Skip to main content

The Current State of Strong Motion Monitoring in Switzerland

  • Chapter
  • First Online:
Earthquake Data in Engineering Seismology

Abstract

The next generation Swiss Strong Motion Network has recently been funded by the Swiss Government: in the next 8 years the Swiss Seismological Service expects to install 100 new 24-bit broadband freefield stations in predominantly urban locations across the country with realtime, continuous data transmission at high sampling rates. This infrastructure will compliment the existing 30 comparable realtime stations installed over the last 3 years, and replace the original ~70 strong triggered dial-up network installed in the early 1990s. The introduction of these new stations provides an opportunity to reassess how strong motion data is used in Switzerland, for routine network operations, emergency response and scientific purposes. The strong motion data will be acquired in parallel with the existing broadband network, and will be processed together with broadband data for earthquake early warning, triggering and locations, near real time ShakeMaps , and moment tensor inversion. Challenges arise on how to archive and provide this type of data to the scientific and engineering communities. Metadata maintenance needs to parallel efforts for the broadband network. Although permanent online archival of large volumes of data is rapidly becoming more affordable, this size of the new dataset dwarfs the existing broadband data currently being generated. We discuss the optimal strategies to permanently archive the continuous data, both within Switzerland, and via the existing European data infrastructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baer M, Deichmann N, Braunmiller J et al (2007) Earthquakes in Switzerland and surrounding regions during 2006. Swiss J Geosci 100:517–528. doi: 10.1007/s00015-007-1242-0

    Article  Google Scholar 

  2. Baer M, Kradolfer U (1987) An automatic phase picker for local and teleseismic events. Bull Seismol Soc Am 77:1437–1445

    Google Scholar 

  3. Bay F, Fäh D, Malagnini L, Giardini D (2003) Spectral shear-wave ground-motion scaling in Switzerland. Bull Seismol Soc Am 98(4):414–429. doi: 10.1785/0120010232

    Article  Google Scholar 

  4. Bay F, Wiemer S, Fäh D, Giardini D (2005) Predictive ground motion relations for Switzerland: best estimates and uncertainties. J Seismol 9(2):223–240

    Article  Google Scholar 

  5. Clinton JF, Hauksson E, Solanki K (2006) An evaluation of the SCSN moment tensor solutions: robustness of the Mw magnitude scale, style of faulting, and automation of the method. Bull Seismol Soc Am 96(5):1689–1705. doi: 10.1785/0120050241

    Article  Google Scholar 

  6. Cua GB, Fischer M, Clinton JF, Wiemer S, Heaton TH, Giardini D (2008a) Calibrating and Implementing the Virtal Seismologist Approach for Earthquake Early Warning in Switzerland, American Geophysical Union, Fall Meeting 2007, abstract #S23E-03

    Google Scholar 

  7. Cua GB, Fischer M, Heaton TH et al (2008b) Real-time and off-line performance of the virtual seismologist earthquake early warning algorithm in California and Switzerland. American Geophysical Union, Fall Meeting 2008, #S11A-1724.

    Google Scholar 

  8. Cua GB, Fischer M, Heaton T, Wiemer S (2009) Real-time performance of the virtual seismologist earthquake early warning algorithm in Southern California. Sesimol Res Lett 80(5):740–747. doi: 10.1785/gssrl.80.5.740

    Article  Google Scholar 

  9. Deichmann N, Baer M, Clinton J et al (2008) Earthquakes in Switzerland and surrounding regions during 2007. Swiss J Geosci 101:659–667. doi: 10.1007/s00015-008-1304-y

    Article  Google Scholar 

  10. Dreger DS (2003) TDMT_INV: time domain seismic moment tensor inversion. In: Lee WHK, Kanamori H, Jennings P, Kisslinger C (eds) International handbook of earthquake and engineering seismology. Part B, Chapter 85–11. Academic Press, San Diego, CA

    Google Scholar 

  11. Edwards B, Allmann A, Fäh D, Clinton J (2010) Automatic computation of moment magnitudes for small earthquakes and the scaling of local to moment magnitude. Geophys J Int 183:407–420. doi: 10.1111/j.1365–246X.2010.04743.x

    Google Scholar 

  12. Edwards B, Fäh D, Allmann B, Poggi V (2009) Stochastic ground motion model for Switzerland. Pegasos Refinement Project. Report of the Swiss Seismological Service, ETH ZurichSED/PRP/R/006/20091130, 30. Nov 2009.

    Google Scholar 

  13. Fäh D COGEAR Working Group (2008). Coupled seismogenic Geohazards in Alpine Regions. Proceeding of the 14th World Conference on Earthquake Engineering October 12–17, 2008, Beijing, China. Paper Number 13-0004.

    Google Scholar 

  14. Fäh D (2009) Ein Erdbeben in Augusta Raurica? Jahresberichte aus Augst und Kaiseraugst 30:S291–S305

    Google Scholar 

  15. Fäh D, Fritsche S, Poggi V, Gassner-Stamm G, Kästli P, Burjanek J, Zweifel P, Barman S, Clinton J, Keller L, Renault P, Heuberger S (2009) Determination of Site Information for Seismic Stations in Switzerland. Work Package 4: pegasos Refinement Project. Swiss Seismological Service ETH, Zürich, Report SED/PRP/R/004/20090831.

    Google Scholar 

  16. Fäh D, Giardini D, Bay F et al (2003) Earthquake catalogue of Switzerland (ECOS) and the related macroseismic database. Eclogae Geol Helv 96(2):219–236

    Google Scholar 

  17. Fäh D, Havenith H, Roten D, Alvarez S, Giardini D (2007) Site Effects in the Rhone Valley, Switzerland: measurements, Observations, Modelling and Verification of the Building Code Spectra. Interreg Project SISMOVALP Seismic Hazard and Alpine Valley Response Analysis. Final Report Swiss Seismological Service ETH Zurich18.1.2007.

    Google Scholar 

  18. Fäh D, Steimen S, Oprsal I, Ripperger J, Wössner J, Schatzmann R, Kästli P, Spottke I, Huggenberger P (2006) The earthquake of 250 A.D. in Augusta Raurica, a real event with a 3D site-effect? J Seismol 10(4):459–477. doi: 10.1007/s10950-006-9031-1

    Article  Google Scholar 

  19. Fäh D, Wenk T (2009) Mikrozonierung für die Kantone Basel Stadt und Basel Landschaft: Optimierung der Form der Antwortspektren und der Anzahl der Mikrozonen. Abschlussbericht: Teilbericht B Projekt “Umsetzung der Mikrozonierung in den Kantonen Basel Stadt und Basel Landschaft”. Schweizerischer Erdbebendienst ETH Zürich.

    Google Scholar 

  20. Giardini D (2009) Geothermal quake risks must be faced. Nature 462:848–849

    Article  Google Scholar 

  21. Giardini D, Wiemer S, Fäh D et al (2004) Seismic hazard assessment of Switzerland. Available at http://www.earthquake.ethz.ch/research/Swiss_Hazard/downloads/Hazard_report_2004.pdf/ (last accessed 5 Oct 2010).

  22. Gorini A, Nicoletti M, Marsan P et al (2009) The Italian strong motion network. Bull Earthq Eng doi: 10.1007/s10518-009-9141-6

    Google Scholar 

  23. Hanka W, Saul J, Weber B, Becker J GITEWS Team (2008) Timely regional Tsunami warning and rapid global earthquake monitoring. ORFEUS Newsl. http://www.orfeus-eu.org/Organization/Newsletter/vol8no1/vol8no1.pdf last accessed 5 Oct 2010.

  24. Havenith H-B, Fäh D, Polom U, Roullé A (2007) S-wave velocity measurements applied to the seismic microzonation of Basel, Upper Rhine Graben. Geophysical Journal International 170(1): 346–358. doi: 10.1111/j.1365-246X.2007.03422.x

    Google Scholar 

  25. IMS1.0 Manual (2000) International Data Center Documentation IDC3.4.1Rev2, http://ftp://ftp.isc.ac.uk/pub/isf/isf.pdf

  26. Kind F, Fäh D, Giardini D (2005) Array measurements of S-wave velocities from ambient vibrations. Geophys J Int 160:114–126

    Article  Google Scholar 

  27. Kraft T, Mai M, Wiemer S, Deichmann D, Ripperger J, Kästli P, Bachmann C, Fäh D, Wössner J, Giardini D (2009) Enhanced Geothermal Systems: mitigating Risk in Urban Areas. Eos 90(32):273–280

    Article  Google Scholar 

  28. McNamara DE, Buland RP (2004) Ambient noise levels in the continental United States. Bull Seismol Soc Am 94(4):1517–1527. doi: 10.1785/012003001

    Article  Google Scholar 

  29. Peterson J (1993) Observations and modelling of background seismic noise. Open-file report 93-322, U. S. Geological Survey, Albuquerque, New Mexico.

    Google Scholar 

  30. Poggi V, Edwards B, Fäh D (2010) Derivation of a reference shear wave velocity model from empirical site amplification. BSSA 101 (1). doi: 10.1785/0120100060

    Google Scholar 

  31. Ripperger J, Kästli P, Fäh D, Giardini D (2009) Ground motion and macro-seismic intensities of a seismic event related to geothermal reservoir stimulation below the city of Basel – observations and modelling. Geophys J Int 179:1757–1771

    Article  Google Scholar 

  32. Roca A, Guéguen P, Godey S et al (2010), The European-Mediterranean distributed acceleometric data-base (this volume).

    Google Scholar 

  33. Roten D, Fäh D, Olsen KB, Giardini D (2008) A comparison of observed and simulated site response in the Rhone valley. Geophys J Int 173(3):958–978

    Article  Google Scholar 

  34. SEED (Standard for the Exchange of Earthquake Data) (2004) V2.4 Reference Manual, http://www.iris.edu/manuals/SEEDManual_V2.4.pdf last accessed 5 Oct 2010

  35. Wald DJ, Quitoriano V, Heaton TH et al (1999) TriNet “ShakeMaps”: rapid generation of peak ground-motion and intensity maps for earthquakes in southern California. Earthq Spectra 15(3):537–556

    Article  Google Scholar 

  36. Wiemer SB, Cua GB, Kästli P et al (2007) ShakeMaps at the Swiss Seismological Service: current status, innovations, and outlook. American Geophysical Union, Fall Meeting 2007, #S51A-0216.

    Google Scholar 

  37. Wiemer S, Giardini D, Fäh D et al (2009) Probabilistic seismic hazard assessment for Switzerland: bets estimates and uncertainties. J Seismol 13:449–478. doi: 10.1007/s10950-008-9138-7

    Article  Google Scholar 

  38. Wyss A (2004) Swiss national strong motion network. Strong motion bulletin January 2004–December 2004. Publication Series of the Swiss Seismological Service, no 117, Swiss Federal Institute of Technology, Zurich, Switzerland, 2005 Available at http://seispc2.ethz.ch/strong_motion/download/Bulletin04.pdf/ (last accessed 5 Oct 2010).

Download references

Acknowledgments

The regional upgrades of the strong motion network during 2003–2009 were supported by the Cantons Basel Stadt, Basel Landschaft, Valais and Graubünden through different Interreg III projects. The upgrade of the Swiss national strong motion network is supported by the Federal Office for the Environment (FOEN/BAFU) Federal Roads Office (FEDRO/ASTRA), Swiss Federal Nuclear Safety Inspectorate (ENSI), Swiss Federal Railways (SBB), Vereinigung Kantonaler Feuerversicherungen (VKF), and ETH Zürich. CCES project COGEAR supports the installation of a dense seismic network in the region of Visp and Matter valley in the Valais. The network maps were created by Sabine Wöhlbier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Clinton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Clinton, J. et al. (2011). The Current State of Strong Motion Monitoring in Switzerland. In: Akkar, S., Gülkan, P., van Eck, T. (eds) Earthquake Data in Engineering Seismology. Geotechnical, Geological, and Earthquake Engineering, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0152-6_15

Download citation

Publish with us

Policies and ethics