Skip to main content

Role of Inflammation in the Early Stages of Liver Metastasis

  • Chapter
  • First Online:
Liver Metastasis: Biology and Clinical Management

Part of the book series: Cancer Metastasis - Biology and Treatment ((CMBT,volume 16))

Abstract

Clinical investigations have revealed compelling data suggesting the presence of synergistic interactions between inflammatory processes and liver metastasis. A large body of evidence at the cellular and molecular levels corroborates these clinical findings. Indeed, the liver microenvironment has the capacity to generate and respond to inflammatory signals and cancer progression is characterized by inflammation. Inflammation can have a direct impact on the phenotype of circulating tumor cells, it can affect cell adhesion profiles within the liver’s microvasculature and it can potentiate interactions between circulating cancer cells and circulating immune cells. This chapter outlines the major mechanisms by which the liver microenvironment responds to inflammatory cues and how this response affects the ability of circulating tumor cells to colonize the liver and generate metastases. This crossroad between inflammation and liver metastasis is an important avenue for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMDM:

bone marrow derived macrophage

CAM:

cell adhesion molecule

CTC:

circulating tumor cell

HSC:

hepatic stellate sell

IVM:

intravital microscopy

SEC:

sinusoidal endothelial cell

NKT:

natural killer T cell

ICAM-1:

intercellular adhesion molecule 1

LFA-1:

lymphocyte function-associated antigen 1

PECAM-1:

platelet endothelial cell adhesion molecule 1 or CD31

PSGL-1:

P-selectin glycoprotein ligand 1

sLex :

Sialyl Lewis X

sLea :

Sialyl Lewis A

VLA-4:

Very late antigen 4

ESL-1:

E-selectin ligand 1

CXCR2:

CXCL1 and CXCL 7 receptor

IL-1:

interleukin 1

IL-6:

interleukin 6

IL-8:

interleukin 8

IP-10:

interferon-gamma-induced protein or CXCL10

IFN-γ:

inteferon γ

KC/GRO:

CXCL1

LPS:

lipopolysaccharide

LTA:

lipotechoic acid

Mac-1:

macrophage-1 antigen. Composed of CD11b and CD18

MadCAM:

mucosal vascular addressin cell adhesion molecule 1

MIP-1:

macrophage Inflammatory Protein 1

MIP-2:

macrophage Inflammatory Protein 2 or CXCL2

MIP-3:

macrophage inflammatory protein 3 or CCL20

MCP-1:

monocyte Chemotactic Protein 1 or CCL2 chemokine

RANTES:

regulated upon Activation, Normal T-cell Expressed and Secreted. Also known as CCL-5 chemokine

TGF-β:

transforming growth factor β

TLR:

toll-like receptor

TNF-α:

tumor necrosis factor α

TNFR1:

tumor necrosis factor receptor 1

TNFR2:

tumor necrosis factor receptor 2

ERK:

extracellular signal-regulated kinases

JNK:

c-Jun N-terminal kinases

MAPK:

mitogen activated protein kinase

MyD88:

myeloid differentiation primary response gene 88

NF-κB:

nuclear factor kappa-light-chain of activated B cells

PI3K:

phosphoinositide 3-kinase

H-59:

murine Lewis lung carcinoma cell line, heavily metastatic to liver.

CX-1:

human colon adenocarcinoma cell line metastatic to liver.

M-27:

murine Lewis lung carcinoma cell line, poorly metastatic to liver.

MIP-101:

human colon adenocarcinoma cell line poorly metastatic to liver.

MMP:

matrix metalloproteinase

TSU68:

tyrosine kinase inhibitor

FGFR1:

fibroblast growth factor receptor 1

PDGFR:

platelet derived growth factor receptor

VEGFR2:

vascular endothelial growth factor receptor 2

GFP:

green fluorescent protein

References

  1. Townsend CM, Beauchamp RD, Evers BM, Mattox KL (2008) Townsend: Sabiston textbook of surgery, 18th edn. Saunders Elsevier, Philadelphia, PA

    Google Scholar 

  2. Kumar V, Abbas A, Fausto N, Aster JC (2009) Robbins and Cotran pathologic basis of disease, 8th edn. Saunders Elsevier, Philidelphia, PA

    Google Scholar 

  3. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer related inflammation. Nature 454:436–444

    PubMed  CAS  Google Scholar 

  4. Rizk NP et al (2004) The impact of complications on outcomes after resection for esophageal and gastroesophageal junction carcinoma. J Am Coll Surg 198:42–50

    PubMed  Google Scholar 

  5. Murthy BL et al (2007) Postoperative wound complications and systemic recurrence in breast cancer. Br J Cancer 97:1211–1217

    PubMed  CAS  Google Scholar 

  6. Laurent C et al (2003) Influence of postoperative morbidity on long-term survival following liver resection for colorectal metastases. Br J Surg 90:1131–1136

    PubMed  CAS  Google Scholar 

  7. Lagarde SM et al (2008) Postoperative complications after esophagectomy for adenocarcinoma of the esophagus are related to timing of death due to recurrence. Ann Surg 247:71–76

    PubMed  Google Scholar 

  8. Hirai T et al (1998) Poor prognosis in esophageal cancer patients with postoperative complications. Surg Today 28:576–579

    PubMed  CAS  Google Scholar 

  9. Hirai T, Matsumoto H, Yamashita K, Urakami A, Iki K, Yamamura M, Tsunoda T (2005) Surgical oncotaxis – excessive surgical stress and postoperative complications contribute to enhanced metastasis, resulting in a poor prognosis for cancer patients. Ann Thorac Cardiovasc Surg 11:4–6

    PubMed  Google Scholar 

  10. Fujita S et al (1993) Anastomotic leakage after colorectal cancer surgery: a risk factor for recurrence and poor prognosis. Jpn J Clin Oncol 23:299–302

    PubMed  CAS  Google Scholar 

  11. Ferri LE et al (2006) The influence of technical complications on postoperative outcome and survival after esophagectomy. Ann Surg Oncol 13:557–564

    PubMed  Google Scholar 

  12. de Melo GM et al (2001) Risk factors for postoperative complications in oral cancer and their prognostic implications. Arch Otolaryngol Head Neck Surg 127:828–833

    PubMed  Google Scholar 

  13. Lacy AM, Delgado S, Castells A, Prins HA, Arroyo V, Ibarzabal A, Pique JM (2008) The long-term results of a randomized clinical trial of laparoscopy-assisted versus open surgery for colon cancer. Ann Surg 248:1–7

    PubMed  Google Scholar 

  14. Mantovani A (2009) Cancer: inflaming metastasis. Nature 457:36–37

    PubMed  CAS  Google Scholar 

  15. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    PubMed  CAS  Google Scholar 

  16. Oppenheimer SB (2006) Cellular basis of cancer metastasis: a review of fundamentals and new advances. Acta Histochemica 108:327–334

    PubMed  CAS  Google Scholar 

  17. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–1659

    PubMed  CAS  Google Scholar 

  18. Adams DH, Eksteen B, Curbishley SM (2008) Immunology of the gut and liver: a love/hate relationship. Gut 57:838–848

    PubMed  CAS  Google Scholar 

  19. Ramadori G, Moriconi F, Malik I, Dudas J (2008) Physiology and pathophysiology of liver inflammation, damage and repair. J Physiol Pharmacol 59:107–117

    PubMed  Google Scholar 

  20. Afford SC and Lalor PF (2006) Cell and molecular mechanisms in the development of chronic liver inflammation. In: Ali S, Friedman SL, Mann DA (eds) Liver diseases biochemical mechanisms and new therapeutic insights, pp 147–163. Science Publishers, Enfield, NH

    Google Scholar 

  21. Miles FL, Pruitt FL, van Golen KL, Cooper CR (2007) Stepping out of the flow: capillary extravasation in cancer metastasis. Clin Exp Metast 25:305–324

    Google Scholar 

  22. Tonnensen MG, Anderson DC, Springer TA et al (1989) Adherence of neutrophils to cultured human microvascular endothelial cells. Stimulation by chemotactic peptides and lipid mediators and dependence upon Mac-1, LFA-1, p150,95 glycoprotein family. J Clin Invest 83:637–646

    Google Scholar 

  23. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458

    PubMed  CAS  Google Scholar 

  24. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572

    PubMed  CAS  Google Scholar 

  25. Brunk DK, Goetz DJ, Hammer DA (1996) Sialyl Lewis(x)/E-selectin-mediated rolling in a cell-free system. Biophys J 71:2902–2907

    PubMed  CAS  Google Scholar 

  26. Simon SI, Green CE (2005) Molecular mechanics and dynamics of leukocyte recruitment during inflammation. Annu Rev Biomed Eng 7:151–185

    PubMed  CAS  Google Scholar 

  27. Sheikh N, Tron K., Dudas J, Ramadori G (2006) Cytokine-induced neutrophil chemoattractant-1 is released by the noninjured liver in a rat acute-phase model. Lab Invest 86:800–814

    PubMed  CAS  Google Scholar 

  28. Sambasivam H, Rassouli M, Murray RK et al (1993) Studies on the carbohydrate moiety and on the biosynthesis of rat C-reactive protein. J Biol Chem 26:10007–10016

    Google Scholar 

  29. Ren X, Kennedy A, Colletti LM (2002) CXC chemokine expression after stimulation with interferon-gamma in primary rat hepatocytes in culture. Shock 17:513–520

    PubMed  Google Scholar 

  30. Li X, Klintman D, Liu Q, Sato T, Jeppson B, Thorlacius H (2004) Critical role of CXC chemokines in endotoxemic liver injury in mice. J Leukoc Biol 75:443–452

    PubMed  CAS  Google Scholar 

  31. Knittel T, Dinter C, Kobold D et al (1999) Expression and regulation of cell adhesion molecules by hepatic stellate cells (HSC) of rat liver: involvement of HSC in recruitment of inflammatory cells during hepatic tissue repair. Am J Pathol 154:153–167

    PubMed  CAS  Google Scholar 

  32. Schwabe RF, Bataller R, Brenner DA (2003) Human hepatic stellate cells express CCR5 and RANTES to induce proliferation and migration. Am J Physiol 285:G949–G958

    CAS  Google Scholar 

  33. Maher JJ, Lozier JS, Scott MK (1998) Rat hepatic stellate cells produce cytokine-induced neutrophil chemoattractant in culture and in vivo. Am J Physiol 275:G847–G853

    PubMed  CAS  Google Scholar 

  34. Antoine M et al (2009) Expression of E-selectin ligand-1 (CFR/ESL-1) on hepatic stellate cells: implications for leukocyte extravasation and liver metastasis. Oncol Rep 21:357–362

    PubMed  CAS  Google Scholar 

  35. Olaso E et al (2003) Proangiogenic role of tumor-activated hepatic stellate cells in experimental melanoma metastasis. Hepatology 37:674–685

    PubMed  CAS  Google Scholar 

  36. Vanderkerten K, Bowens L, Van Rooijen N et al (1995) The role of Kupffer cells in the differentiation process of hepatic natural killer cells. Hepatology 22:283–290

    Google Scholar 

  37. Lee WY, Kubes P (2008) Leukocyte adhesion in the liver: distinct adhesion paradigm from other organs. J Hepatol 48:504–512

    PubMed  CAS  Google Scholar 

  38. Ramadori G, Saile B (2004) Inflammation, damage and repari, immune cells and liver fibrosis: specific or non-specific, this is the question. Gastroenterology 127:997–1000

    PubMed  CAS  Google Scholar 

  39. Mantovani A et al (1997) Endothelial activation by cytokines. Ann N Y Acad Sci 832:93

    PubMed  CAS  Google Scholar 

  40. Akira S et al (2006) Pathogen recognition and innate immunity. Cell 124:783

    PubMed  CAS  Google Scholar 

  41. Meylan E et al (2006) Intracellular patter recognition receptors in the host response. Nature 442:39

    PubMed  CAS  Google Scholar 

  42. Huang B, Zhao J, Unkeless JC, Feng ZH, Xiong H (2008) TLR signaling by tumor and immune cells: a double-edged sword. Oncogene 27:218–224

    PubMed  CAS  Google Scholar 

  43. Shishodia S, Aggarwal BB (2004) Nuclear factor-KB: a friend or a foe in cancer? Biochem Pharmacol 68:1071–1080

    PubMed  CAS  Google Scholar 

  44. Li X, Jiang S, Tapping RI (2010) Toll-like receptor signaling in cell proliferation and survival. Cytokine 49:1–9

    Google Scholar 

  45. Chen R et al (2008) Cancers take their Toll–the function and regulation of Toll-like receptors in cancer cells. Oncogene 27:225–233

    PubMed  CAS  Google Scholar 

  46. Chen K et al (2007) Toll-like receptors in inflammation, infection and cancer. Int Immunopharmacol 7:1271–1285

    PubMed  CAS  Google Scholar 

  47. Tsan M-F (2005) Toll-like receptors, inflammation and cancer. Semin Cancer Biol 16:32–37

    PubMed  Google Scholar 

  48. Balkwill F (2002) Tumor necrosis factor or tumor promoting factor? Cytokine Growth Factor Rev 13:135–141

    PubMed  CAS  Google Scholar 

  49. Aggarwal BB, Vijayalekshmi RV, Sung B (2009) Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res 15:425–430

    PubMed  CAS  Google Scholar 

  50. Wang X, Lin Y (2008) Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol Sin 29:1275–1288

    PubMed  Google Scholar 

  51. Serhan CN, Savill J (2005) Resolution of inflammation: the beginning programs the end. Nat Immunol 6:1191–1197

    PubMed  CAS  Google Scholar 

  52. Schwab JM et al (2007) Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature 447:869–874

    PubMed  CAS  Google Scholar 

  53. Tsushima H et al (2001) Circulating transforming growth factor beta 1 as a predictor of liver metastasis after resection in colorectal cancer. Clin Cancer Res 7:1258–1262

    PubMed  CAS  Google Scholar 

  54. Vidal-Vanaclocha F (2008) The prometastatic microenvironment of the liver. Cancer Microenviron 1:113–129

    PubMed  Google Scholar 

  55. Folkman J (1974) Tumor angiogenesis. Adv Cancer Res 19:331–358

    PubMed  CAS  Google Scholar 

  56. Colotta F et al (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30:1073–1081

    PubMed  CAS  Google Scholar 

  57. Matzaraki V et al (2007) Evaluation of serum procalcitonin and interleukin-6 levels as markers of liver metastasis. Clin Biochem 40:336–342

    PubMed  CAS  Google Scholar 

  58. Ueda T, Shimada E, Urakawa T (1994) Serum levels of cytokines in patients with colorectal cancer: possible involvement of interleukin-6 and interleukin-8 in hematogenous metastasis. J Gastroenterol 29:423–429

    PubMed  CAS  Google Scholar 

  59. Furuya Y, Ichikura T, Mochizuki H (1999) Interleukin-1alpha concentration in tumors as a risk factor for liver metastasis in gastric cancer. Surg Today 29:288–289

    PubMed  CAS  Google Scholar 

  60. Salgado R et al (2003) Circulating interleukin-6 predicts survival in patients with metastatic breast cancer. Int J Cancer 103:642–646

    PubMed  CAS  Google Scholar 

  61. Kaminska J, Kowalska M, Nowacki MP, Chwalinski MG, Ryinska A, Fuksiewicz M (2000) CRP, TNF1, IL-1ra, IL-6, IL-8 and IL-10 in blood serum of colorectal cancer patients. Pathol Oncol Res 6:38–41

    PubMed  CAS  Google Scholar 

  62. Walsh SR, Cook EJ, Goulder F, Justin TA, Keeling NJ (2005) Neutrophil-lymphocyte ratio as a prognostic factor in colorectal cancer. J Surg Oncol 91:181–184

    PubMed  CAS  Google Scholar 

  63. Halazun KJ et al (2008) Elevated preoperative neutrophil to lymphocyte ratio predicts survival following hepatic resection for colorectal liver metastases. Eur J Surg Oncol 34:55–60

    PubMed  CAS  Google Scholar 

  64. Kaminska J et al (2005) Clinical significance of serum cytokine measurements in untreated colorectal cancer patients: soluble tumor necrosis factor receptor type I – an independent prognostic factor. Tumor Biol 26:186–194

    CAS  Google Scholar 

  65. Gomez D et al (2008) Surgical technique and systemic inflammation influences long-term disease-free survival following hepatic resection for colorectal metastasis. J Surg Oncol 98:371–376

    PubMed  Google Scholar 

  66. Neal CP et al (2009) Evaluation of the prognostic value of systemic inflammation and socioeconomic deprivation in patients with resectable colorectal liver metastases. Eur J Cancer 45:56–64

    PubMed  CAS  Google Scholar 

  67. Helson L et al (1975) Effect of tumour necrosis factor on cultured human melanoma cells. Nature 258:731–732

    PubMed  CAS  Google Scholar 

  68. Carswell EA et al (1975) An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 72:3666–3670

    PubMed  CAS  Google Scholar 

  69. Curnis F, Sacchi A, Corti A (2002) Improving chemotherapeutic drug penetration in tumors by vascular targeting and barrier alteration. J Clin Invest 110:475–482

    PubMed  CAS  Google Scholar 

  70. Lejeune FJ (2002) Clinical use of TNF revisited: improving penetration of anti-cancer agents by increasing vascular permeability. J Clin Invest 110:433–435

    PubMed  CAS  Google Scholar 

  71. Faustman D, Davis M (2010) TNF receptor 2 pathway: drug target for autoimmune diseases. Nat Rev Drug Discov 9:482–493

    PubMed  CAS  Google Scholar 

  72. Ha H, Han D, Choi Y (2009) TRAF-mediated TNFR-family signaling. Curr Protoc Immunol Chapter 11:Unit11 9D

    Google Scholar 

  73. Aggarwal BB et al (2006) TNF blockade: an inflammatory issue. Ernst Schering Res Found Workshop, 161–186

    Google Scholar 

  74. Balkwill F (2006) TNF-alpha in promotion and progression of cancer. Cancer Metastasis Rev 25:409–416

    PubMed  CAS  Google Scholar 

  75. Egberts JH et al (2008) Anti-tumor necrosis factor therapy inhibits pancreatic tumor growth and metastasis. Cancer Res 68:1443–1450

    PubMed  CAS  Google Scholar 

  76. Egberts JH et al (2008) Dexamethasone reduces tumor recurrence and metastasis after pancreatic tumor resection in SCID mice. Cancer Biol Ther 7:1044–1050

    PubMed  CAS  Google Scholar 

  77. Harmey JH, Bucana C.D., Lu W, Byrne AM, McDonnell S, Lynch C, Bouchier-Hayes D, Dong Z (2002) Lipopolysaccharide-induced metastatic growth is associated with increased angiognensis, vascular permeability and tumor cell invasion. Int J Cancer 101:415–422

    PubMed  CAS  Google Scholar 

  78. Pidgeon GP, Harmey JH, Kay E, Da Costa M, Redmond HP, Bouchier-Hayes DJ (1999) The role of endotoxin/lipopolysaccharide in surgically induced tumor growth in a murine model of metastatic disease. Br J Cancer 81:1311

    PubMed  CAS  Google Scholar 

  79. Riethdorf S, Wikman H, Pantel K (2008) Review: biological relevance of disseminated tumor cells in cancer patients. Int J Cancer 123:1991–2006

    PubMed  CAS  Google Scholar 

  80. Sawabata MD, Okumura M, Utsumi T, Inoue M, Shiono H, Minami M, Nishida T, Sawa Y (2007) Circulating tumor cells in peripheral blood caused by surgical manipulation of non-small-cell lung cancer: pilot study using an immunocytology method. Gen ThoracCardiovasc Surg 55:189–192

    Google Scholar 

  81. Sher W, Jin-Yuan S, Yang P, Roffler SR, Chu Y, Wu C, Yu C, Peck K (2005) Prognosis of non-small cell lung cancer patients by detecting circulating cancer cells in the peripheral blood with multiple marker genes. Clin Cancer Res 11:173–179

    PubMed  CAS  Google Scholar 

  82. Liu A, Ming J, Zhao J, Huangxian J (2007) Circulating tumor cells in perioperative esophageal cancer patients: quantitative assay system and potential clinical utility. Clin Cancer Res 13:2992–2997

    PubMed  CAS  Google Scholar 

  83. Dong Q, Huang J, Zhou Y, Li L, Guoliang B, Feng J, Sha H (2002) Hematogenous dissemination of lung cancer cells during surgery: quantitative detection by flow cytometry and prognostic significance. Lung Cancer 37:293–301

    PubMed  Google Scholar 

  84. McDonald B et al (2009) Systemic inflammation increases cancer cell adhesion to hepatic sinusoids by neutrophil mediated mechanisms. Int J Cancer 125:1298–1305

    PubMed  CAS  Google Scholar 

  85. Kaplan RN, Rafii S, Lyden D (2006) Preparing the “soil”: the premetastatic niche. Cancer Res 66:11089–11093

    PubMed  CAS  Google Scholar 

  86. Kaplan RN et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827

    PubMed  CAS  Google Scholar 

  87. Boo YJ, Kim WB, Kim J, Song TJ, Choi SY, Kim YC, Suh SO (2007) Systemic immune response after open versus laparoscopic cholecystectomy in acute cholecystitis: a prospective randomized study. Scand J Clin Lab Invest 67:207–214

    PubMed  CAS  Google Scholar 

  88. Shiromizu A, Suematsu T, Yamaguchi K, Shiraishi N, Adachi Y, Kitano S (2000) Effect of laparotomy and laparoscopy on the establishment of lung metastasis in a murine model. Surgery 128:799–805

    PubMed  CAS  Google Scholar 

  89. Bell SW et al (2003) Anastomotic leakage after curative anterior resection results in a higher prevalence of local recurrence. Br J Surg 90:1261–1266

    PubMed  CAS  Google Scholar 

  90. Witz IP (2008) The selectin-selectin ligand axis in tumor progression. Cancer Metast Rev 27:19–30

    CAS  Google Scholar 

  91. Bresalier RS et al (1998) Liver metastasis and adhesion to the sinusoidal endothelium by human colon cancer cells is related to mucin carbohydrate chain length. Int J Cancer 76:556–562

    PubMed  CAS  Google Scholar 

  92. Brodt P et al (1997) Liver endothelial E-selectin mediates carcinoma cell adhesion and promotes liver metastasis. Int J Cancer 71:612–619

    PubMed  CAS  Google Scholar 

  93. Sperti C et al (1993) CA 19-9 as a prognostic index after resection for pancreatic cancer. J Surg Oncol 52:137–141

    PubMed  CAS  Google Scholar 

  94. Satoh H et al (1998) Elevated serum sialyl Lewis X-i antigen levels in non-small cell lung cancer with lung metastasis. Respiration 65:295–298

    PubMed  CAS  Google Scholar 

  95. Duraker N, Celik AN (2001) The prognostic significance of preoperative serum CA 19-9 in patients with resectable gastric carcinoma: comparison with CEA. J Surg Oncol 76:266–271

    PubMed  CAS  Google Scholar 

  96. Nakagoe T et al (2002) Difference in prognostic value between sialyl Lewis(a) and sialyl Lewis(x) antigen levels in the preoperative serum of gastric cancer patients. J Clin Gastroenterol 34:408–415

    PubMed  CAS  Google Scholar 

  97. Yu CJ et al (2005) Sialyl Lewis antigens: association with MUC5AC protein and correlation with post-operative recurrence of non-small cell lung cancer. Lung Cancer 47:59–67

    PubMed  Google Scholar 

  98. Lee IK et al (2009) Prognostic value of CEA and CA 19-9 tumor markers combined with cytology from peritoneal fluid in colorectal cancer. Ann Surg Oncol 16:861–870

    PubMed  Google Scholar 

  99. Park IJ, Choi GS, Jun SH (2009) Prognostic value of serum tumor antigen CA19-9 after curative resection of colorectal cancer. Anticancer Res 29:4303–4308

    PubMed  Google Scholar 

  100. Wang WS et al (2002) CA19-9 as the most significant prognostic indicator of metastatic colorectal cancer. Hepato-Gastroenterol 49:160–164

    Google Scholar 

  101. Nakagoe T et al (2001) Circulating sialyl Lewis(x), sialyl Lewis(a), and sialyl Tn antigens in colorectal cancer patients: multivariate analysis of predictive factors for serum antigen levels. J Gastroenterol 36:166–172

    PubMed  CAS  Google Scholar 

  102. Khatib AM et al (1999) Rapid induction of cytokine and E-selectin expression in the liver in response to metastatic tumor cells. Cancer Res 59:1356–1361

    PubMed  CAS  Google Scholar 

  103. Auguste P et al (2007) The host inflammatory response promotes liver metastasis by increasing tumor cell arrest and extravasation. Am J Pathol 170:1781–1792

    PubMed  Google Scholar 

  104. Kim YJ, Borsig L, Varki NM, Varki A (1998) P-selectin deficiency attenuates tumor growth and metastasis. Proc Natl Acad Sci USA 95:9325–9330

    PubMed  CAS  Google Scholar 

  105. Khatib AM et al (2002) Inhibition of hepatic endothelial E-selectin expression by C-raf antisense oligonucleotides blocks colorectal carcinoma liver metastasis. Cancer Res 62:5393–5398

    PubMed  CAS  Google Scholar 

  106. Boudier C, Cadene M, Bieth JG (1999) Inhibition of neutrophil cathepsin G by oxidized mucus proteinase inhibitor. Effects of heparin. Biochemistry 38:451–457

    Google Scholar 

  107. McNeely TB, Dealy M, Dripps DJ, Orenstein JM, Eisenberg SP, Wahl SM (1995) Secretory leukocyte protease inhibitor: a human saliva protein exhibiting anti-human immunodeficiency virus 1 activity in vitro. J Clin Invest 96:456–464

    PubMed  CAS  Google Scholar 

  108. Hiemstra PS, Maassen RJ, Sotlk J, Heinzel-Wieland R, Steffens GJ, Dijkman JH (1996) Antibacterial activity of antileukoprotease. Infect Immun 64:4520–4524

    PubMed  CAS  Google Scholar 

  109. Zhang Y, DeWitt DL, McNeely TB, Wahl SM, Wahl LM (1997) Secretory leukocyte protease inhibitor suppresses the production of monocyte prostaglandin H synthase-2 prostaglandin E2, and matrix metalloproteinases. J Clin Invest 99:894–900

    PubMed  CAS  Google Scholar 

  110. Jin F, Nathan CF, Radzioch D, Ding A (1998) Lipopolysaccharide-related stimuli induce expression of the secretory leukocyte protease inhibitor, a macrophage-derived lipopolysaccharide inhibitor. Infect Immun 66:2447–2452

    PubMed  CAS  Google Scholar 

  111. Jin FY, Nathan C, Radzioch D, Dinag A (1997) Secretory leukocyte protease inhibitor: a macrophage product induced by and antagonistic to bacterial lipopolysaccharide. Cell 88:417–426

    PubMed  CAS  Google Scholar 

  112. Wang N et al (2006) The secretory leukocyte protease inhibitor is a type 1 insulin-like growth factor receptor-regulated protein that protects against liver metastasis by attenuating the host proinflammatory response. Cancer Res 66:3062–3070

    PubMed  CAS  Google Scholar 

  113. Fox-Robichaud A, Kubes P (2000) Molecular mechanisms of tumor necrosis factor alpha-stimulated leukocyte recruitment into the murine hepatic circulation. Hepatology 31:1123–1127

    PubMed  CAS  Google Scholar 

  114. Clark SR et al (2007) Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood.[see comment]. Nature Med 13:463–469

    PubMed  CAS  Google Scholar 

  115. Chambers AF, MacDonald IC, Schmidt EE, Morris VL, Groom AC (2000) Clinical targets for anti-metastasis therapy. Adv Cancer Res 79:91–121

    PubMed  CAS  Google Scholar 

  116. Kruskal JB et al (2007) Hepatic colorectal cancer metastases: imaging initial steps of formation in mice. Radiology 243:703–711

    PubMed  Google Scholar 

  117. Liang S et al (2008) Hydrodynamic shear rate regulates melanoma-leukocyte aggregation, melanoma adhesion to the endothelium, and subsequent extravasation. Ann Biomed Eng 36:661–671

    PubMed  Google Scholar 

  118. Slattery MJ, Dong C (2003) Neutrophils influence melanoma adhesion and migration under flow conditions. Int J Cancer 106:713–722

    PubMed  CAS  Google Scholar 

  119. Slattery MJ, Liang S, Dong C (2005) Distinct role of hydrodynamic shear in leukocyte-facilitated tumor cell extravasation. Am J Physiol Cell Physiol 288:C831–839

    PubMed  CAS  Google Scholar 

  120. Liang S, Slattery MJ, Dong C (2005) Shear stress and shear rate differentially affect the multi-step process of leukocyte-facilitated melanoma adhesion. Exp Cell Res 310:282–292

    PubMed  CAS  Google Scholar 

  121. Dong C et al (2005) Melanoma cell extravasation under flow conditions is modulated by leukocytes and endogenously produced interleukin 8. Mol Cell Biomech 2:145–159

    PubMed  Google Scholar 

  122. Orr FW, Warner DJ (1987) Effects of neutrophil-mediated pulmonary endothelial injury on the localization and metastasis of circulating Walker carcinosarcoma cells. Inv Metast 7:183–196

    CAS  Google Scholar 

  123. Läubli H, Stevenson JL, Varki A, Varki NM, Borsig L (2006) L-selectin facilitation of metastasis involves temporal induction of Fut7-dependent ligands at sites of tumor cell arrest. Cancer Res 66:1536–1542

    PubMed  Google Scholar 

  124. Yamamoto M et al (2008) TSU68 prevents liver metastasis of colon cancer xenografts by modulating the premetastatic niche. Cancer Res 68:9754–9762

    PubMed  CAS  Google Scholar 

  125. Kishi Y et al (2009) Blood neutrophil-to-lymphocyte ratio predicts survival in patients with colorectal liver metastases treated with systemic chemotherapy. Ann Surg Oncol 16:614–622

    PubMed  Google Scholar 

  126. Terada H, Urano T, Konno H (2005) Association of interleukin-8 and plasminogen activator system in the progression of colorectal cancer. Eur Surg Res 37:166–172

    PubMed  CAS  Google Scholar 

  127. De Larco JE, Wuertz BR, Furcht LT (2004) The potential role of neutrophils in promoting the metastatic phenotype of tumors releasing interleukin-8. Clin Cancer Res 10:4895–4900

    PubMed  CAS  Google Scholar 

  128. Waugh DJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14:6735–6741

    PubMed  CAS  Google Scholar 

  129. Flierl MA et al (2009) Upregulation of phagocyte-derived catecholamines augments the acute inflammatory response. PLoS One 4:e4414

    PubMed  Google Scholar 

  130. Di Carlo E et al (2001) The intriguing role of polymorphonuclear neutrophils in antitumor reactions. Blood 97:339–345

    PubMed  CAS  Google Scholar 

  131. Konstantopoulos K, Thomas SN (2009) Cancer cells in transit: the vascular interactions of tumor cells. Annu Rev Biomed Eng 11:177–202

    PubMed  CAS  Google Scholar 

  132. Weyrich AS, Zimmerman GA (2004) Platelets: signaling cells in the immune continuum. Trends Immunol 25:489–495

    PubMed  CAS  Google Scholar 

  133. Gasic GJ, Gasic TB, Stewart CC (1968) Antimetastatic effects associated with platelet reduction. Proc Natl Acad Sci U S A 61:46–52

    PubMed  CAS  Google Scholar 

  134. Camerer E et al (2004) Platelets, protease-activated receptors, and fibrinogen in hematogenous metastasis. Blood 104:397–401

    PubMed  CAS  Google Scholar 

  135. Karpatkin S et al (1988) Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J Clin Invest 81:1012–1019

    PubMed  CAS  Google Scholar 

  136. Ma AC, Kubes P (2008) Platelets, neutrophils, and neutrophil extracellular traps (NETs) in sepsis. J Thromb Haemost 6:415–420

    PubMed  CAS  Google Scholar 

  137. Palumbo JS et al (2005) Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 105:178–185

    PubMed  CAS  Google Scholar 

  138. Kim S et al (2009) Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457:102–106

    PubMed  CAS  Google Scholar 

  139. Fitzgerald KA et al (2001) Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413:78–83

    PubMed  CAS  Google Scholar 

  140. Yang RB et al (1998) Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 395:284–288

    PubMed  CAS  Google Scholar 

  141. Zumsteg A, Christofori G (2009) Corrupt policemen: inflammatory cells promote tumor angiogenesis. Curr Opin Oncol 21:60–70

    PubMed  Google Scholar 

  142. Favaro E, Amadori A, Indraccolo S (2008) Cellular interactions in the vascular niche: implications in the regulation of tumor dormancy. APMIS 116:648–659

    PubMed  CAS  Google Scholar 

  143. DeNardo DG, Johansson M, Coussens LM (2008) Immune cells as mediators of solid tumor metastasis. Cancer Metastasis Rev 27:11–18

    PubMed  CAS  Google Scholar 

  144. Zabala M et al (2004) Optimization of the Tet-on system to regulate interleukin 12 expression in the liver for the treatment of hepatic tumors. Cancer Res 64:2799–2804

    PubMed  CAS  Google Scholar 

  145. Pulaski BA, Smyth MJ, Ostrand-Rosenberg S (2002) Interferon-gamma-dependent phagocytic cells are a critical component of innate immunity against metastatic mammary carcinoma. Cancer Res 62:4406–4412

    PubMed  CAS  Google Scholar 

  146. Tanji H et al (2002) Augmentation of local antitumor immunity in liver by interleukin-2 gene transfer via portal vein.[see comment]. Cancer Gene Ther 9:655–664

    PubMed  CAS  Google Scholar 

  147. Demchak PA et al (1991) Interleukin-2 and high-dose cisplatin in patients with metastatic melanoma: a pilot study. J Clin Oncol 9:1821–1830

    PubMed  CAS  Google Scholar 

  148. Chen SH et al (1995) Combination gene therapy for liver metastasis of colon carcinoma in vivo. Proc Natl Acad Sci USA 92:2577–2581

    PubMed  CAS  Google Scholar 

  149. Okada K et al (1996) Elimination of established liver metastases by human interleukin 2-activated natural killer cells after locoregional or systemic adoptive transfer. Cancer Res 56:1599–1608

    PubMed  CAS  Google Scholar 

  150. Hagenaars M et al (1998) Regional administration of natural killer cells in a rat hepatic metastasis model results in better tumor infiltration and anti-tumor response than systemic administration. Int J Cancer 75:233–238

    PubMed  CAS  Google Scholar 

  151. Peron JM et al (1998) FLT3-ligand administration inhibits liver metastases: role of NK cells. J Immunol 161:6164–6170

    PubMed  CAS  Google Scholar 

  152. Fuji N et al (1999) Augmentation of local antitumor immunity in the liver by tumor vaccine modified to secrete murine interleukin 12. Gene Ther 6:1120–1127

    PubMed  CAS  Google Scholar 

  153. Iwazawa T et al (2001) Potent antitumor effects of intra-arterial injection of fibroblasts genetically engineered to express IL-12 in liver metastasis model of rat: no additional benefit of using retroviral producer cell. Cancer Gene Ther 8:17–22

    PubMed  CAS  Google Scholar 

  154. Satoh Y et al (2002) Local administration of IL-12-transfected dendritic cells induces antitumor immune responses to colon adenocarcinoma in the liver in mice. J Exp Ther Oncol 2:337–349

    PubMed  CAS  Google Scholar 

  155. Agarwala SS et al (2004) Immunotherapy with histamine and interleukin 2 in malignant melanoma with liver metastasis. Cancer Immunol Immunother 53:840–841

    PubMed  Google Scholar 

  156. Kawaoka T et al (2008) Adoptive immunotherapy for pancreatic cancer: cytotoxic T lymphocytes stimulated by the MUC1-expressing human pancreatic cancer cell line YPK-1. Oncol Rep 20:155–163

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Ferri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Spicer, J., Brodt, P., Ferri, L. (2011). Role of Inflammation in the Early Stages of Liver Metastasis. In: Brodt, P. (eds) Liver Metastasis: Biology and Clinical Management. Cancer Metastasis - Biology and Treatment, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0292-9_6

Download citation

Publish with us

Policies and ethics