli in human enterocyte-like cells. Gut 50:803–811

    PubMed  Google Scholar 

  • Maassen CB, van Holten-Neelen C, Balk F, den Bak-Glashouwer MJ, Leer RJ, Laman JD, Boersma WJ, Claassen E (2000) Strain-dependent induction of cytokine profiles in the gut by orally administered Lactobacillus strains. Vaccine 18:2613–2623

    PubMed  CAS  Google Scholar 

  • Mack DR, Michail S, Wei S, McDougall L, Hollingsworth MA (1999) Probiotics inhibit enteropathogenic E. coli adherence in vitro by intestinal mucin gene expression. Am J Physiol Gastrointest Liver Physiol 276:941–950

    Google Scholar 

  • Makras L, De Vuyst L (2006) The in vitro inhibition of Gram-negative pathogenic bacteria by bifidobacteria is caused by the production of organic acids. Int Dairy J 16:1049–1057

    CAS  Google Scholar 

  • Malago JJ, Koninkx JFJG, van Dijk JE (2002) The heat shock response and cytoprotection of the intestinal epithelium. Cell Stress Chaperones 7:191–199

    PubMed  CAS  Google Scholar 

  • Malago JJ, Koninkx JFJG, Ovelgönne HH, van Asten FJAM, Swennenhuis JF, van Dijk JE (2003) Expression levels of heat shock proteins in enterocyte-like Caco-2 cells after exposure to Salmonella enteritidis. Cell Stress Chaperones 8:194–203

    PubMed  CAS  Google Scholar 

  • Malago JJ, Tooten PCJ, Koninkx JFJG (2010) Anti-inflammatory properties of probiotic bacteria on Salmonella-induced IL-8 synthesis in enterocyte-like Caco-2 cells. Benef Microbe 1:121–130

    CAS  Google Scholar 

  • Martín-Peláez S, Gibson GR, Martín-Orúe SM, Klinder A, Rastall RA, La Ragione RM, Woodward MJ, Costabile A (2008) In vitro fermentation of carbohydrates by porcine faecal inocula and their influence on Salmonella Typhimurium growth in batch culture systems. FEMS Microbiol Ecol 66:608–619

    PubMed  Google Scholar 

  • Matsumoto M, Tani H, Ono H, Ohishi H, Benno Y (2002) Adhesive property of Bifidobacterium lactis LKM512 and predominant bacteria of intestinal microflora to human intestinal mucin. Curr Microbiol 44:212–215

    PubMed  CAS  Google Scholar 

  • Meghrous J, Euloge P, Junelles AM, Ballongue J, Petitidemange H (1990) Screening of Bifidobacterium strains for bacteriocins production. Biotechnol Lett 12:575–580

    CAS  Google Scholar 

  • Mennigen R, Bruewer M (2009) Effect of probiotics on intestinal barrier function. Ann N Y Acad Sci 1165:183–189

    PubMed  Google Scholar 

  • Moorthy G, Murali MR, Devaraj SN (2009) Lactobacilli facilitate maintenance of intestinal membrane integrity during Shigella dysenteriae 1 infection in rats. Nutrition 25:350–358

    PubMed  CAS  Google Scholar 

  • Musch MW, Sugi K, Straus D, Chang EB (1999) Heat shock protein 72 protects against oxidant-induced injury of barrier function of human colonic epithelial Caco-2/bbe cells. Gastroenterology 117:115–122

    PubMed  CAS  Google Scholar 

  • Musher DM, Musher BL (2004) Contagious acute gastrointestinal infections. N Engl J Med 351:2417–2427

    PubMed  CAS  Google Scholar 

  • Nataro JP, Kaper JB (1998) Diarrhoeaegenic E. coli. Clin Microbiol Rev 11:142–201

    PubMed  CAS  Google Scholar 

  • Navaneethan U, Giannella RA (2008) Mechanisms of infectious diarrhoea. Nat Clin Pract Gastroenterol Hepatol 5:637–647

    PubMed  Google Scholar 

  • Nemeth E, Fajdiga S, Malago JJ, Koninkx JFJG, Tooten PCJ, van Dijk JE (2006) Inhibition of Salmonella-induced IL-8 synthesis and expression of Hsp70 in enterocyte-like Caco-2 cells after exposure to non-starter lactobacilli. Int J Food Microbiol 112:266–274

    PubMed  CAS  Google Scholar 

  • Nishida E, Koyasu S, Sakai H, Yahara I (1986) Calmodulin-regulated binding of the 90 kDa heat shock protein to actin filaments. J Biol Chem 261:16033–16036

    Google Scholar 

  • Nusrat A, von Eichel-Streiber C, Turner JR, Verkade P, Madara JL, Parkos CA (2001) Clostridium difficile toxins disrupt epithelial barrier function by altering membrane microdomain localization of tight junction proteins. Infect Immun 69:1329–1336

    Google Scholar 

  • Ocana VS, Pesce de Ruiz Holgado AA, Nader-Macias ME (1999) Selection of vaginal H2O2-generating Lactobacillus species for probiotic use. Curr Microbiol 38:279–284

    PubMed  CAS  Google Scholar 

  • Oelschlaeger TA, Guerry P, Kopecko DJ (1993) Unusual microtubuledependent endocytosis mechanisms triggered by Campylobacter jejuni and Citrobacter freundii. Proc Natl Acad Sci U S A 90:6884–6888

    PubMed  CAS  Google Scholar 

  • Ofek I, Doyle RJ (1994) Bacterial adhesion to cells and tissues. Chapman and Hall, New York

    Google Scholar 

  • Okeke IN, Lamikanra A, Czeczulin J, Dubovsky F, Kaper JB, Nataro JP (2000) Heterogeneous virulence of enteroaggregative Escherichia coli strains isolated from children in Southwest Nigeria. J Infect Dis 181:252–260

    PubMed  CAS  Google Scholar 

  • Olivier V, Queen J, Satchell KJF (2009) Successful small intestine colonization of adult mice by Vibrio cholerae requires ketamine anesthesia and accessory toxins. PLoS One 4:e7352

    PubMed  Google Scholar 

  • O’Riordan K, Fitzgerald GF (1998) Evaluation of Bifidobacteria for the evaluation of antimicrobial compounds and assessment of performance in cottage cheese at refrigeration temperature. J Appl Microbiol 85:103–114

    PubMed  Google Scholar 

  • Ortega Y, Nagle R, Gilman RH, Watanabe J, Miyagui J, Kanugusuku P (1997) Pathologic and clinical findings in patients with cyclosporiasis and a description of intracellular parasite life-cycle stages. J Infect Dis 176:1584–1589

    PubMed  CAS  Google Scholar 

  • O’Sullivan G (2004) Isolated bifidobacteria that produce siderophores which inhibit growth of Lactococcus lactis. US patent 6,746,672 B2

    Google Scholar 

  • Ovelgönne JH, Koninkx JFJG, Pusztai A, Bardocz S, Kok W, Ewen SW, Hendriks HG, van Dijk JE (2000) Decreased levels of heat shock proteins in gut epithelial cells after exposure to plant lectins. Gut 46:679–687

    PubMed  Google Scholar 

  • Pai R, Kang G (2008) Microbes in the gut: a digestable account of host-symbiont interactions. Indian J Med Res 128:587–594

    PubMed  Google Scholar 

  • Palmer LE, Hobbie S, Galán JE, Bliska JB (1998) YopJ of Yersinia pseudotuberculosis is required for the inhibition of macrophage TNF-a production and downregulation of the MAP kinases p38 and JNK. Mol Microbiol 27:953–965

    PubMed  CAS  Google Scholar 

  • Parassol N, Freitas M, Thoreux K, Dalmasso G, Bourdet-Sicard R, Rampal P (2005) Lactobacillus casei DN-114 001 inhibits the increase in paracellular permeability of enteropathogenic Escherichia coli-infected T84 cells. Res Microbiol 156:256–262

    PubMed  CAS  Google Scholar 

  • Peng L, Li ZR, Green RS, Holzman, IR, Lin J (2009) Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr 139:1619–1625

    PubMed  CAS  Google Scholar 

  • Pusztai A, Ewen SWB, Grant G, Peumans WJ, van Damme EJM, Coates ME, Bardocz S (1995) Lectins and also bacteria modify the glycosylation of gut surface receptors in the rat. Glycoconjugate J 12:22–35

    CAS  Google Scholar 

  • Qin H, Zhang Z, Hang X, Jiang Y (2009) L. plantarum prevents enteroinvasive Escherichia coli-induced tight junction proteins changes in intestinal epithelial cells. BMC Microbiol 9:63

    PubMed  Google Scholar 

  • Que X, Reed SL (2000) Cysteine proteinases and the pathogenesis of amebiasis. Clin Microbiol Rev 13:196–206

    PubMed  CAS  Google Scholar 

  • Raqib R, Sarker P, Bergman P, Ara G, Lindh M, Sack DA, Nasirul Islam KM, Gudmundsson GH, Andersson J, Agerberth B (2006) Improved outcome in shigellosis associated with butyrate induction of an endogenous peptide antibiotic. Proc Natl Acad Sci U S A 103:9178–9183

    PubMed  CAS  Google Scholar 

  • Ratnaike RN (1999) Diarrhoea and constipation in geriatric practice. Cambridge University Press, New York

    Google Scholar 

  • Ravdin JI, Guerrant RL (1981) Role of adherence in cytopathogenic mechanisms of Entamoeba histolytica: study with mammalian tissue culture cells and human erythrocytes. J Clin Invest 68:1305–1313

    PubMed  CAS  Google Scholar 

  • Ravdin JI, Croft BY, Guerrant RL (1980) Cytopathogenic mechanisms of Entamoeba histolytica. J Exp Med 152:377–390

    PubMed  CAS  Google Scholar 

  • Resta-Lenert S, Barrett KE (2003) Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC). Gut 52:988–997

    PubMed  CAS  Google Scholar 

  • Rossi M, Corradini C, Amaretti A, Nicolini M, Pompei A, Zanoni S, Matteuzzi D (2005) Fermentation of fructooligosaccharides and inulin by bifidobacteria: a comparative study in pure and faecal cultures. Appl Environ Microbiol 71:6150–6158

    PubMed  CAS  Google Scholar 

  • Ryan Kenneth J, George CR (2004) Sherris medical microbiology: an introduction to infectious disease, 4th edn. McGraw-Hill, New York, pp 727–730

    Google Scholar 

  • Sack DA, Sack RB, Nair GB, Siddique AK (2004) Cholera. Lancet 363:223–233

    PubMed  CAS  Google Scholar 

  • Sansonetti PJ, Tran VN, Egile C (1999) Rupture of the intestinal epithelial barrier and mucosal invasion by Shigella flexneri. Clin Infect Dis 28:466–475

    PubMed  CAS  Google Scholar 

  • Sarker MR, Carman RJ, McClane BA (1999) Inactivation of the gene (cpe) encoding Clostridium perfringens enterotoxin eliminates the ability of two cpe-positive C. perfringens type A human gastrointestinal disease isolates to affect rabbit ileal loops. Mol Microbiol 33:946–958

    PubMed  CAS  Google Scholar 

  • Servin AL (2004) Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol Rev 28:405–440

    PubMed  CAS  Google Scholar 

  • Sheikh J, Czeczulin JR, Harrington S, Hicks S, Henderson IR, Le Bouguénec C, Gounon P, Phillips A, Nataro JP (2002) A novel dispersin protein in enteroaggregative Escherichia coli. J Clin Invest 110:1329–1337

    PubMed  CAS  Google Scholar 

  • Shogomori H, Futerman AH (2001) Cholera toxin is found in detergent insoluble rafts/domains at the cell surface of hippocampal neurons but is internalized via a raft-independent mechanism. J Biol Chem 276:9182–9188

    PubMed  CAS  Google Scholar 

  • Simon D, David J, Brandt LJ (1994) Studies on the pathogenesis of cryptosporidia-incuced diarrhoea in HIV-infected individuals. Am J Gastroenterol 89:2277–2278

    PubMed  CAS  Google Scholar 

  • Simonova MP, Laukova A, Chrastinova L, Strompfova V, Faix S, Vasilkova Z, Ondruska L, Jurcik R, Rafay J (2009) Enterococcus faecium CCM7420, bacteriocin PPB CCM7420 and their effect in the digestive tract of rabbits. Czech J Anim Sci 54:376–386

    Google Scholar 

  • Simonovic I, Rosenberg J, Koutsouris A, Hecht G (2000) Enteropathogenic Escherichia coli dephosphorylates and dissociates occluding from intestinal epithelial tight junctions. Cell Microbiol 2:305–315

    Google Scholar 

  • SkelkvÃ¥le R, Uemura T (1977) Experimental diarrhoea in human volunteers following oral administration of Clostridium perfringens enterotoxin. J Appl Bacteriol 43:281–286

    Google Scholar 

  • Stern NJ, Svetoch EA, Eruslanov BV, Perelygin VV, Mitsevich EV, Mitsevich IP, Pokhilenko VD, Levchuk VP, Svetoch OE, Seal BS (2006) Isolation of a Lactobacillus salivarius strain and purification of its bacteriocin, which is inhibitory to Campylobacter jejuni in the chicken gastrointestinal system. Antimicrob Agents Chemoth 50:3111–3116

    CAS  Google Scholar 

  • Su C, Brandt LJ (1995) Escherichia coli O157:H7 infection in humans. Ann Intern Med 123:698–714

    PubMed  CAS  Google Scholar 

  • Svetoch EA, Levchuk VP, Pokhilenko VD, Eruslanov BV, Mitsevich EV, Mitsevich IP, Perelygin VV, Stepanshin YG, Stern NJ (2008) Inactivating methicillin-resistant Staphylococcus aureus and other pathogens by use of bacteriocins OR-7 and E 50–52. J Clin Microbiol 46:3863–3865

    PubMed  Google Scholar 

  • Tafazoli F, Zeng CQ, Estes MK, Magnusson KE, Svensson L (2001) NSP4 enterotoxin of rotavirus induces paracellular leakage in polarized epithelial cells. J Virol 75:1540–1546

    Google Scholar 

  • Tien MT, Girardin SE, Regnault B, Le Bourhis L, Dillies MA, Coppée JY, Bourdet-Sicard R, Sansonetti PJ, Pédron T (2006) Anti-inflammatory effect of Lactobacillus casei on Shigella-infected human intestinal epithelial cells. J Immunol 176:1228–1237

    PubMed  CAS  Google Scholar 

  • Truusalu K, Mikelsaar RH, Naaber P, Karki T, Kullisaar T, Zilmer M, Mikelsaar M (2008) Eradication of Salmonella Typhimurium infection in a murine model of typhoid fever with the combination of probiotic Lactobacillus fermentum ME-3 and ofloxacin. BMC Microbiol 8:132

    PubMed  Google Scholar 

  • Uchiya K (1999) A Salmonella virulence protein that inhibits cellular trafficking. EMBO J 18:3924–3933

    PubMed  CAS  Google Scholar 

  • Van Nhieu GT, Guignot J (2009) When Shigella tells the cell to hang on. J Mol Cell Biol 1:64–65

    Google Scholar 

  • Van Nhieu GT, Caron E, Hall A, Sansonetti PJ (1999) IpaC induces actin polymerization and filopodia formation during Shigella entry into epithelial cells. EMBO J 18:3249–3262

    Google Scholar 

  • Walter J (2008) Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl Environ Microbiol 74:4985–4996

    PubMed  CAS  Google Scholar 

  • Wang W, Uzzau S, Goldblum SE, Fasano A (2000) Human zonulin, a potential modulator of intestinal tight junctions. J Cell Sci 113:4435–4440

    Google Scholar 

  • Warny M, Kelly CP (2003) Pathogenicity of Clostridium difficile toxins. In: Hecht G (ed) Microbial pathogenesis and the intestinal epithelial cell. ASM Press, Washington, p 503

    Google Scholar 

  • Warny M, Pepin J, Fang A, Killgore G, Thompson A, Brazier J, Frost E, McDonald LC (2005) Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 366:1079–1084

    PubMed  CAS  Google Scholar 

  • Wells CL, van de Westerlo EM, Jechorek RP, Haines HM, Erlandsen SL (1998) Cytochalasin-induced actin disruption of polarized enterocytes can augment internalization of bacteria. Infect Immun 66:2410–2419

    PubMed  CAS  Google Scholar 

  • Winn W Jr, Allen S, Janda W, Koneman E, Procop G, Schreckenberger P, Woods G (2006) Koneman’s color atlas and textbook of diagnostic microbiology, 6th edn. Lippincott Williams & Wilkins, Philadelphia, pp 1267–1270

    Google Scholar 

  • Yildirim Z, Johnson MG (1998) Characterization and antimicrobial spectrum of bifidocin B, a bacteriocin produced by Bifidobacterium bifidum NCFB 1454. J Food Protect 61:47–51

    CAS  Google Scholar 

  • Yildirim Z, Winters DK, Johnson MG (1999) Purification, amino acid sequence and mode of action of bifidocin B produced by Bifidobacterium bifidum NCFB 1454. J Appl Microbiol 86:45–54

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua J. Malago .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Malago, J.J., Koninkx, J.F. (2011). Probiotic-Pathogen Interactions and Enteric Cytoprotection. In: Malago, J., Koninkx, J., Marinsek-Logar, R. (eds) Probiotic Bacteria and Enteric Infections. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0386-5_13

Download citation

Publish with us

Policies and ethics