Skip to main content

Part of the book series: Theoretical and Mathematical Physics ((TMP))

  • 1910 Accesses

Abstract

This Chapter introduces the most important technical tool of this book—the heat kernel expansion. The Chapter starts with main definitions and continues with examples of the heat trace for operators with known spectrum. The universal form of the heat trace asymptotics is stated. The rest of the Chapter is devoted to calculations of the coefficients in the asymptotic expansion (the celebrated heat kernel coefficients). First, the DeWitt method based on the recurrence relations is reviewed. Though this method dominated in physics for a long time, the Gilkey approach, based on “functorial” relations is more flexible and is the main tool in this book. It is shown, that in this approach the heat kernel coefficients are calculated in a simple and transparent way on manifolds with and without boundaries. After suitable modifications the same approach allows one to compute the heat kernel expansion in the presence of codimension one defects (branes) and on manifolds with conical singularities. The calculations are presented in full detail, and particular examples of fields of various spins are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian Geometry 1. Math. Proc. Camb. Philos. Soc. 77, 43 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  2. Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian Geometry 2. Math. Proc. Camb. Philos. Soc. 78, 405 (1976)

    Article  MathSciNet  Google Scholar 

  3. Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian Geometry 3. Math. Proc. Camb. Philos. Soc. 79, 71 (1980)

    Article  MathSciNet  Google Scholar 

  4. Avramidi, I.G.: Covariant techniques for computation of the heat kernel. Rev. Math. Phys. 11, 947–980 (1999). hep-th/9704166

    Article  MATH  MathSciNet  Google Scholar 

  5. Barvinsky, A.O., Vilkovisky, G.A.: The generalized Schwinger-DeWitt technique in gauge theories and quantum gravity. Phys. Rep. 119, 1–74 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  6. Barvinsky, A.O., Vilkovisky, G.A.: Beyond the Schwinger-Dewitt technique: converting loops into trees and in-in currents. Nucl. Phys. B 282, 163–188 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  7. Barvinsky, A.O., Vilkovisky, G.A.: Covariant perturbation theory. 2: Second order in the curvature. General algorithms. Nucl. Phys. B 333, 471–511 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bastianelli, F., Corradini, O., Pisani, P.A.G., Schubert, C.: Scalar heat kernel with boundary in the worldline formalism. J. High Energy Phys. 10, 095 (2008). 0809.0652

    Article  ADS  MathSciNet  Google Scholar 

  9. Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Springer, Berlin (2004)

    MATH  Google Scholar 

  10. Birrell, N.D., Davies, P.C.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  11. Bordag, M., Kirsten, K., Dowker, J.S.: Heat kernels and functional determinants on the generalized cone. Commun. Math. Phys. 182, 371–394 (1996). hep-th/9602089

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Branson, T.P., Gilkey, P.B., Kirsten, K., Vassilevich, D.V.: Heat kernel asymptotics with mixed boundary conditions. Nucl. Phys. B 563, 603–626 (1999). hep-th/9906144

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Bytsenko, A.A., Cognola, G., Vanzo, L., Zerbini, S.: Quantum fields and extended objects in space-times with constant curvature spatial section. Phys. Rep. 266, 1–126 (1996). hep-th/9505061

    Article  ADS  MathSciNet  Google Scholar 

  14. Camporesi, R.: Harmonic analysis and propagators on homogeneous spaces. Phys. Rep. 196, 1–134 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  15. Cheeger, J.: Spectral geometry of singular Riemannian spaces. J. Differ. Geom. 18, 575 (1983)

    MATH  MathSciNet  Google Scholar 

  16. Deser, S., Jackiw, R.: Classical and quantum scattering on a cone. Commun. Math. Phys. 118, 495 (1988)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. DeWitt, B.S.: Dynamical Theory of Groups and Fields. Gordon & Breach, New York (1965)

    MATH  Google Scholar 

  18. Dilkes, F.A., Duff, M.J., Liu, J.T., Sati, H.: Quantum discontinuity between zero and infinitesimal graviton mass with a Lambda term. Phys. Rev. Lett. 87, 041301 (2001). hep-th/0102093

    Article  ADS  MathSciNet  Google Scholar 

  19. Donnelly, H.: Spectrum and the fixed point set of isometries I. Math. Ann. 224, 161 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  20. Dowker, J.S.: Quantum field theory on a cone. J. Phys. A 10, 115–124 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  21. Dowker, J.S.: Vacuum averages for arbitrary spin around a cosmic string. Phys. Rev. D 36, 3742 (1987)

    Article  ADS  Google Scholar 

  22. Dowker, J.S.: Effective actions with fixed points. Phys. Rev. D 50, 6369–6373 (1994). hep-th/9406144

    Article  ADS  MathSciNet  Google Scholar 

  23. Dowker, J.S.: Heat kernels on curved cones. Class. Quantum Gravity 11, L137–L140 (1994). hep-th/9406002

    Article  ADS  MathSciNet  Google Scholar 

  24. Duff, M.J., Liu, J.T., Sati, H.: Quantum M 2→2Λ/3 discontinuity for massive gravity with a Λ term. Phys. Lett. B 516, 156–160 (2001). hep-th/0105008

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Duff, M.J., Liu, J.T., Sati, H.: Quantum discontinuity for massive spin 3/2 with a Λ term. Nucl. Phys. B 680, 117–130 (2004). hep-th/0211183

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Fock, V.A.: The proper time in classical and quantum mechanics. Izv. Akad. Nauk USSR (Phys.) 4–5, 551–568 (1937)

    Google Scholar 

  27. Frolov, V.P., Fursaev, D.V.: Thermal fields, entropy, and black holes. Class. Quantum Gravity 15, 2041–2074 (1998). hep-th/9802010

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Fursaev, D.V.: Spectral geometry and one loop divergences on manifolds with conical singularities. Phys. Lett. B 334, 53–60 (1994). hep-th/9405143

    Article  ADS  MathSciNet  Google Scholar 

  29. Fursaev, D.V.: Euclidean and canonical formulations of statistical mechanics in the presence of Killing horizons. Nucl. Phys. B 524, 447–468 (1998). hep-th/9709213

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Fursaev, D.V., Miele, G.: Cones, spins and heat kernels. Nucl. Phys. B 484, 697–723 (1997). hep-th/9605153

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Gilkey, P.B.: The spectral geometry of a Riemannian manifold. J. Differ. Geom. 10, 601–618 (1975)

    MATH  MathSciNet  Google Scholar 

  32. Gilkey, P.B.: Invariance Theory, the Heat Equation, and the Atiyah–Singer Index Theorem. CRC Press, Boca Raton (1994)

    Google Scholar 

  33. Gilkey, P.B.: Asymptotic Formulae in Spectral Geometry. CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

  34. Gilkey, P.B., Kirsten, K., Vassilevich, D.V.: Heat trace asymptotics with transmittal boundary conditions and quantum brane-world scenario. Nucl. Phys. B 601, 125–148 (2001). hep-th/0101105

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Gilkey, P.B., Kirsten, K., Vassilevich, D.: Heat trace asymptotics defined by transfer boundary conditions. Lett. Math. Phys. 63, 29–37 (2003). hep-th/0208130

    Article  MATH  MathSciNet  Google Scholar 

  36. Kay, B.S., Studer, U.M.: Boundary conditions for quantum mechanics on cones and fields around cosmic strings. Commun. Math. Phys. 139, 103–140 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Kirsten, K.: Spectral Functions in Mathematics and Physics. Chapman & Hall/CRC, Boca Raton (2001)

    Book  Google Scholar 

  38. McAvity, D.M., Osborn, H.: A DeWitt expansion of the heat kernel for manifolds with a boundary. Class. Quantum Gravity 8, 603–638 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Minakshisundaram, S., Pleijel, A.: Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds. Can. J. Math. 1, 242–256 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  40. Nesterov, D., Solodukhin, S.N.: Gravitational effective action and entanglement entropy in UV modified theories with and without Lorentz symmetry. Nucl. Phys. B 842, 141–171 (2011). 1007.1246

    Article  ADS  MATH  Google Scholar 

  41. Schwinger, J.: On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. Sommerfeld, A.: Über verzweigte Potentiale im Raum. Proc. Lond. Math. Soc. 28, 395 (1897)

    Article  MATH  Google Scholar 

  43. Vassilevich, D.V.: Heat kernel expansion: User’s manual. Phys. Rep. 388, 279–360 (2003). hep-th/0306138

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri Vassilevich .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Fursaev, D., Vassilevich, D. (2011). Heat Equation. In: Operators, Geometry and Quanta. Theoretical and Mathematical Physics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0205-9_4

Download citation

Publish with us

Policies and ethics