Skip to main content

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 6))

Abstract

In the past decade it has repeatedly been shown that agriculture is a major source of environmental pollution. The environmental risk of industrial agriculture led to the concept of sustainable agriculture. Ecological fertilization integrates agricultural and environmental goals and is adjusted to the environmental conditions. Ecological fertilization is based on the principle that mineral fertilization should only be applied to the soil in the quantities and at the time required by the crop, thus avoiding damage to the environment. The present review provides a detailed description of the principles of ecological fertilization, such as accurate matching of nutrients to crop requirements, optimal condition in soil, favorable fertilizer use, and reducing nutrient losses. We review also practical systems such as integrated farming, site-specific fertilization, and organic farming. The most important legislations and regulations are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addiscott TM, Powlson DS, Whitemoee AP (1991) Farming, fertilizers and the nitrate problem. CAB International, Wallingford, p 170

    Google Scholar 

  • Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavability and risks of metals. Springer-Verlag, New York, p 867

    Google Scholar 

  • Bákonyi N, Donath S, Imran M, Weinmann M, Neumann G, Müller T, Römheld V (2008) Effectiveness of commercial bio-fertilizers for improved phosphorus acquisition: use of rapid screening tests. Tropentag, Universität Hohenheim, Stuttgart

    Google Scholar 

  • Birkmose TS (2009) Nitrogen recovery from organic manures: improved alurry application techniques and treatment – The Danish Scenario. No. 656, International Fertiliser Society, York, UK, pp 2–13

    Google Scholar 

  • Bryson RJ (2005) Improvements in farm and nutrient management through precision farming. No. 577, International Fertilizer Society, York, UK, pp 5–12

    Google Scholar 

  • Catt JA (1996) The Brimstone Experiment. IACR report for 1995. pp 41–42

    Google Scholar 

  • Correll DL (1997) Buffer zones and water quality protection: general principles. In: Haycock NE, Burt TP, Goulding KWT, Pinay G (eds) Buffer zones: their processes and potential in water protection. Quest Environmental, Harpenden, p 720

    Google Scholar 

  • Croll BT (1994) Nitrate – best agricultural practive for water – the UK experience. No. 359, International Fertilizer Society, York, UK, pp 17–21

    Google Scholar 

  • Csathó P, Árendás T, Németh T (1998) New, environmentally friendly fertilizer advisory system, based on the date set of the Hungarian long-term field trials set up between 1960 and 1995. Comm Soil Sci Plant Anal 29:2161–2174

    Article  Google Scholar 

  • Davis M (2008) European and UK regulatory requirements for the application of waste products to land. No. 637, International Fertilizer Society, York, UK, pp 27–30

    Google Scholar 

  • Dawson CJ (1996) Implications of precision farming for fertilizer application policies. No. 391, International Fertiliser Society, York, UK, p 10

    Google Scholar 

  • Decrem M, Spiess E, Richner W, Herzog F (2007) Impact of Swiss agricultural policies on nitrate leaching from arable land. Agron Sustain Dev 27:243–253

    Article  CAS  Google Scholar 

  • Diez-Lopez JA, Hernaiz-Algarra P, Arauzo-Sanchez M, Carrasco-Martin I (2008) Effect of a nitrification inhibitor (DMPP) on nitrate leaching and maize yield during two growing seasons. Spanish J Agr Res 6:294–303

    Google Scholar 

  • Estler M (1991) Conservation of soil and water by using a new tillage system for cover crops. In: Hargrove WL (ed) Cover crops for clean water. Soil and Water Conservation Society, Ankeny, Iowa, pp 34–36

    Google Scholar 

  • European Union (1986) Sewage sludge directive. Brussels

    Google Scholar 

  • European Union (1991) Nitrate Directive. Brussels

    Google Scholar 

  • European Union (2006) Thematic Strategy for Soil Protection. Brussels

    Google Scholar 

  • European Union (2008) Directive on Waste. Brussels

    Google Scholar 

  • Evans TD (2008) Nutrient and carbon recovery from household and food biowastes. No. 635, International Fertilizer Society, York, UK, pp 9–10

    Google Scholar 

  • FAO (2005) Sustainable agriculture and rural development and good agricultural practices. Committee on agriculture, 19th session. Rome

    Google Scholar 

  • Füleky GY (Ed) (1999) Tápanyag-gazdálkodás. Mezőgazda Kiadó, Budapest. p 714

    Google Scholar 

  • Füleky GY, Debreczeni B (1991) Tápelem-felhalmozódások 17 éves kukorica monokultúra talajában. Agrokémia és Talajtan 40:119–130

    Google Scholar 

  • Garret MK (2001) Sustainable agriculture production systems. No. 475, International Fertilizer Society, York, UK, pp 13–21

    Google Scholar 

  • Goossense F, Meeuwissen PCM (1990) The nitrogen report. Report of the nitrogen committee, Wageningen

    Google Scholar 

  • Granstedt A, Schneider T, Seuri P, Thomsson O (2008) Ecological recycling Agriculture to reduce nutrient pollution to Baltic sea. Biol Agric Hortic 26:279–307

    Google Scholar 

  • Haycoc NE, Pinay G (1993) Groundwater nitrate dynamics in grass and poplar vegetated riparian buffer strips during the winter. J Environ Qual 22:273–278

    Article  Google Scholar 

  • Heckrath G, Brookes PC, Poulton PR, Goulding KWT (1995) Phosphorus leaching from soils containing different P concentrations in the Broadbalk Experiment. J Environ Qual 24:904–910

    Article  CAS  Google Scholar 

  • Hofman G, Cleemput O Van (1992) Nitrogen cycling in agricultural systems. Agriculture: nitrogen cycling and leaching in cool and wet regions of Europe. COST 814. Workshop, Gembloux, Belgium

    Google Scholar 

  • Huxtable P (2006) Integrated nutrient management on farm. Practical case study: JSR farms LTD, UK. No. 579 International Fertilizer Society, York, UK, pp 46–49

    Google Scholar 

  • Johnston AE, Goulding KWT, Poulton PR, Chalmers AG (2001) Reducing fertilizer inputs: endangering arable soil fertility? No. 487, international fertilizer society, York, UK, pp 12–14 and 34–38

    Google Scholar 

  • Johnston AE, Poulton PR (1992) The role of phosphorus in crop production and soil fertility: 150 years of field experiments at Rothamsted, United Kingdom. In: Schultz JJ (ed) Phosphate fertilizers and the environment. International Fertilizer Development Centre, Muscle Shoals, Alabama, pp 45–64

    Google Scholar 

  • Johnston AE, Lane PW, Mattingly GEG, Poulton PR, Hewitt MV (1986) Effects of soil and fertilizer on P yields of potatoes, sugar beet, barley and winter wheat on a sandy clay loam soil in Saxmundham, Suffolk. J Agr Sci, Cambridge 106:155–167

    Article  Google Scholar 

  • Johston AE (2008) Resource or waste: the reality of nutrient recycling to land. No. 630, International Fertilizer Society, York, UK, pp 23–26

    Google Scholar 

  • Khan SA, Mulvaney RL, Ellsworth TR, Boast CW (2007) The myth of nitrogen fertilization for soil carbon sequestration. J Environ Qual 36:1821–1832

    Article  CAS  PubMed  Google Scholar 

  • Lal R, Regbier E, Eckert DJ, Edwards WM, Hammond R (1991) Expectations of cover crops for sustainable agriculture. In: Hargrove WL (ed) Cover crops for clean water. Soil and Water Conservation Society, Ankeny, Iowa, pp 1–11

    Google Scholar 

  • Lichtfouse E, Navarrete M, Debaeke P, Souchére V, Alberola C, Ménassieu J (2008) Agronomy for sustainable agriculture. A review. Agron. Sustain. Dev

    Google Scholar 

  • Malhi SS, Brandt SA, Lemke R, Moulin AP, Zentner RP (2009) Effects of input level and crop diversity on soil nitrate-N, extractable P, aggregation, organic C and N, and nutrient balance in the Canadian Prairie. Nutr Cycl Agroecosyst 84:1–22

    Article  CAS  Google Scholar 

  • Mander U, Forsberg C (2000) Nonpoint pollution in agricultural watersheds of endangered coastal seas. Ecol Eng 14:17–324

    Google Scholar 

  • Müller T (2010) Are there fundamental differences in the principles of soil fertility and soil productivity management between conventional and organic farming? International conference on soil fertility and soil productivity, Berlin. Book of abstracts, p 46

    Google Scholar 

  • Neeteson JJ (1991) The risk of nitrate leaching after application of nitrogen fertilizers to agricultural crops. In: Adriano DC (ed) Advances in environmental science. Groundwater contamination. Springs, New York

    Google Scholar 

  • Nótás E, Debreczeni K, Berecz K, Heltai GY (2007) Effect of N fertilizers and soil moisture on the N-gaseous losses and the plant N uptake in a maize pot experiment. Cereal Res Commun 35:1–4

    Google Scholar 

  • Öborn I, Edwards AC, Witter E, Oenema O, Ivarsson K, Withers PJA, Nilsson SI, Richert-Stinzing A (2003) Element balances as a tool for sustainable nutrient management: a critical appraisal of their merits and limitations within an agronomic and environmental context. Europ J Agronomy 20:211–225

    Article  Google Scholar 

  • Paris K, Reille L (1999) Measuring the environmental impacts of agriculture: use and management of nutrients. No. 442, International Fertilizer Society, York, UK, pp 19–21

    Google Scholar 

  • Pasda G, Haehndel R, Zerulla W (2001) Effect of fertilizers with the new nitrification inhibitor DMPP (3,4-dimetilhylpyrazole phosphate) on yield and qualty of agricultural and horticultural crops. Biol Fertil Soils 34:97

    Article  Google Scholar 

  • Penning DE, Vries FTW, Jansen DM, Berge Ten HFM, Bakema A (1989) Simulation of ecophysiological processes of growth in several annual crops. Simulation monograph 29. Oudoc, Wageningen

    Google Scholar 

  • Powlson D S (1997) Integrating agricultural nutrient management with environmental objectives – Current state and future prospects. No. 402, International Fertilizer Society, York, UK pp 8–30

    Google Scholar 

  • Ramirez E, Reheul D (2009) Statistical modelling of nitrogen use efficiency of dairy farms in Flanders. Agron Sust Dev 29:339–352

    Article  CAS  Google Scholar 

  • Rinnofner T, Friedel JK, de Kruijff R, Pietsch G, Freyer B (2008) Effect of catch crops on N dynamics and following crops in organic farming. Agron Sustain Dev 28:551–558

    Article  CAS  Google Scholar 

  • Russell EW (1973) Soil conditions on plant growth, 10th edn. Lomgmans, London, p 849

    Google Scholar 

  • Sanchez L, Diez JA, Vallejo A, Cartagena MC, Polo A (1998) Estimate of mineralized organic nitrogen in soil using nitrogen balances and determining available nitrogen by the electro-ultrafiltration technique. Application to Mediterranean climate soils. J Agr Food Chem 46:2036–2043

    Article  CAS  Google Scholar 

  • Schröder JJ (2005) Manure as a suitable component of precise nitrogen nutrition. No. 574, International Fertiliser Society, York, UK, pp 2–18

    Google Scholar 

  • Sjöström AE (2008) Policies to encourage integrated nutrient management and recycling. No. 637, International Fertilizer Society, York, UK pp 4–7

    Google Scholar 

  • Smith PF (1962) Mineral analysis of plant tissues. Ann Rev Plant Phys 13:81–108

    Article  CAS  Google Scholar 

  • Smith JU, Glendining MJ (1996) A decision support system for optimising the use of nitrogen in crop rotations. Aspects of applied biology 47, rotations and cropping systems, pp 103–110

    Google Scholar 

  • Spiertz JHJ (1991) Integrated agriculture in the Netherland. Premier Forum Européen de la Fertilisation Raisonnée, Strasbourg, pp 52–63

    Google Scholar 

  • Spiertz JHJ, Zadoks JC (1989) Opportunities for alternative farming systems. In: Zadoks JC (ed) Development of farming systems, evaluation of the five year period 1980-1984. PUDOC, Wageningen, pp 84–87

    Google Scholar 

  • Stefanovits P, Filep GY, Füleky GY (1999) Talajtan. Mezőgazda Kiadó, Budapest, p 470

    Google Scholar 

  • Sylvester-Bradley R, Addiscott TM, Vaidynathan LV, Murray AWA, and Whitmore AP (1987) Nitrogen advice for cereals: present realities and future possibilities. Proceedings No. 263, The fertilizer society, London, p 36

    Google Scholar 

  • Technical Advisory Committee (1989) Sustainable agriculture production: implications for international agricultural research. Consultative Group on Int. Agr. Res, Washington, D.C

    Google Scholar 

  • Tinker PB (2001) Organic farming – Nutrient management and productivity. No. 471, International Fertiliser Society, York, UK, pp 19–22

    Google Scholar 

  • Tisadale SL, Nelson WL, Beaton JD (1985) Soil fertility and fertilizers. Macmillan Publishing Company, New York, Collier Macmillan Publishers, London. 754 p

    Google Scholar 

  • Torbett JC, Roberts RK, Larson JA, English BC (2008) Perceived improvements in nitrogen fertilizer efficiency from cotton precision farming. Computers Electr Agr 64:140–148

    Article  Google Scholar 

  • Törner L, Drummond CD (1999) Integrated crop management: on-farm experience in Sweden and the UK. No. 443, International Fertilizer Society, York, UK, pp 14–16

    Google Scholar 

  • Ulrich A, Hills FJ (1967) Principles and practices of plant analysis. In: Stelly M (ed) Soil testing and plant analysis, II: plant analysis. Special Publication 2, Soil Science Society of America, Madison, Wisconsin, USA, pp 11–23

    Google Scholar 

  • Velasco-Velasco J, Parkinson R, Kuri V (2008) Nitrogen transfers and losses in integrated agricultural systems in central Mexico. 13th RAMIRAN international conference, Albena, Bulgaria

    Google Scholar 

  • Vereijken P (1991) Integrated nutrient management for arable farms. Rech. Agr. en Suisse, 29(4)

    Google Scholar 

  • Watson CA and Stockdale EA (1997) Using nutrient budgets to evaluate the sustainability of farming systems. Proceedings of 3 rd ENOF Workshop, Ancona

    Google Scholar 

  • Wehrmann J, Scharpf K (1979) Die Mineralstickstoffgehalt des Bodens als Maßstab für die Stickstoffdüngerbedarf (Nmin-Methode). Plant Soil 52:109–126

    Article  CAS  Google Scholar 

  • Widdowson FV, Penny AP, Darby RJ, Bird E, Hewitt MV (1987) Amounts of NO3-N and NH4-N in soil, from autumn to spring, under winter wheat and their relationship to soil type, sowing data, previous crop and N uptake at Rothamsted, Woburn and Saxmundham, 1979-85. J Agr Sci, Cambridge 108:73–95

    Article  CAS  Google Scholar 

  • Wiesler F, Horst WJ (1994) Root growth and nitrate utilization of maize cultivars under field conditions. Plant Soil 163:267–277

    Article  CAS  Google Scholar 

  • World Commission On Environment And Development (1987) Our common future. Oxford University Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György Füleky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Füleky, G., Benedek, S. (2011). Ecological Fertilization. In: Lichtfouse, E. (eds) Alternative Farming Systems, Biotechnology, Drought Stress and Ecological Fertilisation. Sustainable Agriculture Reviews, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0186-1_7

Download citation

Publish with us

Policies and ethics