Skip to main content

The Role of Nitric Oxide in the Regulation of Mechanically Gated Channels in the Heart

  • Chapter
  • First Online:
Mechanosensitivity and Mechanotransduction

Abstract

The article presents the effects of NO on myocardial functions including its pronounced influence on myocardium contraction and heart rhythm. Attention is given to cell signaling of nitric oxide in the heart. It is demonstrated that in general the final effect of NO depends on the cellular source of NO, amount of NO release, the prevailing redox balance and antioxidant status, stimuli such as coronary flow rate and heart rate, the target tissue, interaction with neurohumoral and other stimuli, activity level of the immune system and activation of cGMP-dependent and independent intracellular cascades. A number of experiments conducted on whole hearts lets us suppose that NO and NO-synthases as NO origins, directly regulate the conductivity of mechanically gated channels (MGCs). This study discusses experimental data obtained from isolated ventricular myocytes of mouse, rat and guinea pig by means of patch-clamp in the whole-cell configuration about the role of NO in the regulation of MGCs. Presented data demonstrate that NO donors lead to MGCs activation and appearance of MG-like currents in unstretched ventricular myocytes, while in stretched cells with activated MGCs NO donors lead to inactivation and inhibition of the conductivity of these channels. The NO scavenger PTIO causes inactivation of all MGCs. In unstretched cells the conductance through MGCs is blocked, which is present in control before deformation. PTIO causes complete inhibition of stretch induced MG-current during presence of cellular stretch. Application of non selective inhibitors of NO-synthases L-NAME or L-NMMA resulted in a complete blockade of MGCs. The presented data are instituted on cells of transgenic mice. In ventricular myocytes of wild-type mice, NOS1–/– and NOS2–/– stretching of cells results in an activation of typical MG-currents. On the contrary, in cells from NOS3–/– mice stretch does not activate MG-currents. The results suggest that NO plays an important role in the activation and inactivation of MGCs in cardiomyocytes and demonstrate that NOS3 dominates as NO origin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here we must make the following note. The differential current that occurs under cell stretch as a result of I increase (e.g., the difference of I S minus I C) or the differential current occurring as compared to the control under the drugs effect (the difference of I Drug minus I C) was marked with a minus sign. To make it easier for the reader and to avoid confusion with the differential current under cell relaxation after stretch or the differential current resulting from I return registered in a stretched cell to the control under the drugs effect, the latter we mark conventionally with a plus sign in brackets (+).

References

  • Ashley EA, Sears CE, Bryant SM, Watkins HC, Casadei B (2002) Cardiac nitric oxide synthase 1 regulates basal and beta-adrenergic contractility in murine ventricular myocytes. Circulation 105(25):3011–3016

    Article  PubMed  CAS  Google Scholar 

  • Balligand JL, Kobzik L, Han X, Kaye DM, Belhassen L, O’Hara DS, Kelly RA, Smith TW, Michel T (1995) Nitric oxide-dependent parasympathetic signaling is due to activation of constitutive endothelial (type III) nitric oxide synthase in cardiac myocytes. J Biol Chem 270(24):14582–14586

    Article  PubMed  CAS  Google Scholar 

  • Brady AJ, Warren JB, Poole-Wilson PA, Williams TJ, Harding SE (1993) Nitric oxide attenuates cardiac myocyte contraction. Am J Physiol 265(1 Pt):H176–H182

    PubMed  CAS  Google Scholar 

  • Bruckdorfer R (2005) The basics about nitric oxide. Mol Aspects Med 26(1–2):3–31

    Article  PubMed  CAS  Google Scholar 

  • Bryan NS, Bian K, Murad F (2009) Discovery of the nitric oxide signaling pathway and targets for drug development. Front Biosci 14:1–18

    Article  PubMed  CAS  Google Scholar 

  • Butler AR, Flitney FW, Williams DL (1995) NO, nitrosonium ions, nitroxide ions, nitrosothiols and iron-nitrosyls in biology: a chemist’s perspective. Trends Pharmacol Sci 16(1):18–22

    Article  PubMed  CAS  Google Scholar 

  • Calabrese V, Cornelius C, Rizzarelli E, Owen JB, Dinkova-Kostova AT, Butterfield DA (2009) Nitric oxide in cell survival: a janus molecule. Antioxid Redox Signal 11(11):2717–2739

    Article  PubMed  CAS  Google Scholar 

  • Casadei B, Sears CE (2003) Nitric-oxide-mediated regulation of cardiac contractility and stretch responses. Prog Biophys Mol Biol 82(1–3):67–80

    Article  PubMed  CAS  Google Scholar 

  • Cotton JM, Kearney MT, MacCarthy PA, Grocott-Mason RM, McClean DR, Heymes C, Richardson PJ, Shah AM (2001) Effects of nitric oxide synthase inhibition on Basal function and the force-frequency relationship in the normal and failing human heart in vivo. Circulation 104(19):2318–2323

    Article  PubMed  CAS  Google Scholar 

  • Damy T, Ratajczak P, Robidel E, Bendall JK, Oliviéro P, Boczkowski J, Ebrahimian T, Marotte F, Samuel JL, Heymes C 2003 Up-regulation of cardiac nitric oxide synthase 1-derived nitric oxide after myocardial infarction in senescent rats. FASEB J 17(13):1934–1936

    PubMed  CAS  Google Scholar 

  • Dawson D, Lygate CA, Zhang MH, Hulbert K, Neubauer S, Casadei B (2005) nNOS gene deletion exacerbates pathological left ventricular remodeling and functional deterioration after myocardial infarction. Circulation 112(24):3729–3737

    Article  PubMed  CAS  Google Scholar 

  • Dyachenko V, Christ A, Gubanov R, Isenberg G (2008) Bending of z-lines by mechanical stimuli: an input signal for integrin dependent modulation of ion channels? Prog Biophys Mol Biol 97(2–3):196–216

    Article  PubMed  CAS  Google Scholar 

  • Dyachenko V, Husse B, Rueckschloss U, Isenberg G (2009a) Mechanical deformation of ventricular myocytes modulates both TRPC6 and Kir2.3 channels. Cell Calcium 45(1):38–54

    Article  PubMed  CAS  Google Scholar 

  • Dyachenko V, Rueckschloss U, Isenberg G (2009b) Modulation of cardiac mechanosensitive ion channels involves superoxide, nitric oxide and peroxynitrite. Cell Calcium 45(1):55–64

    Article  PubMed  CAS  Google Scholar 

  • Feron O, Belhassen L, Kobzik L, Smith TW, Kelly RA, Michel T (1996) Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. J Biol Chem 271(37):22810–22814

    Article  PubMed  CAS  Google Scholar 

  • Gallo MP, Malan D, Bedendi I, Biasin C, Alloatti G, Levi RC (2001) Regulation of cardiac calcium current by NO and cGMP-modulating agents. Pflugers Arch 2001 Feb;441(5):621–628

    Article  PubMed  CAS  Google Scholar 

  • Gillis KD (2000) Techniques for membrane capacitance measurements. In: Sakmann BNE (ed.) Single-channel recording. London: Plenum, pp 155–198

    Google Scholar 

  • Gómez R, Caballero R, Barana A, Amorós I, Calvo E, López JA, Klein H, Vaquero M, Osuna L, Atienza F, Almendral J, Pinto A, Tamargo J, Delpón E. (2009) Nitric oxide increases cardiac IK1 by nitrosylation of cysteine 76 of Kir2.1 channels. Circ Res. 105(4):383–392

    Article  PubMed  CAS  Google Scholar 

  • Guidarelli A, Cantoni O (2002) Pivotal role of superoxides generated in the mitochondrial respiratory chain in peroxynitrite-dependent activation of phospholipase A2. Biochem J 366(Pt 1):307–314

    PubMed  CAS  Google Scholar 

  • Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Revs 81:685–740

    CAS  Google Scholar 

  • Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259–263

    Article  PubMed  CAS  Google Scholar 

  • Honoré E, Patel AJ, Chemin J, Suchyna T, Sachs F (2006) Desensitization of mechano-gated K2P channels. Proc Natl Acad Sci USA 103(18):6859–6864

    Article  PubMed  CAS  Google Scholar 

  • Hu H, Sachs F (1997) Stretch-activated ion channels in the heart. J Mol Cell Cardiol 29:1511–1523

    Article  PubMed  CAS  Google Scholar 

  • Hughes MN (2008) Chemistry of nitric oxide and related species. Methods Enzymol 436:3–19

    Article  PubMed  CAS  Google Scholar 

  • Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA. 84(24):9265–9269

    Article  PubMed  CAS  Google Scholar 

  • Isenberg G, Klockner U (1982) Calcium tolerant ventricular myocytes prepared by pre-incubation in a Kb medium. Pflugers Archiv – Europ J Physiol 395: 6–18

    Article  CAS  Google Scholar 

  • Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH (2001) Protein S-nitrosylation: a physiological signal for neuronal nitric oxide Nat Cell Biol 3(2):193–197

    Article  PubMed  CAS  Google Scholar 

  • Ji GJ, Fleischmann BK, Bloch W, Feelisch M, Andressen C, Addicks K, Hescheler J (1999) Regulation of the L-type Ca2+ channel during cardiomyogenesis: switch from NO to adenylyl cyclase-mediated inhibition. FASEB J 13(2):313–324

    PubMed  CAS  Google Scholar 

  • Kamkin A, Kiseleva I (2008) Mechanically gated channels and mechanosensitive channels. In: Kamkin A, Kiseleva I (eds) Mechanosensitivity in Cells and Tissues 1. Mechanosensitive Ion Channels. Springer, pp xiii–xviii.

    Google Scholar 

  • Kamkin A, Kiseleva I, Isenberg G (2000) Stretch-activated currents in ventricular myocytes: amplitude and arrhythmogenic effects increase with hypertrophy. Cardiovasc Res 48:409–420

    Article  PubMed  CAS  Google Scholar 

  • Kamkin A, Kiseleva I, Isenberg G (2003) Ion selectivity of stretch-activated cation currents in mouse ventricular myocytes. Pflugers Arch – Europ J Physiol 446(2):220–231

    CAS  Google Scholar 

  • Kazanski VE, Kamkin A, Makarenko EYu, Lysenko NN, Sutiagin PV, Tian B, Kiseleva I (2010a) The role of the Nitric Oxide in regulation of mechanically gated channels activity in cardiomyocytes: Investigation by means of the application of NO-donors. Bulletin of Experimental Biology and Medicine 7:4–9. English, Russian. (See PubMed for details of English version pages).

    Google Scholar 

  • Kazanski VE, Kamkin A, Makarenko EYu, Lysenko NN, Sutiagin PV, Kiseleva I (2010b) The role of the Nitric Oxide in regulation of mechanically gated channels activity in cardiomyocytes: Investigation of NO-synthatases contribution. Bulletin of Experimental Biology and Medicine 8:228–232. English, Russian. (See PubMed for details of English version pages).

    Google Scholar 

  • Kelly RA, Balligand JL, Smith TW (1996) Nitric oxide and cardiac function. Circ Res 79(3):363–380

    PubMed  CAS  Google Scholar 

  • Kojda G, Kottenberg K (1999) Regulation of basal myocardial function by NO. Cardiovasc Res 41(3):514–523

    Article  PubMed  CAS  Google Scholar 

  • Kojda G, Kottenberg K, Nix P, Schluter KD, Piper HM, Noack E (1996) Low increase in cGMP induced by organic nitrates and nitrovasodilators improves contractile response of rat ventricular myocytes. Circ Res 78:91–101

    PubMed  CAS  Google Scholar 

  • Kojda G, Kottenberg K, Nix P, Schlüter KD, Piper HM, Noack E (1996) Low increase in cGMP induced by organic nitrates and nitrovasodilators improves contractile response of rat ventricular myocytes. Circ Res 78(1):91–101

    PubMed  CAS  Google Scholar 

  • Kojda G, Kottenberg K, Noack E (1997) Inhibition of nitric oxide synthase and soluble guanylate cyclase induces cardiodepressive effects in normal rat hearts. Eur J Pharmacol 334(2–3):181–190

    Article  PubMed  CAS  Google Scholar 

  • Korth HG, Sustmann R, Thater C, Butler AR, Ingold KU (1994) On the mechanism of the nitric oxide synthase-catalyzed conversion of N omega-hydroxyl-L-arginine to citrulline and nitric oxide. J Biol Chem 269(27):17776–17779

    PubMed  CAS  Google Scholar 

  • Kuebler W.M., Uhlig U., Goldmann T., et al. (2003) Stretch activates nitric oxide production in pulmonary vascular endothelial cells in situ. Am J Respir Crit Care Med 168:1391–1398

    Article  PubMed  Google Scholar 

  • Landar A, Darley-Usmar VM (2003) Nitric oxide and cell signaling: modulation of redox tone and protein modification. Amino Acids 25(3–4):313–321

    Article  PubMed  CAS  Google Scholar 

  • Lane P, Gross SS (1999) Cell signaling by nitric oxide. Semin Nephrol 19(3):215–229

    PubMed  CAS  Google Scholar 

  • Li XT, Dyachenko V, Zuzarte M, Putzke C, Preisig-Müller R, Isenberg G, Daut J (2006) The stretch-activated potassium channel TREK-1 in rat cardiac ventricular muscle. Cardiovasc Res 69(1):86–97

    Article  CAS  Google Scholar 

  • Liaudet L, Soriano FG, Szabó C (2000) Biology of nitric oxide signaling. Crit Care Med 28(4):N37–N52

    Article  PubMed  CAS  Google Scholar 

  • Lim G, Venetucci L, Eisner DA, Casadei B (2008) Does nitric oxide modulate cardiac ryanodine receptor function? Implications for excitation-contraction coupling. Cardiovasc Res 77(2):256–264

    Article  PubMed  CAS  Google Scholar 

  • Lozinsky I, Kamkin A (2010)Mechanosensitive alterations of action potentials and membrane currents in healthy and diseased cardiomyocytes: Cardiac tissue and isolated cell. In: Kamkin A, Kiseleva I (eds.) Mechanosensitivity in Cells and Tissues 3. Mechanosensitivity of the Heart. Springer, pp 185–238

    Google Scholar 

  • Malan D, Ji GJ, Schmidt A, Addicks K, Hescheler J, Levi RC, Bloch W, Fleischmann BK (2004) Nitric oxide, a key signaling molecule in the murine early embryonic heart. FASEB J 18(10):1108–1110

    PubMed  CAS  Google Scholar 

  • Marletta MA (1994) Nitric oxide synthase: aspects concerning structure and catalysis. Cell 78(6):927–930

    Article  PubMed  CAS  Google Scholar 

  • Massion PB, Balligand JL (2003) Modulation of cardiac contraction, relaxation and rate by the endothelial nitric oxide synthase (eNOS): lessons from genetically modified mice. J Physiol 546(Pt 1):63–75

    Article  PubMed  CAS  Google Scholar 

  • Massion PB, Feron O, Dessy C, Balligand J-L (2003) Nitric oxide and cardiac function. ten years after, and continuing. Circ Res 93:388–398

    CAS  Google Scholar 

  • Mateo AO, De Artiñano AAM (2000) Nitric oxide reactivity and mechanisms involved in its biological effects. Pharmacol Res 42(5):421–427

    Article  CAS  Google Scholar 

  • Mayer B, Hemmens B (1997) Biosynthesis and action of nitric oxide in mammalian cells. Trends Biochem Sci 22(12):477–481

    Article  PubMed  CAS  Google Scholar 

  • Mery P-F, Pavoine C, Belhassen L, Pecker F, Fischmeister R (1993) Nitric oxide regulates cardiac Ca2+ current: involvement of cGMP-inhibited and cGMP-stimulated phosphodiesterases through guanylyl cyclase activation. J Biol Chem 268:26286–26295

    PubMed  CAS  Google Scholar 

  • Michel T, Smith TW (1993) Nitric oxide synthases and cardiovascular signaling. Am J Cardiol 72(8):33C-38C

    Article  PubMed  CAS  Google Scholar 

  • Mohan P, Brutsaert DL, Paulus WJ, Sys SU (1996) Myocardial contractile response to nitric oxide and cGMP. Circulation 93:1223–1229

    PubMed  CAS  Google Scholar 

  • Moncada S, Higgs A (1993) The L-arginine-nitric oxide pathway. N Engl J Med 329(27):2002–2012

    Article  PubMed  CAS  Google Scholar 

  • Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43(2):109–142

    PubMed  CAS  Google Scholar 

  • Murad F (1998) Nitric oxide signaling: would you believe that a simple free radical could be a second messenger, autacoid, paracrine substance, neurotransmitter, and hormone? Recent Prog Horm Res 53:43–60

    PubMed  CAS  Google Scholar 

  • Nathan C, Xie Q II (1994) Nitric oxide synthases: roles, tolls, and controls. Cell 78:915–918

    Article  PubMed  CAS  Google Scholar 

  • Onohara N, Nishida M, Inoue R, Kobayashi H, Sumimoto H, Sato Y, Mori Y, Nagao T, Kurose H (2006) TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO J 25(22):5305–5316

    Article  PubMed  CAS  Google Scholar 

  • Papapetropoulos A, Rudic RD, Sessa WC (1999) Molecular control of nitric oxide synthases in the cardiovascular system. Cardiovasc Res 43(3):509–520

    Article  PubMed  CAS  Google Scholar 

  • Patel AJ, Honoré E (2005) Potassium-selective cardiac mechanosensitive ion channels. In: Kohl P, Sachs F, Franz MR (eds.) Cardiac mechano-electrical feedback and arrhythmias. From Pipette to Patient.. Elsevier Sounders, Philadelphia, PA, pp 11–20

    Google Scholar 

  • Paulus WJ (2001) The role of nitric oxide in the failing heart. Heart Fail Rev 6(2):105–118

    Article  PubMed  CAS  Google Scholar 

  • Paulus WJ, Vantrimpont PJ, Shah AM (1994) Acute effects of nitric oxide on left ventricular relaxation and diastolic distensibility in humans. Assessment by bicoronary sodium nitroprusside infusion. Circulation 89(5):2070–2078

    PubMed  CAS  Google Scholar 

  • Paulus WJ, Vantrimpont PJ, Shah AM (1995) Paracrine coronary endothelial control of left ventricular function in humans. Circulation 92(8):2119–2126

    PubMed  CAS  Google Scholar 

  • Petroff MG, Kim SH, Pepe S, Dessy C, Marbán E, Balligand JL, Sollott SJ (2001) Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes. Nat Cell Biol 3(10):867–873

    Article  PubMed  CAS  Google Scholar 

  • Pinsky DJ, Patton S, Mesaros S, Brovkovych V, Kubaszewski E, Grunfeld S, Malinski T (1997) Mechanical transduction of nitric oxide synthesis in the beating heart. Circ Res 81(3):372–379

    PubMed  CAS  Google Scholar 

  • Prendergast BD, Sagach VF, Shah AM (1997) Basal release of nitric oxide augments the Frank-Starling response in the isolated heart. Circulation 96(4):1320–1329

    PubMed  CAS  Google Scholar 

  • Schmidt H, Walter U (1994) NO at work. Cell 78:919–925

    Article  PubMed  CAS  Google Scholar 

  • Seddon M, Shah AM, Casadei B (2007) Cardiomyocytes as effectors of nitric oxide signalling. Cardiovasc Res 75(2):315–326

    Article  PubMed  CAS  Google Scholar 

  • Shah AM, MacCarthy PA (2000) Paracrine and autocrine effects of nitric oxide on myocardial function. Pharmacol Ther 86(1):49–86

    Article  PubMed  CAS  Google Scholar 

  • Shah AM, Spurgeon HA, Sollott SJ, Talo A, Lakatta EG (1994) 8-bromo-cGMP reduces the myofilament response to Ca2+ in intact cardiac myocytes. Circ Res 74(5):970–978

    PubMed  CAS  Google Scholar 

  • Shen W, Hintze TH, Wolin MS (1995) Nitric oxide. An important signaling mechanism between vascular endothelium and parenchymal cells in the regulation of oxygen consumption. Circulation 92(12):3505–3512

    PubMed  CAS  Google Scholar 

  • Shen W, Xu X, Ochoa M, Zhao G, Wolin MS, Hintze TH (1994) Role of nitric oxide in the regulation of oxygen consumption in conscious dogs. Circ Res 75(6):1086–1095

    PubMed  CAS  Google Scholar 

  • Smith JA, Shah AM, Lewis MJ (1991) Factors released from endocardium of the ferret and pig modulate myocardial contraction. J Physiol 439:1–14

    PubMed  CAS  Google Scholar 

  • Spassova MA, Hewavitharana T, Xu W, Soboloff J, Gill DL (2006) A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. PNAS 103:16586–16591

    Article  PubMed  CAS  Google Scholar 

  • Stamler J (1994) Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 78:931–936

    Article  PubMed  CAS  Google Scholar 

  • Strijdom H, Chamane N, Lochner A. (2009) Nitric oxide in the cardiovascular system: a simple molecule with complex actions. Cardiovasc J Afr 20(5):303–310

    PubMed  Google Scholar 

  • Trochu JN, Bouhour JB, Kaley G, Hintze TH (2000) Role of endothelium-derived nitric oxide in the regulation of cardiac oxygen metabolism: implications in health and disease. Circ Res 87(12):1108–1117

    PubMed  CAS  Google Scholar 

  • Tsang MY, Cowie SE, Rabkin SW (2004) Palmitate increases nitric oxide synthase activity that is involved in palmitate-induced cell death in cardiomyocytes. Nitric Oxide 10(1):11–19

    Article  PubMed  CAS  Google Scholar 

  • Vila-Petroff MG, Younes A, Egan J, Lakatta EG, Sollott SJ (1999) Activation of distinct cAMP-dependent and cGMP-dependent pathways by nitric oxide in cardiac myocytes. Circ Res 84(9):1020–1031

    PubMed  CAS  Google Scholar 

  • White E (2006) Mechanosensitive channels: therapeutic targets in the myocardium? Curr Pharm Des 12(28):3645–3663

    Article  PubMed  CAS  Google Scholar 

  • Wildhirt SM, Dudek RR, Suzuki H, Pinto V, Narayan KS, Bing RJ (1995) Immunohistochemistry in the identification of nitric oxide synthase isoenzymes in myocardial infarction. Cardiovasc Res 29(4):526–531

    PubMed  CAS  Google Scholar 

  • Williams JC, Armesilla AL, Mohamed TM, Hagarty CL, McIntyre FH, Schomburg S, Zaki AO, Oceandy D, Cartwright EJ, Buch MH, Emerson M, Neyses L (2006) The sarcolemmal calcium pump, alpha-1 syntrophin, and neuronal nitric-oxide synthase are parts of a macromolecular protein complex. J Biol Chem 281(33):23341–23348

    Article  PubMed  CAS  Google Scholar 

  • Xu KY, Huso DL, Dawson TM, Bredt DS, Becker LC (1999) Nitric oxide synthase in cardiac sarcoplasmic reticulum. Proc Natl Acad Sci USA 96(2):657–662

    Article  PubMed  CAS  Google Scholar 

  • Yuen EC, Gunther EC, Bothwell M (2000) Nitric oxide activation of TrkB through peroxynitrite. Neuroreport 11(16):3593–3597

    Article  PubMed  CAS  Google Scholar 

  • Zeng T, Bett GCL, Sachs F (2000) Stretch-activated whole cell currents in adult rat cardiac myocytes. Am J Physiol – Heart Circ Physiol 278:H548–H557

    PubMed  CAS  Google Scholar 

  • Zhang J, Snyder SH (1992) Nitric oxide stimulates auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci USA 89(20):9382–9385

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Hamill OP (2000) Calcium-, voltage- and osmotic stress-sensitive currents in Xenopus oocytes and their relationship to single mechanically gated channels. J Physiol 523 (Pt 1):83–99

    Article  PubMed  CAS  Google Scholar 

  • Zhang YH, Dingle L, Hall R, Casadei B (2009) The role of nitric oxide and reactive oxygen species in the positive inotropic response to mechanical stretch in the mammalian myocardium. Biochim Biophys Acta. 2009 Jul;1787(7):811–817

    Article  PubMed  CAS  Google Scholar 

  • Ziolo MT, Kohr MJ, Wang HJ (2008) Nitric oxide signaling and the regulation of myocardial function Mol Cell Cardiol 45(5):625–632

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from RFBR (09-04-01277a), DFG (Tr 02-A3) and a travel grant from the Humboldt-University (Berlin, Germany). VK, AK and IK thank Prof. G. Isenberg and Prof. P. Persson for providing the opportunity to perform some of experiments and general support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Kamkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kazanski, V., Kamkin, A., Makarenko, E., Lysenko, N., Lapina, N., Kiseleva, I. (2010). The Role of Nitric Oxide in the Regulation of Mechanically Gated Channels in the Heart. In: Kamkin, A., Kiseleva, I. (eds) Mechanosensitivity and Mechanotransduction. Mechanosensitivity in Cells and Tissues, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9881-8_5

Download citation

Publish with us

Policies and ethics