Skip to main content

Gravity Wave Influences in the Thermosphere and Ionosphere: Observations and Recent Modeling

  • Chapter
  • First Online:
Aeronomy of the Earth's Atmosphere and Ionosphere

Part of the book series: IAGA Special Sopron Book Series ((IAGA,volume 2))

Abstract

Observational and theoretical studies have suggested gravity wave propagation and influences in the thermosphere and ionosphere for half a century. Gravity waves contribute, or are believed to contribute, to a variety of neutral and electrodynamic phenomena ranging from vertical coupling, energy and momentum transport and deposition, neutral perturbations and accelerations, traveling ionospheric disturbances, ionospheric irregularities, and plasma instabilities under quiet conditions to strong coupling from high to low latitudes and accompanying electrodynamics under storm-time conditions. Our goals here are to briefly review what has been learned to date, to illustrate some of the more recent results indicative of gravity wave effects, and to identify some aspects of neutral dynamics not previously considered that we expect may also have significant influences on neutral dynamics and electrodynamics in the thermosphere and ionosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdu MA, Kherani EA, Batista IS, de Paula ER, Fritts DC, Sobral JHA (2009) Gravity wave initiation of equatorial spread F/plasma bubble irregularities based on observational data from the SpreadFEx campaign. Ann Geophys (SpreadFEx special issue) 27:2607–2622

    Google Scholar 

  • Bretherton FP (1969) Momentum transport by gravity waves. Quart J R Meteorol Soc 404:213–243

    Article  Google Scholar 

  • Chimonas G, Hauser HM, Bennett RD (1996) The excitation of ducted modes by passing internal waves. Phys Fluids (8):1486. doi:10.1063/1.868925

    Google Scholar 

  • Danilov AD (1984) Direct and indirect estimates of turbulence around the turbopause. Adv Space Res 4(4):67–78

    Article  Google Scholar 

  • Djuth FT, Sulzer MP, Elder JH, Wickwar VB (1997) High-resolution studies of atmosphere-ionosphere coupling at Arecibo Observatory, Puerto Rico. Radio Sci 32:2321–2344

    Article  Google Scholar 

  • Djuth FT, Sulzer MP, Gonzales SA, Mathews JD, Elder JH, Walterscheid RL (2004) A continuum of gravity waves in the Arecibo thermosphere? Geophys Res Lett 31. doi:10.1029/2003GL019376

    Google Scholar 

  • Drazin, PG (1977) On the instability of an internal gravity wave. Proc R Soc Lond 356:411–432

    Article  Google Scholar 

  • Earle GD, Musumba AM, Vadas SL (2008) Satellite-based measurements of gravity wave-induced midlatitude plasma density perturbations. J Geophys Res 113:A03303. doi:10.1029/2007JA012766

    Article  Google Scholar 

  • Einaudi F, Hines CO (1970) WKB approximation in application to acoustic-gravity waves. Can J Phys 48(12):1458–1471

    Google Scholar 

  • Fritts DC, Abdu MA, Batista BR, Batista IS, Batista PP, Buriti R, Clemesha BR, Dautermann T, de Paula E, Fechine BJ, Fejer B, Gobbi D, Haase J, Kamalabadi F, Kherani EA, Laughman B, Lima PP, Liu H-L, Medeiros A, Pautet D, Sao Sabbas F, Sobral JHA, Stamus P, Takahashi H, Taylor MJ, Vadas SL, Vargas F, Wrasse C (2009a) Overview and summary of the Spread F Experiment (SpreadFEx). Ann Geophys 27:2141–2155

    Article  Google Scholar 

  • Fritts DC, Alexander MJ (2003) Gravity dynamics and effects in the middle atmosphere. Rev Geophys 41. doi:10.1029/2001RG000106

    Google Scholar 

  • Fritts DC, Arendt S, Andreassen O (1998) Vorticity dynamics in a breaking internal gravity wave, 2. Vortex interactions and transition to turbulence. J Fluid Mech 367:47–65

    Article  Google Scholar 

  • Fritts DC, Dunkerton TJ (1984) A quasi-linear study of gravity wave saturation and self acceleration. J Atmos Sci 41:3272–3289

    Article  Google Scholar 

  • Fritts DC, Garten JF, Andreassen O (1996) Wave breaking and transition to turbulence in stratified shear flows. J Atmos Sci 53:1057–1085

    Article  Google Scholar 

  • Fritts DC, Isler JR, Andreassen O (1994) Gravity wave breaking in two and three dimensions, 2. Three-dimensional evolution and instability structure. J Geophys Res 99:8109–8123

    Article  Google Scholar 

  • Fritts DC, Vadas SL (2008) Gravity wave penetration into the thermosphere: sensitivity to solar cycle variations and mean winds. Ann Geophys (SpreadFEx special issue) 26:3841–3861

    Google Scholar 

  • Fritts DC, Vadas SL, Riggin DM, Abdu MA, Batista IS, Takahashi H, Medeiros A, Kamalabadi F, Liu HL, Fejer BJ, Taylor MJ (2008) Gravity wave and tidal influences on equatorial spread F based on observations during the Spread F Experiment (SpreadFEx). Ann Geophys (SpreadFEx special issue) 26:3235–3252

    Google Scholar 

  • Fritts DC, Vadas SA, Yamada Y (2002) An estimate of strong local gravity wave body forcing based on OH airglow and meteor radar observations. Geophys Res Lett 29(10). doi:10.1029/2001GL013753

    Google Scholar 

  • Fritts DC, Wang L, Werne J, Lund T, Wan K (2009b) Gravity wave instability dynamics at high Reynolds numbers, 1: wave field evolution at large amplitudes and high frequencies. J Atmos Sci 66:1126–1148. doi:10.1175/2008JAS2726.1

    Article  Google Scholar 

  • Fritts DC, Wang L, Werne J, Lund T, Wan K (2009c) Gravity wave instability dynamics at high Reynolds numbers, 2: turbulence evolution, structure, and anisotropy. J Atmos Sci 66:1149–1171. doi:10.1175/2008JAS2727.1

    Article  Google Scholar 

  • Fuller-Rowell TJ, Codrescu MV, Moffett RJ, Quegan S (1994) Response of the thermosphere and ionosphere to geomagnetic storms. J Geophys Res 99(A3):3893–3914

    Article  Google Scholar 

  • Fuller-Rowell TJ, Millward GH, Richmond AD, Codrescu MV (2002) Storm-timechanges in the upper atmosphere at low latitudes. J Atmos Solar-Terr Phys 65:1383–1391

    Article  Google Scholar 

  • Grimshaw RHJ (1977) The modulation of an internal gravity wave packet and the resonance with the mean motion. Stud App Math 56:241–266

    Google Scholar 

  • Hall CM, Manson AH, Meek CE (1998), Seasonal variation of the turbopause: One year of turbulence investigation at 69°N by the joint University of Tromsø/University of Saskatchewan MF radar. J Geophys Res 103(D22):28,769–28,773

    Article  Google Scholar 

  • Hasselmann K (1967) A criterion for non-linear wave stability. J Fluid Mech 30:737–739

    Article  Google Scholar 

  • Hickey MP, Cole KD (1987) A quartic dispersion relation for internal gravity waves in the thermosphere. J Atmos Solar-Terr Phys 49:889–899

    Article  Google Scholar 

  • Hickey MP, Cole KD (1988) A numerical model for gravity wave dissipation in the atmosphere. J Atmos Solar-Terr Phys 50(8):689–697

    Article  Google Scholar 

  • Hines CO (1960) Internal gravity waves at ionospheric heights. Can J Phys 38(11):1441–1481

    Google Scholar 

  • Hines CO (1991) The saturation of gravity waves in the middle atmosphere. Part III: formation of the turbopause and of turbulent layers beneath it. J Atmos Sci 48(11):1380–1385

    Article  Google Scholar 

  • Hocke K, Schlegel K (1996) A review of atmospheric gravity waves and traveling ionospheric disturbances: 1982–1995. Ann Geophys 14:917–940

    Google Scholar 

  • Hocke K, Tsuda T (2001) Gravity waves and ionospheric irregularities over tropical convection zones observed by GPS/MET radio occultation. Geophys Res Lett 28(14):2815–2818

    Article  Google Scholar 

  • Horinouchi T (2004) Simulated breaking of convectively generated mesoscale gravity waves and airglow modulation. J Atmos Solar-Terr Phys 66(6–9):755–767

    Article  Google Scholar 

  • Horinouchi T, Nakamura T, Kosaka J (2007) Convectively generated mesoscale gravity waves simulated throughout the middle atmosphere. Geophys Res Lett 29(21). doi:10.1029/2002GL016069

    Google Scholar 

  • Huang CS, Kelley MC (1996) Nonlinear evolution of equatorial spread-F. 2. Gravity wave seeding of Rayleigh-Taylor instability J Geophys Res 101:293

    Google Scholar 

  • Huang CS, Kelley MC, Hysell DL (1993) Nonlinear Rayleigh-Taylor instabilities, atmospheric gravity waves, and equatorial spread-F. J Geophys Res 98:15,631

    Google Scholar 

  • Huang C, Zhang S, Yi F (2002) A numerical study of the nonlinear propagation of gravity-wave packets excited by temperature disturbance. Chi J Space Sci 22:330–338

    Google Scholar 

  • Huang C, Zhang S, Yi F (2009) Gravity wave excitation through resonant interaction in a compressible atmosphere. Geophys Res Lett 36(1):L01803. doi:10.1029/2008GL035575

    Article  Google Scholar 

  • Hysell DL, Kelley MC, Swartz WE, Woodman RF (1990) Seeding and layering of equatorial spread-F. J Geophys Res 95:17,253

    Article  Google Scholar 

  • Innis JL, Conde M (2002) Characterization of acoustic–gravity waves in the upper thermosphere using dynamics explorer 2 wind and temperature spectrometer (WATS) and neutral atmosphere composition spectrometer (NACS) data. J Geophys Res 107(A12):1418. doi:10.1029/2002JA009370

    Article  Google Scholar 

  • Innis JL, Greet PA, Dyson PL (2001) Evidence for thermospheric gravity waves in the southern polar cap from ground-based vertical velocity and photometric observations. Ann Geophys 19:533–543

    Article  Google Scholar 

  • Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94

    Article  Google Scholar 

  • Kamalabadi F et al (2009) Electron densities in the lower thermosphere from GUVI 1356 tomographic inversions in support of SpreadFEx. Ann Geophys (SpreadFEx special issue) 27:2439–2448

    Google Scholar 

  • Kherani EA, Abdu MA, de Paula ER, Fritts DC, Sobral JHA, de Meneses FC Jr (2009) The impact of gravity waves rising from convection in the lower atmosphere on the generation and nonlinear evolution of equatorial plasma bubbles. Ann Geophys (SpreadFEx special issue) 27:511–523

    Google Scholar 

  • Kirchengast G, Hocke K, Schlegel K (1995), Gravity waves determined by modeling of traveling ionospheric disturbances in incoherent scatter radar measurements. Radio Sci 30(5):1551–1567

    Article  Google Scholar 

  • Klostermeyer J (1969) Gravity waves in the F-region. J Atmos Solar-Terr Phys 31(1):25–45. doi:10.1016/0021-9169(69)90079-8

    Article  Google Scholar 

  • Klostermeyer J (1972) Numerical calculation of gravity wave propagation in a realistic thermosphere. J Atmos Solar-Terr Phys 34(5):765–774. doi:10.1016/0021-9169(72)90109-2

    Article  Google Scholar 

  • Klostermeyer J (1978) Nonlinear investigation of the spatial resonance effect in the nighttime equatorial F region. J Geophys Res 83:3753–3760

    Article  Google Scholar 

  • Klostermeyer J (1991) Two-and three-dimensional parametric instabilities in finite amplitude internal gravity waves. Geophys Astrophys Fluid Dyn 61:1–25

    Article  Google Scholar 

  • Kudeki E, Akgiray A, Milla M, Chau JL, Hysell DL (2007) Equatorial spread-F initiation: post-sunset vortex, thermospheric winds, gravity waves. J Atmos Solar-Terr Phys 69:2416–2427

    Article  Google Scholar 

  • Lane TP, Reeder MJ, Clark TL (2001) Numerical modeling of gravity wave generation by deep tropical convection. J Atmos Sci 58(10):1249–1274

    Article  Google Scholar 

  • Lighthill MJ (1978) Waves in fluids. Cambridge University Press, Cambridge

    Google Scholar 

  • Livneh DJ, Seker I, Djuth FT, Mathews JD (2007) Continuous quasiperiodic thermospheric waves over Arecibo. J Geophys Res 112:A07313. doi:10.1029/2006JA012225

    Article  Google Scholar 

  • Lombard, PN, Riley JJ (1996) On the breakdown into turbulence of propagating internal waves. Dyn Atmos Ocean 23:345–355

    Article  Google Scholar 

  • Lund T, Fritts DC (2011) Gravity wave breaking and turbulence generation in the thermosphere. Geophys Res Lett (to be submitted)

    Google Scholar 

  • Luo Z, Fritts DC (1993) Gravity wave excitation by geostrophic adjustment of the jet stream, part ii: three-dimensional forcing. J Atmos Sci 50:104–115

    Article  Google Scholar 

  • Ma SY, Schlegel K, Xu JS (1998) Case studies of the propagation characteristics of auroral TIDS with EISCAT CP2 data using maximum entropy cross-spectral analysis. Ann Geophys 16(2):161–167. doi:10.1007/s00585-998-0161-3

    Article  Google Scholar 

  • Marks CJ, Eckermann SD (1995) A three-dimensional nonhydrostatic ray-tracing model for gravity waves: formulation and preliminary results for the middle atmosphere. J Atmos Sci 52(11):1959–1984

    Article  Google Scholar 

  • Mayr HG, Harris I, Herrero FA, Spencer NW, Varosil F, Pesnell WD (1990) Thermospheric gravity waves: observations and interpretation using the transfer function model (TFM). Space Sci Revs 54:297–375. doi:10.1007/BF00177800

    Article  Google Scholar 

  • McClure JP, Hanson WB, Hoffman JF (1977) Plasma bubble and irregularities in the equatorial ionosphere. J Geophys Res 82:2650

    Article  Google Scholar 

  • McClure JP, Singh S, Bamgboye DK, Johnson FS, Kil H (1998) Occurrence of equatorial F region irregularities: evidence for tropospheric seeding. J Geophys Res 103:29,119–29,135

    Article  Google Scholar 

  • McIntyre ME (1973) Mean motions and impulse of a guided internal gravity wave packet. J Fluid Mech 60:801–811

    Article  Google Scholar 

  • Mendillo M, Baumgardner J, Nottingham D, Aarons J, Reinisch B, Scali J, Kelley M (1997) Investigation of thermospheric-ionospheric dynamics with 6300-Ã… images from the Arecibo observatory. J Geophys Res 102(A4):7331–7343

    Article  Google Scholar 

  • Mied RR (1976) The occurrence of parametric instabilities in finite-amplitude internal gravity waves. J Fluid Mech 78:763–784

    Article  Google Scholar 

  • Nicolls MJ, Kelley MC, Coster AJ, Gonzalez SA, Makela JJ (2004) Imaging the structure of a large-scale TID using ISR and TEC data. Geophys Res Lett 31:L09812. doi:10.1029/2004GL019797

    Article  Google Scholar 

  • Oliver WL, Otsuka Y, Sato M, Takami T, Fukao S (1997) A climatology of F region gravity wave propagation over the middle and upper atmosphere radar. J Geophys Res 102:14,499–14,512

    Google Scholar 

  • Ogawa T, Balan N, Otsuka Y, Shiokawa K, Ihara C, Shimomai T, Saito A (2002) Obervations and modeling of 630 nm airglow and total electron content associated with traveling ionospheric disturbances over Shigaraki, Japan. Earth Planets Space 54:45–56

    Google Scholar 

  • Sentman DD, Wescott EM, Picard RH, Winick JR, Stenbaek-Nielson HC, Dewan EM, Moudry DR, São Sabbas FT, Heavner MJ (2003) Simultaneous observation of mesospheric gravity waves and sprites generated by a Midwestern thunderstorm. J Atmos Solar-Terr Phys 65:537–550

    Article  Google Scholar 

  • Shiokawa K et al (2002) A large-scale traveling ionospheric disturbance during the magnetic storm of 15 September 1999. J Geophys Res 107(A6):1088. doi:10.1029/2001JA000245

    Article  Google Scholar 

  • Sidi C, Teitelbaum H (1978) Thin shear turbulent layers within the lower thermosphere induced by non-linear interaction between tides and gravity waves. J Atmos Solar-Terr Phys 40(5):529–540. doi:10.1016/0021-9169(78)90090-9

    Article  Google Scholar 

  • Snively JB, Pasko VP (2008) Excitation of ducted gravity waves in the lower thermosphere by tropospheric sources. J Geophys Res 113:A06303. doi:10.1029/2007JA012693

    Article  Google Scholar 

  • Sonmor LJ, Klaassen GP (1997) Toward a unified theory of gravity wave stability. J Atmos Sci 54(22):2655–2680

    Article  Google Scholar 

  • Sutherland BR (1999) Propagation and reflection of large amplitude internal gravity waves. Phys Fluids 11:1081–1090

    Article  Google Scholar 

  • Sutherland BR (2000) Internal wave reflection in uniform shear. Quart J R Meteorol Soc 126(570):3255–3286

    Article  Google Scholar 

  • Sutherland BR (2001) Finite-amplitude internal wavepacket dispersion and breaking. J Fluid Mech 429:343–380

    Article  Google Scholar 

  • Sutherland BR (2006) Internal wave instability: wave-wave versus wave-induced mean flow interactions. Phys Fluids 18:074107. doi:10.1063/1.2219102

    Article  Google Scholar 

  • Vadas SL (2007) Horizontal and vertical propagation, and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources. J Geophys Res 112:A06305. doi:10.1029/2006JA011845

    Article  Google Scholar 

  • Vadas SL, Fritts DC (2001) Gravity wave radiation and mean responses to local body forces in the atmosphere. J Atmos Sci 58:2249–2279

    Article  Google Scholar 

  • Vadas SL, Fritts DC (2002) The importance of spatial variability in the generation of secondary gravity waves from local body forces. Geophys Res Lett 29(20). doi: 10.1029/2002GL015574

    Google Scholar 

  • Vadas SL, Fritts DC (2004) Thermospheric responses to gravity waves arising from mesoscale convective complexes. J Atmos Solar-Terr Phys 66:781–804

    Article  Google Scholar 

  • Vadas SL, Fritts DC (2005) Thermospheric responses to gravity waves: influences of increasing viscosity and thermal diffusivity. J Geophys Res 110:D15103. doi:10.1029/2004JD005574

    Article  Google Scholar 

  • Vadas SL, Fritts DC (2006) The influence of increasing temperature and solar variability on gravity wave structure and dissipation in the thermosphere. J Geophys Res (TIMED special issue) 111:A10812. doi:10.1029/2005JA011510

    Google Scholar 

  • Vadas SL, Fritts DC (2009) Reconstruction of the gravity wave field from convective plumes via ray tracing. Ann Geophys (SpreadFEx special issue) 27(1):147–177

    Google Scholar 

  • Vadas SL, Liu H-L (2009) Generation of large-scale gravity waves and neutral winds in the thermosphere from the dissipation of convectively generated gravity waves. J Geophys Res 114:A10310. doi:10.1029/2009JA014108

    Article  Google Scholar 

  • Vadas SL, Nicolls M (2008) Using PFISR measurements and gravity wave dissipative theory to determine the neutral, background thermospheric winds. Geophys Res Lett 35:L02105. doi:10.1029/2007GL031522

    Article  Google Scholar 

  • Vadas SL, Nicolls M (2009) Temporal evolution of neutral, thermospheric winds and plasma response using PFISR measurements of gravity waves. J Atmos Solar-Terr Phys 71:740–770

    Google Scholar 

  • Vadas SL, Taylor MJ, Pautet P-D, Stamus P, Fritts DC, Liu H-L, Sao Sabbas F, Rampinelli VT, Batista P, Takahashi H (2009) Convection: the likely source of the medium-scale gravity waves observed in the OH airglow layer near Brasilia, Brazil, during the SpreadFEx campaign. Ann Geophys (SpreadFEx special issue) 27:231–259

    Google Scholar 

  • Walterscheid RL, Schubert G (1990) Nonlinear evolution of an upward propagating gravity wave: overturning, convection, transience and turbulence. J Atmos Sci 47:101–125

    Article  Google Scholar 

  • Whitham GB (1965) A general approach to linear and nonlinear dispersive waves using a Lagrangian. J Fluid Mech 22:273–283

    Article  Google Scholar 

  • Whitham GB (1974) Linear and nonlinear waves. Wiley, New York, NY

    Google Scholar 

  • Yamada Y, Fukunishi H, Nakamura T, Tsuda T (2001) Breakdown of small-scale quasi-stationary gravity wave and transition to turbulence observed in OH airglow. Geophys Res Lett 28:2153–2156

    Article  Google Scholar 

  • Yeh KC, Liu CH (1981) The instability of atmospheric gravity waves through wave-wave interactions. J Geophys Res 86(C10):9722–9728

    Article  Google Scholar 

  • Yue J, Vadas SL, She C-Y, Nakamura T, Reising S, Krueger D, Liu H-Li, Stamus P, Thorsen D, Lyons W, Li T (2009) A study of OH imager observed concentric gravity waves near Fort Collins on 11 May 2004. J Geophys Res 114:D06104. doi:10.1029/2008JD011244

    Article  Google Scholar 

Download references

Acknowledgments

Preparation of this paper was supported by AFOSR contract FA9550-09-C-0197, NASA contract NNH09CF40C, and NSF grant ATM-0836407. We also acknowledge the DoD High Performance Computing Modernization Office for computational resources employed for the simulations described.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Fritts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Fritts, D.C., Lund, T.S. (2011). Gravity Wave Influences in the Thermosphere and Ionosphere: Observations and Recent Modeling. In: Abdu, M., Pancheva, D. (eds) Aeronomy of the Earth's Atmosphere and Ionosphere. IAGA Special Sopron Book Series, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0326-1_8

Download citation

Publish with us

Policies and ethics