Skip to main content

Artificial Compressibility Method

  • Chapter
  • First Online:
Computation of Viscous Incompressible Flows

Part of the book series: Scientific Computation ((SCIENTCOMP))

Abstract

The artificial compressibility method is quite different from the pressure projection approach in both the nature of the formulation and the subsequent numerical algorithm. In an artificial compressibility method, a fictitious time derivative of pressure is added to the continuity equation so that the set of equations modified from the incompressible Navier-Stokes equations can be solved implicitly by marching in pseudo time. When a steady-state solution is reached, the original equations are recovered. To obtain time accuracy, an iterative technique can be employed at each time level, which is equivalent to solving the governing equations for steady state at each time level. Using a large, artificial compressibility parameter to spread artificial waves quickly throughout the computational domain, and allowing some residual level of the mass conservation equation, the computing time requirement for time accurate solutions may be controlled within approximately one order-of-magnitude higher than the steady-state computations. In the artificial compressibility approach, the mass conservation does not have to be strictly enforced at each time step, and this gives robustness during iteration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armaly, B. F., Durst, F., Pereira, J. C. F., Schonung, B.: Experimental and theoretical investigation of backward facing step flow. J. Fluid Mech., 127, 473–496 (1983)

    Article  Google Scholar 

  • Beam, R. M., Warming, R. F.: An implicit factored scheme for the compressible Navier-Stokes equations. AIAA J., 16, 393–402 (1978)

    Article  MATH  Google Scholar 

  • Briley, W. R., McDonald, H.: Solution of the multidimensional compressible Navier-Stokes equations by a generalized implicit method. J. Comp. Phys., 24, No. 4, 372–397 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  • Harten, A., Lax, P. D., Van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev., 25, No. 1, 35 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  • Housman, J., Kiris, C., Hafez, M. Preconditioned methods for simulations of low speed compressible flows. Comp. Fluids, 38, 7, 1411–1423 (2009)

    Article  Google Scholar 

  • Jameson, A., Yoon, S.: Multigrid solution of the Euler equations using implicit schemes. AIAA J., 24, 1737–1743 (1986)

    Article  Google Scholar 

  • Kreiss, H. O.: On difference approximations of the dissipative type for hyperbolic differential equation. Comm. Pure Appl. Math., 17, 335–353 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  • Merkle, C. L.: Preconditioning methods for viscous flow calculations. In Computational Fluid Dynamics Review 1995, ed. by Hafez, M. and Oshima, K., Wiley, New York (1995)

    Google Scholar 

  • Pulliam, T. H.: Artificial dissipation models for the Euler equations. AIAA J., 24, 1931–1940 (1986)

    Article  MATH  Google Scholar 

  • Pulliam, T. H., Chaussee, D. S.: A diagonal form of an implicit approximate-factorization algorithm. J. Comput. Phys., 39, 347–363 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  • Roe, P. L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys., 43, 357 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  • Rogers, S. E., Chang, J. L. C., Kwak, D.: A diagonal algorithm for the method of pseudocompressibility. J. Comput. Phys., 73, No. 2, 364–379 (1987)

    Article  MATH  Google Scholar 

  • Rogers, S. E., Kwak, D.: An upwind differencing scheme for the time-accurate incompressible Navier-Stokes equations. AIAA J., 28, No. 2, 253–262 (1990) (Also, AIAA Paper 88-2583, 1988)

    Article  MATH  Google Scholar 

  • Steger, J. L., Kutler, P.: Implicit finite-difference procedures for the computation of vortex wakes. AIAA J., 15, No. 4, 581–590 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  • Turkel, E.: Symmetrization of the fluid dynamic matrices with applications. Math. Comput., 27, 729–736 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  • Venkataswaran, S., Merkle, C. L.: Evolution of artificial compressibility methods in CFD. In Numerical Simulations of Incompressible Flows, ed. by Hafez, M., World Scientific, Singapore (2002)

    Google Scholar 

  • Warming, R. F., Beam, R. M., Hyett, B. J.: Diagonalization and simultaneous symmetrization of the gas-dynamic matrices. Math. Comput., 29, 1037–1045 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  • Yee, H. C.: Linearized form of implicit TVD schemes for the multidimensional Euler and Navier-Stokes equations. Comp. Math. Appl., 12A, Nos. 4/5, 413–432 (1986)

    Article  MathSciNet  Google Scholar 

  • Rudy, D. H., Strikwerda, J. C.: A nonreflecting outflow boundary condition for subsonic Navier-Stokes calculations. J. Comp. Phys, 36, 55–70 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  • Steger, J. L., Warming, R. F.: Flux vector splitting of the inviscid gasdynamic equations with application to finite difference methods. J. Comp. Phys., 40, No. 2, 263–293 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  • Barth, T. J.: Analysis of implicit local linearization techniques for upwind and TVD algorithms. AIAA Paper 87-0595 (1987)

    Google Scholar 

  • Chakravarthy, S. R., Anderson, D. A., Salas, M. D.: The split-coefficient matrix method for hyperbolic systems of gas dynamics. AIAA Paper 80-0268 (1980)

    Google Scholar 

  • Chakravarthy, S. R., Osher, S.: A new class of high accuracy TVD schemes for hyperbolic conservation laws. AIAA Paper 85-0363 (1985)

    Google Scholar 

  • Chang, J. L. C., Kwak, D.: On the method of pseudo compressibility for numerically solving incompressible flows. AIAA Paper 84-0252 (1984)

    Google Scholar 

  • Flores, J.: Convergence acceleration for a three-dimensional Euler/Navier-Stokes zonal approach. AIAA Paper 85-1495 (1985)

    Google Scholar 

  • Hafez, M.: On the incompressible limit of compressible fluid flow. In Computational Fluid Dynamics for the 21st Century, ed. by Hafez, M. M., Morinishi, K., Periaux, J. and Satofuka, N., Springer (2001)

    Google Scholar 

  • Jameson, A., Schmidt, W., Turkel, E.: Numerical solution of the Euler equations by finite volume methods using runge-kutta stepping scheme. AIAA Paper 81-1259 (1981)

    Google Scholar 

  • MacCormack, R. W.: Current status of numerical solutions of the Navier-Stokes equations. AIAA Paper 85-0032 (1985)

    Google Scholar 

  • Merkle, C. L., Tsai, P. Y. L.: Application of Runge-Kutta schemes to incompressible flows. AIAA Paper 86-0553 (1986)

    Google Scholar 

  • Rai, M. M.: Navier-Stokes simulations of blade-vortex interaction using high-order accurate upwind schemes. AIAA Paper 87-0543 (1987)

    Google Scholar 

  • Rapposelli, E., Cervone, A., Bramanti, C., d’Agostino, L.: Thermal cavitation experiments on a NACA 0015 hydrofoil. Proceeding of the FEDSM’03 4th ASME/JSME Joint Fluids Engineering Conference, Honolulu, Hawaii, July (2003)

    Google Scholar 

  • Rogers, S. E., Kwak, D.: Numerical solution of the incompressible Navier-Stokes equations for steady and time-dependent problems. AIAA Paper 89-0463 (1989)

    Google Scholar 

  • Salvetti, M.-V., Beux, F.: Liquid flow around non-cavitating and cavitating NACA 0015 hydrofoil. Mathematical and Numerical Aspects of Low Mach Number Flows, Porquerolles, France, Workshop Problem (2004)

    Google Scholar 

  • Yoon, S., Kwak, D.: Artificial dissipation models for hypersonic external flow. AIAA Paper 88-3708 (1988)

    Google Scholar 

  • Yoon, S., Kwak, D.: LU-SGS implicit algorithm for three-dimensional incompressible Navier-Stokes equations with source term. AIAA Paper 89-1964 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dochan Kwak .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kwak, D., Kiris, C.C. (2011). Artificial Compressibility Method. In: Computation of Viscous Incompressible Flows. Scientific Computation. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0193-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0193-9_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0192-2

  • Online ISBN: 978-94-007-0193-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics