Skip to main content

Introduction to Mechanistic Spatial Models for Social-Ecological Systems

  • Chapter
  • First Online:
Spatial Resilience in Social-Ecological Systems
  • 2281 Accesses

Abstract

Modelling has played an important role in the development of systems thinking. It remains a central and important tool in theoretical and empirical investigations of social-ecological systems. This chapter provides the context and some of the conceptual and methodological background that will be necessary to understand the examples and models that are discussed in the next chapter, which focuses more explicitly on spatial resilience and presents some more detailed examples. Catering for an interdisciplinary audience is challenging and my intent in this chapter is to provide some background for the interested reader who has a limited background in modelling. Readers who are already highly familiar with the process of modelling and the development of spatial models should feel at liberty to skim or skip this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, T. F. H., & Starr, T. B. (1982). Hierarchy: Perspectives for ecological complexity. Chicago: The University of Chicago Press.

    Google Scholar 

  • Beinhocker, E. D. (2007). The origin of wealth: Evolution, complexity, and the radical remaking of economics. London: Random House Business Books.

    Google Scholar 

  • Berryman, A. A. (1992). The origins and evolution of predator-prey theory. Ecology, 73, 1530–1535.

    Article  Google Scholar 

  • Bohr, N. (1928). The quantum postulate and the recent development of atomic theory. Nature, 121, 580.

    Article  CAS  Google Scholar 

  • Carpenter, S. R., Cole, J.J., Hodgson, J.R., Michael, J. E., Pace, M. L., Bade, D., et al. (2001). Trophic cascades, nutrients, and lake productivity: Whole-lake experiments. Ecological Monographs, 71, 163–186.

    Article  Google Scholar 

  • Collingham, Y. C., Hill, M. O., & Huntley, B. (1996). The migration of sessile organisms: A simulation model with measurable parameters. Journal of Vegetation Science, 7, 831–846.

    Article  Google Scholar 

  • Connell, J. H., & Slatyer, R. O. (1977). Mechanisms of succession in natural communities and their role in community stability and organization. American Naturalist, 111, 1119–1144.

    Article  Google Scholar 

  • Cumming, G. (2002). Habitat shape, species invasions, and reserve design: Insights from simple models. Conservation Ecology, 6, 3.

    Google Scholar 

  • Darbyson, E., Locke, A., Hanson, J. M., & Willison, J. H. M. (2009). Marine boating habits and the potential for spread of invasive species in the Gulf of St. Lawrence. Aquatic Invasions, 4, 87–94.

    Article  Google Scholar 

  • Darwin, C. (1859). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: John Murray.

    Google Scholar 

  • Durrett, R., & Levin, S. A. (1994). Stochastic spatial models – A users guide to ecological applications. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 343, 329–350.

    Article  Google Scholar 

  • Fisher, R. A. (1937). The wave of advance of advantageous genes. Annals of Eugenics, 7, 353–369.

    Google Scholar 

  • Forman, R. T. T. (1995). Land mosaics: The ecology of landscapes and regions. Cambridge: Cambridge University Press.

    Google Scholar 

  • Gardner, M. (1970). Mathematical games: The fantastic combinations of John Conway’s new solitaire game “life”. Scientific American, 223, 120–123.

    Article  Google Scholar 

  • Grimm, V. (1999). Ten years of individual-based modelling in ecology: What have we learned and what could we learn in the future? Ecological Modelling, 115, 129–148.

    Article  Google Scholar 

  • Hanski, I. (1997). Predictive and practical metapopulation models: the incidence function approach. In: D. Tilman & P. Kareiva (Eds.), Spatial ecology: The role of space in population dynamics and interspecific interactions (pp. 21–45). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Hardy, G. H. (1908). Mendelian proportions in a mixed population. Science, 28, 49–50.

    Article  PubMed  CAS  Google Scholar 

  • Holt, R. D. (1992). A neglected facet of island biogeography: The role of internal spatial dynamics in area effects. Theoretical Population Biology, 41, 354–371.

    Article  Google Scholar 

  • Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeography. Princeton: Princeton University Press.

    Google Scholar 

  • Isaaks, E. H., & Srivastava, R. M. (1989). An introduction to applied geostatistics. Oxford: Oxford University Press.

    Google Scholar 

  • Kay, J. J., & Boyle, M. (2008). Self-organizing, holarchic, open systems (SOHOs). In D. Waltner-Toews, J. J. Kay, & E. Lister N-M (Eds.), The ecosystem approach: Complexity, uncertainty, and managing for sustainability. New York: Columbia University Press.

    Google Scholar 

  • Levin, S. A. (1992). The problem of pattern and scale in ecology. Ecology, 73, 1943–1967.

    Article  Google Scholar 

  • Levins, R. (1969). Some demographic and genetic consequences of environmental heterogeneity for biological control. Bulletin of the Entomological Society of America, 15, 237–240.

    Google Scholar 

  • Lindenmayer, D. B., & Fischer, J. (2006). Habitat fragmentation and landscape change. Washington, DC: Island Press.

    Google Scholar 

  • MacArthur, R. H., & Wilson, E. O. (1967). The theory of island biogeography. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Medawar, P. B. (1967). The art of the soluble. London: Methuen.

    Google Scholar 

  • Morris, W. T. (1967). On the art of modeling. Management Science Series B, Managerial, 13, B707–B717.

    Google Scholar 

  • Nowak, M. A., Bonhoeffer, S., & May, R. M. (1994). Spatial games and the maintenance of cooperation. Proceedings of the National Academy of Sciences of the United States of America, 91, 4877–4881.

    Article  PubMed  CAS  Google Scholar 

  • Odum, H. T. (1995). Environmental accounting: EMERGY and environmental decision making. Chichester: Wiley.

    Google Scholar 

  • Okubo, A. (1980). Diffusion and ecological problems: Mathematical models. Berlin: Springer.

    Google Scholar 

  • Prugh, L. R., Hodges, K. E., Sinclair, A. R. E., & Brashares, J. S. (2008). Effect of habitat area and isolation on fragmented animal populations. Proceedings of the National Academy of Sciences, 105, 20770–20775.

    Article  CAS  Google Scholar 

  • Roughgarden, J. (1998). Primer of ecological theory. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Simon, H. A. (1962). The architecture of complexity. Proceedings of the American Philosophical Society, 106, 467–482.

    Google Scholar 

  • Simon, H. A. (1976). How complex are complex systems? PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, 2, 507–522.

    Google Scholar 

  • Skellam, J. G. (1951). Random dispersal in theoretical populations. Biometrika, 38, 196–218.

    PubMed  CAS  Google Scholar 

  • Starfield, A. M. (1997). A pragmatic approach to modeling for wildlife management. Journal of Wildlife Management, 61, 261–270.

    Article  Google Scholar 

  • Starfield, A. M., & Bleloch, A. (1991). Building models for conservation and wildlife management (2nd ed.). Edina, MN: Interaction.

    Google Scholar 

  • Stirling, A. (2003). Risk, uncertainty and precaution: Some instrumental implications from the social sciences. In F. Berkhout, M. Leach, & I. Scoones (Eds.), Negotiating environmental change: New perspectives from social science. Cheltenham: Edward Elgar.

    Google Scholar 

  • Stirling, A. (2007). Risk, precaution and science: Towards a more constructive policy debate. European Molecular Biology Organization (EMBO) Reports, 8, 309–315.

    CAS  Google Scholar 

  • Tilman, D., & Kareiva, P. (1997). Spatial ecology: The role of space in population dynamics and interspecific interactions. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Tilman, D., Lehman, C. L., & Kareiva, P. (1997). Population dynamics in spatial habitats. In D. Tilman & P. Kareiva (Eds.), Spatial ecology: The role of space in population dynamics and interspecific interactions (pp. 3–20). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Urban, D., & Keitt, T. (2001). Landscape connectivity: A graph-theoretic perspective. Ecology, 82, 1205–1218.

    Article  Google Scholar 

  • Urban, D. L., Minor, E. S., Tremi, E. A., & Schcik, R. S. (2009). Graph models of habitat mosaics. Ecology Letters, 12, 260–273.

    Article  PubMed  Google Scholar 

  • von Humboldt, A., & Bonpland, A. (1807 (reprint 2010)). In S. T. Jackson (Ed.), Essay on the geography of plants (296 pp.). Chicago: University of Chicago Press.

    Google Scholar 

  • Weiher, E., & Keddy, P. A. (1999). Ecological assembly rules: Perspectives, advances, retreats. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Whittaker, R. J., & Fernández-Palacios, J. M. (2007). Island biogeography: Ecology, evolution, and conservation (2nd ed., 412 pp.). Oxford: Oxford University Press.

    Google Scholar 

  • Wilson, W. (1998). Resolving discrepancies between deterministic population models and individual-based simulations. American Naturalist, 151, 116–134.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme S. Cumming .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cumming, G.S. (2011). Introduction to Mechanistic Spatial Models for Social-Ecological Systems. In: Spatial Resilience in Social-Ecological Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0307-0_4

Download citation

Publish with us

Policies and ethics