Skip to main content

Single-Molecule Kinetic Analysis of Stochastic Signal Transduction Mediated by G-Protein Coupled Chemoattractant Receptors

  • Chapter
  • First Online:
Cell Signaling Reactions

Abstract

Cellular chemotactic behaviors are typical examples of stochastic signal transduction in living cells that have been investigated in detail both experimentally and theoretically. In this chapter, we describe single-molecule kinetic analysis for stochastic signal transduction in chemotactic responses mediated by G protein-coupled chemoattractant receptors in order to give deeper understanding of the stochastic nature in chemotactic signaling processes. We also describe theoretical analysis of receptor-mediated chemotactic signaling, which reveals that noise generated in the transmembrane signaling by G protein-coupled chemoattractant receptors limits the precision of the gradient sensing. This suggests that receptor-G protein coupling and its modulation have an important role for improving the signal-to-noise ratio of chemotactic signals and thus cellular chemotaxis. Extending this beyond G protein signaling, combining single-molecule kinetic analysis with theoretical analysis offers a new tool in exploring the relationship between the kinetic properties of signaling molecules and their corresponding cellular responses in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Axelrod D (2001) Total internal reflection fluorescence microscopy in cell biology. Traffic 2:764–774

    Article  CAS  PubMed  Google Scholar 

  2. Berg HC, Purcell EM (1977) Physics of chemoreception. Biophys J 20:193–219

    Article  CAS  PubMed  Google Scholar 

  3. Bialek W, Setayeshgar S (2005) Physical limits to biochemical signaling. Proc Natl Acad Sci USA 102:10040–10045

    Article  CAS  PubMed  Google Scholar 

  4. Devreotes PN, Zigmond SH (1988) Chemotaxis in eukaryotic cells: a focus on leukocytes and Dictyostelium. Annu Rev Cell Biol 4:649–686

    Article  CAS  PubMed  Google Scholar 

  5. Dormann D, Weijer CJ (2006) Imaging of cell migration. EMBO J 25:3480–3493

    Article  CAS  PubMed  Google Scholar 

  6. Eichinger L, Pachebat JA, Glockner G et al (2005) The genome of the social amoeba Dictyostelium discoideum. Nature 435:43–57

    Article  CAS  PubMed  Google Scholar 

  7. Fisher PR, Merkl R, Gerisch G (1989) Quantitative analysis of cell motility and chemotaxis in Dictyostelium discoideum by using an image processing system and a novel chemotaxis chamber providing stationary chemical gradients. J Cell Biol 108:973–984

    Article  CAS  PubMed  Google Scholar 

  8. Fornel F (2001) Evanescent waves. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  9. Funatsu T, Harada Y, Tokunaga M et al (1995) Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374:555–559

    Article  CAS  PubMed  Google Scholar 

  10. Gerisch G (2009) Imaging actin cytoskeleton dynamics in Dictyostelium chemotaxis. Method Mol Biol 571:385–400

    Article  CAS  Google Scholar 

  11. Graf R, Brusis N, Daunderer C et al (2000) Comparative structural, molecular, and functional aspects of the Dictyostelium discoideum centrosome. Curr Top Dev Biol 49:161–185

    Article  CAS  PubMed  Google Scholar 

  12. Hereld D, Jin T (2009) Chemotaxis. Methods Mol Biol 571. Humana Press, New York

    Google Scholar 

  13. Hibino K, Watanabe TM, Kozuka J et al (2003) Single- and multiple-molecule dynamics of the signaling from H-Ras to cRaf-1 visualized on the plasma membrane of living cells. Chemphyschem 4:748–753

    Article  CAS  PubMed  Google Scholar 

  14. Hibino K, Shibata T, Yanagida T et al (2009) A RasGTP-induced conformational change in C-RAF is essential for accurate molecular recognition. Biophys J 97:1277–1287

    Article  CAS  PubMed  Google Scholar 

  15. Howard PK, Ahern KG, Firtel RA (1988) Establishment of a transient expression system for Dictyostelium discoideum. Nucleic Acids Res 16:2613–2623

    Article  CAS  PubMed  Google Scholar 

  16. Iglesias PA, Devreotes PN (2008) Navigating through models of chemotaxis. Curr Opin Cell Biol 20:35–40

    Article  CAS  PubMed  Google Scholar 

  17. Iino R, Koyama I, Kusumi A (2001) Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys J 80:2667–2677

    Google Scholar 

  18. Janetopoulos C, Ma L, Devreotes PN et al (2004) Chemoattractant-induced phosphatidylinositol 3, 4, 5-trisphosphate accumulation is spatially amplified and adapts, independent of the actin cytoskeleton. Proc Natl Acad Sci USA 101:8951–8956

    Article  CAS  PubMed  Google Scholar 

  19. Janssens PM, Van Haastert PJ (1987) Molecular basis of transmembrane signal transduction in Dictyostelium discoideum. Microbiol Rev 51:396–418

    CAS  PubMed  Google Scholar 

  20. Kitamura K, Tokunaga M, Iwane AH et al (1999) A single myosin head moves along an actin filament with regular steps of 5.3 nanometres. Nature 397:129–134

    Article  CAS  PubMed  Google Scholar 

  21. Kuwayama H, Yanagida T, Ueda M (2008) DNA oligonucleotide-assisted genetic manipulation increases transformation and homologous recombination efficiencies: Evidence from gene targeting of Dictyostelium discoideum. J Biotechnol 133:418–423

    CAS  PubMed  Google Scholar 

  22. Levitzki A, Marbach I, Bar-Sinai A (1993) The signal transduction between beta-receptors and adenylyl cyclase. Life Sci 52:2093–2100

    Article  CAS  PubMed  Google Scholar 

  23. Lu HP, Xun L, Xie XS (1998) Single-molecule enzymatic dynamics. Science 282:1877–1882

    Article  CAS  PubMed  Google Scholar 

  24. Ma L, Janetopoulos C, Yang L et al (2004) Two complementary, local excitation, global inhibition mechanisms acting in parallel can explain the chemoattractant-induced regulation of PI(3, 4, 5)P3 response in dictyostelium cells. Biophys J 87:3764–3774

    Article  CAS  PubMed  Google Scholar 

  25. Manstein DJ, Titus MA, De Lozanne A et al (1989) Gene replacement in Dictyostelium: generation of myosin null mutants. EMBO J 8:923–932

    CAS  PubMed  Google Scholar 

  26. Mato JM, Losada A, Nanjundiah V et al (1975) Signal input for a chemotactic response in the cellular slime mold Dictyostelium discoideum. Proc Natl Acad Sci USA 72:4991–4993

    Article  CAS  PubMed  Google Scholar 

  27. Matsuoka S, Iijima M, Watanabe TM et al (2006) Single-molecule analysis of chemoattractant-stimulated membrane recruitment of a PH-domain-containing protein. J Cell Sci 119:1071–1079

    Article  CAS  PubMed  Google Scholar 

  28. Matsuoka S, Miyanaga Y, Yanagida T et al (2008) Single-molecule imaging of stochastic events in living cells. In: Selvin PR, Ha T (eds) Single-molecule techniques. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  29. Matsuoka S, Shibata T, Ueda M (2009) Statistical analysis of lateral diffusion and multistate kinetics in single-molecule imaging. Biophys J 97:1115–1124

    Article  CAS  PubMed  Google Scholar 

  30. McAnaney TB, Zeng W, Doe CF et al (2005) Protonation, photobleaching, and photoactivation of yellow fluorescent protein (YFP 10C): a unifying mechanism. Biochemistry 44:5510–5524

    Article  CAS  PubMed  Google Scholar 

  31. Miyanaga Y, Matsuoka S, Ueda M (2009) Single-molecule imaging techniques to visualize chemotactic signaling events on the membrane of living Dictyostelium cells. Method Mol Biol 571:417–435

    Article  CAS  Google Scholar 

  32. Noegel AA, Schleicher M (2000) The actin cytoskeleton of Dictyostelium: a story told by mutants. J Cell Sci 113:759–766

    CAS  PubMed  Google Scholar 

  33. Parent CA (2004) Making all the right moves: chemotaxis in neutrophils and Dictyostelium. Curr Opin Cell Biol 16:4–13

    Article  CAS  PubMed  Google Scholar 

  34. Parent CA, Devreotes PN (1999) A cell’s sense of direction. Science 284:765–770

    Article  CAS  PubMed  Google Scholar 

  35. Postma M, Bosgraaf L, Loovers HM et al (2004) Chemotaxis: signalling modules join hands at front and tail. EMBO Rep 5:35–40

    Article  CAS  PubMed  Google Scholar 

  36. Rappel WJ, Levine H (2008a) Receptor noise limitations on chemotactic sensing. Proc Natl Acad Sci USA 105:19270–19275

    Article  CAS  PubMed  Google Scholar 

  37. Rappel WJ, Levine H (2008b) Receptor noise and directional sensing in eukaryotic chemotaxis. Phys Rev Lett 100:228101

    Google Scholar 

  38. Ridley AJ, Schwartz MA, Burridge K et al (2003) Cell migration: integrating signals from front to back. Science 302:1704–1709

    Article  CAS  PubMed  Google Scholar 

  39. Rosoff WJ, Urbach JS, Esrick MA et al (2004) A new chemotaxis assay shows the extreme sensitivity of axons to molecular gradients. Nat Neurosci 7:678–682

    Article  CAS  PubMed  Google Scholar 

  40. Sakmann B, Neher E (1995) Single channel recording. Plenum, New York

    Google Scholar 

  41. Sako Y, Yanagida T (2003) Single-molecule visualization in cell biology. Nat Rev Mol Cell Biol (Suppl):SS1–5

    Google Scholar 

  42. Sako Y, Minoghchi S, Yanagida T (2000) Single-molecule imaging of EGFR signalling on the surface of living cells. Nat Cell Biol 2:168–172

    Article  CAS  PubMed  Google Scholar 

  43. Sasaki AT, Firtel RA (2006) Regulation of chemotaxis by the orchestrated activation of Ras, PI3K, and TOR. Eur J Cell Biol 85:873–895

    Article  CAS  PubMed  Google Scholar 

  44. Sato MJ, Kuwayama H, van Egmond WN et al (2009) Switching direction in electric-signal-induced cell migration by cyclic guanosine monophosphate and phosphatidylinositol signaling. Proc Natl Acad Sci USA 106:6667–6672

    Article  CAS  PubMed  Google Scholar 

  45. Shaffer BM (1975) Secretion of cyclic AMP induced by cyclic AMP in the cellular slime mould Dictyostelium discoideum. Nature 255:549–552

    Article  CAS  PubMed  Google Scholar 

  46. Shibata T, Fujimoto K (2005) Noisy signal amplification in ultrasensitive signal transduction. Proc Natl Acad Sci USA 102:331–336

    Article  CAS  PubMed  Google Scholar 

  47. Song L, Nadkarni SM, Bodeker HU et al (2006) Dictyostelium discoideum chemotaxis: threshold for directed motion. Eur J Cell Biol 85:981–989

    Article  CAS  PubMed  Google Scholar 

  48. Swaney KF, Huang CH, Devreotes PN (2010) Eukaryotic chemotaxis: a network of signaling pathways controls motility, directional sensing, and polarity. Annu Rev Biophys 39:265–289

    Article  CAS  PubMed  Google Scholar 

  49. Swanson JA, Taylor DL (1982) Local and spatially coordinated movements in Dictyostelium discoideum amoebae during chemotaxis. Cell 28:225–232

    Article  CAS  PubMed  Google Scholar 

  50. Takagi H, Sato MJ, Yanagida T et al (2008) Functional analysis of spontaneous cell movement under different physiological conditions. PLoS One 3:e2648

    Google Scholar 

  51. Tokunaga M, Kitamura K, Saito K et al (1997) Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy. Biochem Biophys Res Commun 235:47–53

    Article  CAS  PubMed  Google Scholar 

  52. Tranquillo RT, Lauffenburger DA, Zigmond SH (1988) A stochastic model for leukocyte random motility and chemotaxis based on receptor binding fluctuations. J Cell Biol 106:303–309

    Article  CAS  PubMed  Google Scholar 

  53. Ueda M, Shibata T (2007) Stochastic signal processing and transduction in chemotactic response of eukaryotic cells. Biophys J 93:11–20

    Article  CAS  PubMed  Google Scholar 

  54. Ueda M, Sako Y, Tanaka T et al (2001) Single-molecule analysis of chemotactic signaling in Dictyostelium cells. Science 294:864–867

    Article  CAS  PubMed  Google Scholar 

  55. Van Haastert PJ (1997) Transduction of the chemotactic cAMP signal across the plasma membrane. In: Maeda Y, Inouye K, Takeuchi I (eds) Dictyostelium. Universal Academy Press, Tokyo

    Google Scholar 

  56. Van Haastert PJ, Postma M (2007) Biased Random Walk by Stochastic Fluctuations of Chemoattractant-Receptor Interactions at the Lower Limit of Detection. Biophys J 93:1787–1796

    Article  PubMed  Google Scholar 

  57. Vazquez F, Matsuoka S, Sellers WR et al (2006) Tumor suppressor PTEN acts through dynamic interaction with the plasma membrane. Proc Natl Acad Sci USA 103:3633–3638

    Article  CAS  PubMed  Google Scholar 

  58. Waelbroeck I (1999) Kinetics versus equilibrium: the importance of GTP in GPCR activation. Trends Pharmacol Sci 20:477–481

    Article  CAS  PubMed  Google Scholar 

  59. Wazawa T, Ueda M (2005) Total internal reflection fluorescence microscopy in single molecule nanobioscience. Adv Biochem Eng Biotechnol 95:77–106

    CAS  PubMed  Google Scholar 

  60. Xiao Z, Yao Y, Long Y et al (1999) Desensitization of G-protein-coupled receptors. agonist-induced phosphorylation of the chemoattractant receptor cAR1 lowers its intrinsic affinity for cAMP. J Biol Chem 274:1440–1448

    Article  CAS  PubMed  Google Scholar 

  61. Yanagida T, Ueda M, Murata T et al (2007) Brownian motion, fluctuation and life. Biosystems 88:228–242

    Article  CAS  PubMed  Google Scholar 

  62. Yumura S, Uyeda TQ (2003) Myosins and cell dynamics in cellular slime molds. Int Rev Cytol 224:173–225

    Article  CAS  PubMed  Google Scholar 

  63. Zigmond SH (1974) Mechanisms of sensing chemical gradients by polymorphonuclear leukocytes. Nature 249:450–452

    Article  CAS  PubMed  Google Scholar 

  64. Zigmond SH (1977) Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J Cell Biol 75:606–616

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank all of the members of Stochastic Biocomputing Group in Osaka University for discussion and also thank Peter Karagiannis for critical reading of the manuscripts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukihiro Miyanaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Miyanaga, Y., Ueda, M. (2011). Single-Molecule Kinetic Analysis of Stochastic Signal Transduction Mediated by G-Protein Coupled Chemoattractant Receptors. In: Sako, Y., Ueda, M. (eds) Cell Signaling Reactions. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9864-1_2

Download citation

Publish with us

Policies and ethics