Skip to main content

Ground-Motion Models for Defining Seismic Actions in Eurocode 8

  • Chapter
  • First Online:
Earthquake Data in Engineering Seismology

Part of the book series: Geotechnical, Geological, and Earthquake Engineering ((GGEE,volume 14))

Abstract

One of the long-term aims of Eurocode 8 is to achieve uniform levels of seismic risk throughout the European Community. Although in its current implementation each country adopting the code develops its own seismic zonation map , the objective of harmonization of risk requires that there must be a harmonized seismic hazard map. A key component of such a harmonized hazard map is a coordinated approach to deriving, selecting or adjusting ground-motion prediction equation s, whilst recognizing that there are compelling reasons for different combinations of equations to be used in different regions. Since such a unified hazard map is not likely to be the basis for defining seismic actions in Eurocode 8 at least until the first major revision of the code, the approach to defining ground-motion models for the preparation of seismic hazard maps should also contemplate the possibility that future editions of the code will go beyond the specification of elastic design spectra anchored only to the peak ground acceleration, PGA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abrahamson N, Silva W (2008) Summary of the Abrahamson & Silva NGA ground-motion relations. Earthquake Spectra 24:67–97

    Article  Google Scholar 

  2. Akkar S, Bommer JJ (2006) Influence of long-period filter cut-off on elastic spectral displacements. Earthquake Eng Struct Dyn 35:1145–1165

    Article  Google Scholar 

  3. Akkar S, Bommer JJ (2007) Prediction of elastic displacement response spectra in Europe and the Middle East. Earthquake Eng Struct Dyn 36:1275–1301

    Article  Google Scholar 

  4. Akkar S, Bommer JJ (2007) Empirical prediction equations for peak ground velocity derived from strong-motion records from Europe and the Middle East. Bull Seismol Soc Am 97:511–530

    Article  Google Scholar 

  5. Akkar S, Bommer JJ (2010) Empirical equations for the prediction of PGA, PGV and spectral accelerations in Europe, the Mediterranean region and the Middle East. Seismol Res Lett 81:195–206

    Article  Google Scholar 

  6. Ambraseys NN, Bommer JJ (1991) The attenuation of ground accelerations in Europe. Earthquake Eng Struct Dyn 20:1179–1202

    Article  Google Scholar 

  7. Ambraseys NN, Douglas J, Sarma SK, Smit PM (2005) Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East: horizontal peak ground acceleration and spectral acceleration. Bull Earthquake Eng 3:1–53

    Article  Google Scholar 

  8. Ambraseys NN, Simpson KA, Bommer JJ (1996) Prediction of horizontal response spectra in Europe. Earthquake Eng Struct Dyn 25:371–400

    Article  Google Scholar 

  9. Atkinson GM (2008) Ground-motion prediction equations for Eastern North America from a referenced empirical approach: implications for epistemic uncertainty. Bull Seismol Soc Am 98:1304–1318

    Article  Google Scholar 

  10. Atkinson GM, Boore DM (1997) Some comparisons between recent ground-motion relations. Seismol Res Lett 68:24–40

    Article  Google Scholar 

  11. Bay F, Wiemer S, Fäh D, Giardini D (2005) Predictive ground-motion relationships for Switzerland: best estimates and uncertainties. J Seismol 9:223–240

    Article  Google Scholar 

  12. Bay F, Wiemer S, Malagini L, Giardini D (2003) Spectral shear wave ground-motion scaling in Switzerland. Bull Seismol Soc Am 93:414–429

    Article  Google Scholar 

  13. Beyer K, Bommer JJ (2006) Relationships between median values and aleatory variabilities for different definitions of the horizontal component of motion. Bull Seismol Soc Am 96:1512–1522. Erratum 97:1769

    Article  Google Scholar 

  14. Bommer JJ, Acevedo AB (2004) The use of real earthquake accelerograms as input as input to dynamic analysis. J Earthquake Eng 8 (special issue 1):43–91

    Article  Google Scholar 

  15. Bommer JJ, Alarcón JE (2006) The prediction and use of peak ground velocity. J Earthquake Eng 10:1–31

    Article  Google Scholar 

  16. Bommer JJ, Douglas J, Scherbaum F et al (2010) On the selection of empirical ground-motion prediction equations for seismic hazard analysis. Seismol Res Lett, 81:783–793

    Article  Google Scholar 

  17. Bommer JJ, Douglas J, Strasser FO (2003) Style-of-faulting in ground motion prediction equations. Bull Earthquake Eng 1:171–203

    Article  Google Scholar 

  18. Bommer JJ, Elnashai AS, Weir AG (2000) Compatible acceleration and displacement spectra for seismic design codes. Proc 12 World Conf Earthq Eng, paper no 207, Auckland

    Google Scholar 

  19. Bommer JJ, Mendis R (2005) Scaling of spectral displacement ordinates with damping ratios. Earthquake Eng Struct Dyn 34:145–165

    Article  Google Scholar 

  20. Bommer JJ, Pinho R (2006) Adapting earthquake actions in Eurocode 8 for performance-based seismic design. Earthquake Eng Struct Dyn 35:39–55

    Article  Google Scholar 

  21. Bommer JJ, Ruggeri C (2002) The specification of acceleration time-histories in seismic design codes. Eur Earthquake Eng 16:3–17

    Google Scholar 

  22. Bommer JJ, Scherbaum F, Bungum H et al (2005) On the use of logic trees for ground-motion prediction equations in seismic hazard analysis. Bull Seismol Soc Am 95:377–389

    Article  Google Scholar 

  23. Bommer JJ, Stafford PJ, Akkar S (2010) Current empirical ground-motion prediction equations for Europe and their application to Eurocode 8. Bull Earthquake Eng 8:5–26

    Article  Google Scholar 

  24. Bommer JJ, Stafford PJ, Alarcón JE et al (2007) The influence of magnitude range on empirical ground-motion prediction. Bull Seismol Soc Am 97:2152–2170

    Article  Google Scholar 

  25. Boore DM, Atkinson GM (2008) Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s. Earthquake Spectra 24:99–138

    Article  Google Scholar 

  26. Boore DM, Joyner WB, Fumal TE (1997) Equations for estimating horizontal response spectra and peak acceleration from western North American earthquakes: a summary of recent work. Seismol Res Lett 68:128–153

    Article  Google Scholar 

  27. Bozorgnia Y, Campbell KW (2004) The vertical-to-horizontal spectral ratio and tentative procedures for developing simplified V/H and vertical design spectra. J Earthquake Eng 4:539–561

    Google Scholar 

  28. Cameron WI, Green RU (2007) Damping correction factors for horizontal ground-motion response spectra. Bull Seismol Soc Am 97:934–960

    Article  Google Scholar 

  29. Campbell KW (1997) Empirical near-source attenuation relationships for horizontal and vertical components of peak ground acceleration, peak ground velocity, and pseudo-absolute acceleration response spectra. Seismol Res Lett 68:154–179

    Article  Google Scholar 

  30. Campbell KW, Bozorgnia Y (2008) NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01s to 10 s. Earthquake Spectra 24:139–171

    Article  Google Scholar 

  31. CEN (2004) Eurocode 8. Design of Structures for Earthquake Resistance – Part 1: general rules, seismic actions and rules for buildings. EN 1998-1: 2004, Comité Européen de Normalisation, Brussels

    Google Scholar 

  32. CEN (2005) Eurocode 1. Action on Structures. Part 1–4: wind actions. EN 1991-1-4: 2005, Comité Européen de Normalisation, Brussels

    Google Scholar 

  33. Chiou BS-J, Youngs RR (2008) An NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra 24:173–215

    Article  Google Scholar 

  34. Cotton F, Scherbaum F, Bommer JJ, et al (2006) Criteria for selecting and adjusting ground-motion models for specific target regions: applications to Central Europe and rock sites. J Seismol 10:137–156

    Article  Google Scholar 

  35. Erdik M, Biro YA, Onur T et al (1999) Asssessment of earthquake hazard in Turkey and neighboring regions. Ann Geofis 42:1125–1138

    Google Scholar 

  36. García-Mayordomo J, Faccioli E, Paolucci R (2004) Comparative study of the seismic hazard assessments in European national seismic codes. Bull Earthquake Eng 2:51–73

    Article  Google Scholar 

  37. Grünthal G, Boose C, Camelbeeck T et al (1999) Seismic hazard assessment for Central, North and Northwest Europe: GSHAP Region 3. Ann Geofis 42:999–1011

    Google Scholar 

  38. Iervolino I, Maddolini G, Cosenza E (2008) Eurocode 8 compliant real record sets for seismic analysis of structures. J Earthquake Eng 12:54–90

    Article  Google Scholar 

  39. Jiménez M-J, García-Fernández M, Chadi M et al (1999) Seismic hazard assessment of the Ibero-Maghreb region. Ann Geofis 42:1057–1065

    Google Scholar 

  40. Joyner WB, Boore DM (1981) Peak acceleration and velocity from strong-motion records including records from the 1979 Imperial Valley, California, earthquake. Bull Seismol Soc Am 71:2011–2038

    Google Scholar 

  41. Leyendecker EV, Hunt RJ, Frankel AD et al (2000) Development of maximum considered earthquake ground motion maps. Earthquake Spectra 16:21–40

    Article  Google Scholar 

  42. Lungu D, Cornea T, Aldea A et al (1997) Basic representation of seismic action. In: Lungu D et al (eds) Design of structures in seismic zones. Bridgeman Ltd, Timisoara, pp 9–60

    Google Scholar 

  43. Lungu D, Cornea T, Nedelcu C (1999) Hazard assessment and site-dependent response for Vrancea earthquakes. In: Wenzel F et al (eds) Vrancea earthquakes: tectonics, hazard and risk mitigation. Kluwer Academic Publishers, Dordrecht, pp 251–267

    Chapter  Google Scholar 

  44. Malagnini L, Akinci A, Herrmann RB, et al (2002) Characteristics of the ground-motion in Northeastern Italy. Bull Seismol Soc Am 92:2186–2204

    Article  Google Scholar 

  45. Malagnini L, Herrmann RB, Di Bona M (2000) Ground-motion scaling in the Apennines (Italy). Bull Seismol Soc Am 90:1062–1081

    Article  Google Scholar 

  46. McGuire RK (1977) Seismic design spectra and mapping procedures using hazard analysis based directly on oscillator response. Earthquake Eng Struct Dyn 5:211–234

    Article  Google Scholar 

  47. Mendis R, Bommer JJ (2006) Modification of the Eurocode 8 damping reduction factors for displacement spectra. Proc 13 Eur Conf Earthq Eng, paper no 1203, Geneva

    Google Scholar 

  48. Montaldo V, Faccioli E, Zonno G et al (2005) Treatment of ground-motion predictive relationships for the reference seismic hazard map of Italy. J Seismol 9:295–316

    Article  Google Scholar 

  49. Musson RMW (1999) Probabilistic seismic hazard maps for the North Balkan region. Ann Geofis 42:1109–1124

    Google Scholar 

  50. Musson RMW, Sargeant SL (2007) Eurocode 8 seismic hazard zoning maps for the UK. Technical Report CR/07/125, British Geological Survey, Keyworth

    Google Scholar 

  51. Newmark NM, Hall WJ (1969) Seismic design criteria for nuclear reactor facilities. Proc 4 World Conf Earthq Eng 2:B5.1-B5.12, Santiago de Chile

    Google Scholar 

  52. Papaioannou Ch, Papazachos C (2000) Time-independent and time-dependent seismic hazard in Greece based on seismogenic sources. Bull Seismol Soc Am 90:22–33

    Article  Google Scholar 

  53. Rey J, Faccioli E, Bommer JJ (2002) Derivation of design soil coefficients (S) and response spectral shapes for Eurocode 8 using the European strong-motion database. J Seismol 6:547–555

    Article  Google Scholar 

  54. Sabetta F, Pugliese A (1996) Estimation of response spectra and simulation of nonstationary earthquake ground-motions. Bull Seismol Soc Am 86:337–352

    Google Scholar 

  55. Sadigh K, Chang C-Y, Egan JA et al (1997) Attenuation relationships for shallow crustal earthquakes based on California strong motion data. Seismol Res Lett 68:180–189

    Article  Google Scholar 

  56. Scherbaum F, Cotton F, Smit P (2004) On the use of response spectral-reference data for the selection and ranking of ground-motion models for seismic-hazard analysis in regions of moderate seismicity: the case of rock motion. Bull Seismol Soc Am 94:2164–2185

    Article  Google Scholar 

  57. Scherbaum F, Delavaud L, Riggelsen C (2009) Model selection in seismic hazard analysis: an information-theoretic perspective. Bull Seismol Soc Am 99:3234–3247

    Article  Google Scholar 

  58. Slejko D, Camassi R, Cecić I et al (1999) Seismic hazard assessment for Adria. Ann Geofis 42:1085–1107

    Google Scholar 

  59. Spudich P, Fletcher JB, Hellweg M et al (1997) SEA96 – a new predictive relation for earthquake ground motions in extensional tectonic regimes. Seismol Res Lett 68:190–198

    Article  Google Scholar 

  60. Stafford PJ, Mendis R, Bommer JJ (2008b) Dependence of damping correction factors for response spectra on duration and number of cycles. ASCE J Struct Eng 134:1364–1373

    Article  Google Scholar 

  61. Stafford PJ, Strasser FO, Bommer JJ (2008a) An evaluation of the applicability of the NGA models to ground-motion prediction in the Euro-Mediterranean region. Bull Earthquake Eng 6:149–177

    Article  Google Scholar 

  62. Toro GR, Abrahamson NA, Schneider JF (1997) Model of strong ground motions from earthquakes in Central and Eastern United States: best estimates and uncertainties. Seismol Res Lett 68:41–57

    Article  Google Scholar 

  63. Ulomov VI, Shumilina L, Trifonov V et al (1999) Seismic hazard of Northern Eurasia. Ann Geofis 42:1023–1038

    Google Scholar 

  64. Wiemer S, Giardini D, Fäh D et al (2009) Probabilistic seismic hazard assessment of Switzerland: best estimates and uncertainties. J Seismol 13:449–478

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.J. Bommer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bommer, J. (2011). Ground-Motion Models for Defining Seismic Actions in Eurocode 8 . In: Akkar, S., Gülkan, P., van Eck, T. (eds) Earthquake Data in Engineering Seismology. Geotechnical, Geological, and Earthquake Engineering, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0152-6_2

Download citation

Publish with us

Policies and ethics