Skip to main content

Modelling the Earth’s Magnetic Field from Global to Regional Scales

  • Chapter
  • First Online:
Geomagnetic Observations and Models

Part of the book series: IAGA Special Sopron Book Series ((IAGA,volume 5))

Abstract

In the recent years, a large amount of magnetic vector and scalar data have been measured or made available to scientists. They cover different ranges of altitudes from ground to satellite levels and have high horizontal densities over some geographical areas. Processing these potential field data may require alternatives to the widely used Spherical Harmonics. During the past decades, new techniques have been proposed to model regionally the magnetic measurements. They complement the set of older approaches that were revived and sometimes revised in the meantime. The amount of available techniques is intimidating and one often wonders which method is the most appropriate for what purpose. In this paper, we review several modelling strategies. Starting from the Spherical Harmonics, we discuss methods with global support (wavelets, multi-scale, Slepian functions,…) and then bring the focus on regional methods with local support (Rectangular Harmonic Analysis, Cylindrical Harmonic Analysis, Spherical Caps,…). We briefly examine the theoretical aspects and properties of each approach. We compare them with the help of a unique set of perfect synthetic data that mimic an ideal spatial distribution at a fixed surface. This helps us to better emphasize the theoretical characteristics of each approach and suggest, when relevant, improvements that would be useful for future practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramowitz M, Stegun A (1965) Handbook of mathematical functions. Dover, New York NY

    Google Scholar 

  • Achache J, Abtout A, Le Mouël JL (1987) The downward continuation of Magsat crustal anomaly field over Southeast Asia. J Geophys Res 92(B11):11, 584–11, 596

    Article  Google Scholar 

  • Alldredge LR (1981) Rectangular harmonic analysis applied to the geomagnetic field. J Geophys Res 86(B4):3021–3026

    Article  Google Scholar 

  • Alldredge LR (1982) Geomagnetic local and regional harmonic analyses. J Geophys Res 87(B3):921–1926

    Article  Google Scholar 

  • Alldredge LR (1983) Varying geomagnetic anomalies and secular variation. J Geophys Res 88(B11):9443–9451

    Article  Google Scholar 

  • Backus G (1986) Poloidal and toroidal fields in geomagnetic field modelling. Rev Geophys 24(1):75–109

    Article  Google Scholar 

  • Backus G, Parker R, Constable C (1996) Foundations of geomagnetism. Cambridge University Press, Cambridge

    Google Scholar 

  • Beggan C, Simons FJ (2009) Reconstruction of bandwidth-limited data on a sphere using Slepian functions: applications to crustal modelling. 505-TUE-1700-0728, IAGA Div.V, August, Sopron, Hungary

    Google Scholar 

  • Chambodut A, Panet I, Mandea M, Diament M, Holschneider M, Jamet O (2005) Wavelet frames: an alternative to spherical harmonic representation of potential fields. Geophys J Int 163:875–899. doi:10.1111/j.1365-246X.2005.02754.x

    Article  Google Scholar 

  • Chapman S, Bartels J (1940) Geomagnetism. Oxford University Press, Oxford

    Google Scholar 

  • Coddington EA (1955) Theory of ordinary differential equations. Mc Graw-Hill, New York, NY

    Google Scholar 

  • Constable CG, Parker RL, Stark PB (1993). Geomagnetic field models incorporating frozen-flux constraints. Geophys J Int 113:419–433

    Article  Google Scholar 

  • Dautray R, Lions JL (1987, 1988) Analyse mathématique et calcul numérique pour les sciences et les techniques. Masson

    Google Scholar 

  • De Santis A. (1991) Translated origin spherical cap harmonic analysis. Geophys J Int 106:253–263

    Article  Google Scholar 

  • De Santis A, Falcone C (1995) Spherical cap models of Laplacian potentials and general fields. In: Sanso F (ed) Geodetic theory today. Springer, New York, NY, pp 141–150

    Google Scholar 

  • Freeden W, Glockner O, Thalhammer M (1999) Multiscale gravitational field recovery from GPS satellite-to-satellite tracking. Studia Geoph et Geod 43:229–264

    Article  Google Scholar 

  • Freeden W, Michel V (2000) Least-squares geopotential approximation by windowed Fourier transform and wavelet transform. In: Klees R, Haagmans R (eds) Wavelet geosciences. Springer, Berlin, pp 189–241

    Google Scholar 

  • Friis-Christensen E, Lühr H, Hulot G (2006) SWARM: A constellation to study the Earth’s magnetic field. Earth Planets Space 58:351–358

    Google Scholar 

  • Gil A, Segura J, Temme NM (2009) Computing the conical function Pm−1/2+it(x). SIAM J Sci Comp 31(3):1716–1741

    Article  Google Scholar 

  • Gillet N, Lesur V, Olsen N (2009) Geomagnetic core field secular variation models. Space Sci Rev pp 1–17, doi:10.1007/s11214-009-9586-6

    Google Scholar 

  • Gonzalez-Velasco EA (1995) Fourier analysis and boundary value problems. Academic, Pacific Grove, CA

    Google Scholar 

  • Haines GV (1985a) Spherical cap harmonic analysis. J Geophys Res 90(B3):2583–2591

    Article  Google Scholar 

  • Haines GV (1985b) Spherical cap harmonic analysis of geomagnetic secular variation over Canada 1960–1983. J Geophys Res 90(B14):12563–12574

    Article  Google Scholar 

  • Haines GV (1990) Modelling by series expansions: a discussion. J Geomagn Geoelectr 42:1037–1049

    Google Scholar 

  • Hamoudi M, Thébault E, Lesur V, Mandea M (2007) GeoForschungsZentrum Anomaly Magnetic Map (GAMMA): A candidate model for the world digital magnetic anomaly map. Geochem Geophys Geosyst 8:Q06023. doi:10.1029/2007GC001638

    Article  Google Scholar 

  • Hobson EW (1965) The theory of spherical and ellipsoidal harmonics. Chelsea, New York, NY, second reprint edition

    Google Scholar 

  • Holschneider M (1995) Wavelets: an analysis tool. Oxford mathematical monographs, Clarendon Press, Oxford

    Google Scholar 

  • Holschneider M, Chambodut A, Mandea M (2003) From global to regional analysis of the magnetic field on the sphere using wavelets. Phys Earth Planet Inter 135. doi:10.1016/S0031-9201(02)00210-8

    Google Scholar 

  • Howarth RJ (2001) A History of regression and related model-fitting in the earth sciences (1636–2000). Natl Resour Res 10(4):241–286

    Article  Google Scholar 

  • Jerri AJ (1998) The Gibbs phenomenon in Fourier analysis, splines and wavelet approximations. Kluwer, Dordrecht

    Google Scholar 

  • Kellogg OD (1929) Foundations of potential theory. Dover, New York NY

    Google Scholar 

  • Korhonen J, Fairhead D, Hamoudi M, Hemant K, Lesur V, Mandea M, Maus S, Purucker M, Ravat D, Sazonova T, Thébault E (2007) Magnetic anomalie map of the world/Carte des anomalies magnétiques du monde, 1st edn, 1:50,000,000, CCGM/CCGMW, ISBN 978-952-217-000-2

    Google Scholar 

  • Langel RA, Estes RH, Mead GD, Fabiano EB, Lancaster ER (1980) Initial geomagnetic field model from MAGSAT vector data. Geophys Res Lett 7(10):793–796

    Article  Google Scholar 

  • Langel RA (1987) Main field. In: Jacobs JA (ed) Geomagnetism. pp 249–512. Academic, San Diego, CA

    Google Scholar 

  • Langel RA, Sabaka TJ, Baldwin RT, Conrad JA (1996) The near-Earth magnetic field from magnetospheric and quietday ionospheric sources and how it is modelled. Phys Earth Planet Inter 98:235–267

    Article  Google Scholar 

  • Langel RA, Hinze WJ (1998) The magnetic field of the earth’s lithosphere: the satellite perspective. Cambridge University Press, New York NY

    Google Scholar 

  • Langlais B, Lesur V, Purucker ME, Connerney JEP, Mandea M (2009) Crustal magnetic field of terrestrial planets. Space Sci Rev. doi:10.1007/s11214-009-9557-y

    Google Scholar 

  • Lesur V, Gubbins D (1999) Evaluation of fast spherical transforms for geophysical applications. Geophys J Int 139:547–555

    Article  Google Scholar 

  • Lesur V (2006) Introducing localized constraints in global geomagnetic field modelling. Earth Planets Space 58:477–483

    Google Scholar 

  • Lesur V, Maus S (2006) A global lithospheric magnetic field model with reduced noise level in the polar regions. Geophys Res Lett 33:L13304. doi:10.1029/2006GL025826

    Article  Google Scholar 

  • Lesur V, Wardinski I, Rother M, Mandea M (2008) GRIMM: the GFZ reference internal magnetic model based on vector satellite and observatory data. Geophys J Int 173:382–394. doi:10.1111/j.1365-246X.2008.03724.x

    Article  Google Scholar 

  • Lowes FJ (1999) Orthogonality and mean squares of vector fields given by spherical harmonic potentials. Geophys J Int 136:781–783

    Article  Google Scholar 

  • Maier T (2003) Multiscale geomagnetic field modelling from satellite data: theoretical aspects and numerical application. Unpublished PhD thesis, University of Kaiserslautern, Germany

    Google Scholar 

  • Maier T, Mayer C (2003) Multiscale downward continuation of CHAMP FGM-data for crustal field modelling. In: Reigber C, Lühr H, Schwintzer P (eds) First CHAMP mission results for gravity, magnetic and atmospheric studies. Springer, Berlin, pp 288–295

    Google Scholar 

  • Malin SRC, Düzgit Z, Baydemir N (1996) Rectangular harmonic analysis revisited. J Geophys Res 101(B12):28,205–28,209

    Article  Google Scholar 

  • Mandea M, Purucker ME (2005) Observing, modeling, and interpreting magnetic fields of the solid earth. Surv Geophys vol 26(4): pp. 415–459, doi:10.1007/s10712-005-3857-x

    Google Scholar 

  • Maus S, Rother M, Hemant K, Stolle C, Lühr H, Kuvshinov A, Olsen N (2006) Earth’s lithospheric magnetic field determined to spherical harmonic degree 90 from CHAMP satellite measurements. Geophys J Int 164:319–330. doi:10.1111/j.1365-246X.2005.02833.x

    Article  Google Scholar 

  • Maus S, Lühr H, Rother M, Hemant K, Balasis G, Ritter P, Stolle C (2007a) Fifth generation lithospheric magnetic field model from CHAMP satellite measurements. Geochem Geophys Geosyst 8:Q05013. doi:10.1029/2006GC001521

    Article  Google Scholar 

  • Maus S, Sazonova T, Hemant K, Fairhead JD, Ravat D (2007b) National geophysical data center candidate for the world digital magnetic anomaly map. Geochem Geophys Geosyst 8:Q06017. doi:10.1029/2007GC001643

    Article  Google Scholar 

  • Maus S, Yin F, Lühr H, Manoj C, Rother M, Rauberg J, Michaelis I, Stolle C, Müller RD (2008) Resolution of direction of oceanic magnetic lineations by the sixth-generation lithospheric magnetic field model from CHAMP satellite magnetic measurements. Geochem Geophys Geosyst 9:Q0702. doi:10.1029/2008GC001949

    Article  Google Scholar 

  • Maus S, Barckhausen U, Berkenbosch H, Bournas N, Brozena J, Childers V, Dostaler F, Fairhead JD, Finn C, von Frese RRB, Gaina C, Golynsky S, Kucks R, Lühr H, Milligan P, Mogren S, Müller RD, Olesen O, Pilkington M, Saltus R, Schreckenberger B, Thébault E, Caratori Tontini F (2009) EMAG2: A 2-arc min resolution earth magnetic anomaly grid compiled from satellite, airborne, and marine magnetic measurements. Geochem Geophys Geosyst 10:Q08005. doi:10.1029/2009GC002471

    Article  Google Scholar 

  • Maus S (2010) An ellipsoidal harmonic representation of Earth’s lithospheric magnetic field to degree and order 720, Geochem. Geophys. Geosyst. 11:Q06015. doi:10.1029/2010GC003026

    Google Scholar 

  • Mayer C, Maier T (2006) Separating inner and outer Earth’s magnetic field from CHAMP satellite measurements by means of vector scaling functions and wavelets. Geophys J Int 167:1188–1203. doi:10.1111/j.1365-246X.2006.03199.x

    Article  Google Scholar 

  • Morse PM, Feshbach H (1953) Methods of theoretical physics. Mc Graw-Hill Company

    Google Scholar 

  • Nakagawa I., Yukutake T (1985) Rectangular harmonic analyses of geomagnetic anomalies derived from MAGSAT data over the area of the Japanese Islands. J Geomagnetics. Geoelectric. 37(10):957–977

    Google Scholar 

  • Nakagawa I, Yukutake T, Fukushima N (1985) Extraction of magnetic anomalies of crustal origin from Magsat over the area of the Japanese islands. J Geophys Res 90:2609–2616

    Article  Google Scholar 

  • Olsen N, Holme R, Hulot G, Sabaka T, Neubert T, Toffner-Clausen L, Primdahl F, Jorgensen J, Leger J-M, Barraclough D, Bloxham J, Cain J, Constable C, Golovkov V, Jackson A, Kotze P, Langlais B, Macmillan S, Mandea M, Merayo J, Newitt L, Purucker M, Risbo T, Stampe M, Thomson A, Voorhies C (2000) ØRSTED initial field model. Geophys Res Lett 27(22):3607–3610

    Article  Google Scholar 

  • Olsen N, Lühr H, Sabaka TJ, Mandea M, Rother M, Tøffner-Clausen L, Choi S (2006) CHAOS—A Model of Earth´s magnetic field derived from CHAMP, Ørsted, and SAC-C magnetic satellite data. Geophys J Int 166:67–75. doi:10.1111/j.1365-246X.2006.02959.x

    Article  Google Scholar 

  • Olsen N, Mandea M, Sabaka TJ, Tøffner-Clausen L (2009) CHAOS-2 A geomagnetic field model derived from one decade of continuous satellite data. Geophys J Int 179:1477–1487. doi:10.1111/j.1365-246X.2009.04386.x

    Article  Google Scholar 

  • Olver FWJ. (1997) Asymptotics and special functions. Peters AK, Natick, Massachusetts

    Google Scholar 

  • Panet I, Chambodut A, Diament M, Holschneider M, Jamet O (2006) New insights on intraplate volcanism in French Polynesia from wavelet analysis of GRACE, CHAMP, and sea surface data. Geophys J Res 111:B09403. doi:10.1029/2005JB004141

    Article  Google Scholar 

  • Purucker ME, Whaler W (2007) Crustal magnetism. : In: Kono M (ed) Geomagnetism, Elsevier, Amsterdam, treatise on geophysics, Chapter 6, vol 5. pp 195–237

  • Reddy, BD (1998) Introductory functional analysis, vol 27. Springer, New York, NY, Texts in applied mathematics

    Google Scholar 

  • Reigber C, Lühr H, Schwintzer P (2002) CHAMP Mission status. Adv Space Res 30(2), 129–134. doi:10.1016/S0273-1177(02)00276-4

    Google Scholar 

  • Robin L (1958) Fonctions sphériques de Legendre et fonctions sphéroidales, vol II and III. Gauthier-Villars, Paris

    Google Scholar 

  • Sabaka TJ, Baldwin RT (1993) Modeling the Sq magnetic field from POGO and MAGSAT satellite and contemporaneous hourly observatory data: Phase I. Contract Report HSTX/ G&G9302

    Google Scholar 

  • Sabaka TJ, Olsen N, Purucker ME (2004) Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP data. Geophys J Int 159:521–547. doi:10.1111/j.1365–246X.2004.02421.x

    Article  Google Scholar 

  • Sabaka TJ, Olsen N (2006) Enhancing comprehensive inversions using the SWARM constellation. Earth Planet Space 58:371–395

    Google Scholar 

  • Sabaka TJ, Hulot G, Olsen N (2009) Mathematical properties relevant to geomagnetic field modelling. In: Freeden W, Nashed Z, Sonar T (eds) Handbook of Geomathematics. Springer, Heidelberg, (in press), ISBN 978-3-642-01547-2

    Google Scholar 

  • Shure L, Parker RL, Backus GE (1982) Harmonic splines for geomagnetic modelling. Phys Earth Planet Inter 28:215–229

    Article  Google Scholar 

  • Simons FJ, Dahlen FA (2006) Spherical slepian functions and the polar gap in geodesy. Geophys J Int 166:1039–1061. doi: 10.1111/j.1365-246X.2006.03065.x

    Article  Google Scholar 

  • Simons FJ, Dahlen FA, Wieczorek MA (2006) Spatiospectral concentration on a sphere. SIAM Rev 48(3):504–536. doi: 10.1137/S0036144504445765

    Article  Google Scholar 

  • Simons FJ, Hawthorne JC, Beggan CD (2009) Efficient analysis and representation of geophysical processes using localized spherical basis functions. In: Goyal VK, Papadakis M, Van de Ville D (eds) Wavelets XIII. 7446:74460G1-15. doi:10.1117/12.825730

    Google Scholar 

  • Simons FJ (2010) Slepian functions and their use in signal estimation and spectral analysis. In: Freeden W, Nashed Z, Sonar T (eds) Handbook of geomathematics. Springer, Heidelberg, (in press), ISBN: 978-3-642-01547-2

    Google Scholar 

  • Stockman R, Finlay CC, Jackson A (2009) Imaging Earth’s crustal magnetic field with satellite data: a regularized spherical triangle tessellation approach. Geophys J Int 179:929–944. doi:10.1111/j.1365-246X.2009.04345.x

    Article  Google Scholar 

  • Sneeuw N (1994) Global spherical harmonic analysis by least-squares and numerical quadrature methods in historical perspective. Geophys J Int 118:707–716

    Article  Google Scholar 

  • Thébault E, Schott JJ, Mandea M, Hoffbeck JP (2004) A new proposal for spherical cap harmonic analysis. Geophys J Int 159:83–105

    Article  Google Scholar 

  • Thébault E (2006) Global lithospheric magnetic field modeling by successive regional analysis. Earth Planets Space 58:485–495

    Google Scholar 

  • Thébault E, Schott JJ, Mandea M, (2006a) Revised spherical cap harmonic analysis (RSCHA): validation and properties. J Geophys Res 111:B01102. doi:10.1029/2005JB003836

    Article  Google Scholar 

  • Thébault E, Mandea M, Schott JJ (2006b) Modelling the lithospheric magnetic field over France by means of revised spherical cap harmonic analysis (R-SCHA). J Geophys Res 111:B05102. doi:10.1029/2005JB004110

    Article  Google Scholar 

  • Thébault E (2008) A proposal for regional modelling at the Earth’s surface, R-SCHA2D. Geophys J Int. doi:10.1111/j.1365-246X.2008.03823.x

    Google Scholar 

  • Thébault E, Gaya-Piqué L (2008) Applied comparisons between SCHA and R-SCHA regional modelling techniques. Geochem Geophys Geosyst 9:Q07005. doi:10.1029/2008GC001953

    Article  Google Scholar 

  • Thébault E, Purucker ME, Whaler K, Langlais B, Sabaka TJ (2010) The Magnetic field of the Earth’s lithosphere. Space Sci Rev, doi:10.1007/S11214-010-9667-6

    Google Scholar 

  • Torta JM, Gaya-Piqué LR, De Santis A (2006) Spherical cap harmonic analysis of the geomagnetic field with application for aeronautical mapping. In: Rasson JL, Delipetrov T (eds) Geomagnetics for aeronautical safety: a case study in and around the balkans. Springer, Dordrecht, pp 291–307

    Google Scholar 

Download references

Acknowledgement

We kindly thanks C. Beggan, V. Lesur and F. Simons for providing the data of Figs. 9.2 and 9.9 and helpful discussions and G. Plank for his helpful comments. For IPGP, this is contribution 2638.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Jacques Schott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Schott, JJ., Thébault, E. (2011). Modelling the Earth’s Magnetic Field from Global to Regional Scales. In: Mandea, M., Korte, M. (eds) Geomagnetic Observations and Models. IAGA Special Sopron Book Series, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9858-0_9

Download citation

Publish with us

Policies and ethics