Skip to main content

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Abstract

In this chapter we consider the most important sensor typologies, according to their electrical behaviour, describing the fundamentals of electronic interfaces which are essential components in sensor systems for the detection and the quantification of a physical or chemical measurand. In particular, we will describe, in a deeper detail, some kinds of sensors presented in Chapter 1, together with other sensors, in terms of their characteristic electrical parameters and responses. Moreover, we will give some generalities on the main measurement techniques and describe the simplest analog electronic read-out circuits for the interfacing of resistive, capacitive and temperature sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Grandke, W.H. KO, Fundamentals and General Aspects, in Sensors: A Comprehensive Survey, ed. by W. Gopel, J. Hesse, J.H. Zemel (Wiley VCH, Weinheim, 1996). ISBN 3527293299

    Google Scholar 

  2. R.C. Dorf, The Electrical Engineering Handbook (CRC Press LLC, Boca Raton, 2000). ISBN 0849385741

    Google Scholar 

  3. G. Sberveglieri, C. Baratto, E. Comini, G. Faglia, M. Ferroni, A. Vomiero, Single crystalline metal oxide nano-wires/tubes: controlled growth for sensitive gas sensor devices, in 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Bangkok, Thailand, Jan 2007, pp. 227–229

    Google Scholar 

  4. A. Hierlemann, O. Brand, C. Hagleitner, H. Baltes, Microfabrication techniques for chemical biosensors. Proc. IEEE 91(6), 839–863 (2003)

    Article  Google Scholar 

  5. E. Martinelli, C. Falconi, A. DAmico, C. Di Natale, Feature extraction chemical sensors in phase space. Sensors Actuator B 95, 132–139 (2003)

    Google Scholar 

  6. R. G. Longoria, Resistive sensors, lectures at the University of Texas at Austin

    Google Scholar 

  7. M. Knite, V. Teteris, A. Kiploka, J. Kaupuzs, Polyisoprene-carbon black nanocomposites as strain and pressure sensor materials. Sensors Actuator A 110(1–3), 143–150 (2004)

    Google Scholar 

  8. A. Varfolomeev, V. Filippov, S. Lazarev, E. Meylichov, V. Pokalyakin, A. Volkov, A. Volynskiy, S. Yakimov, A. Zharkovsky, Piezoresistive sensor based on nanostructured metal layer on polymer film, in Proceedings of Eurosensors, Dresden, Sept 2008, pp. 152–153

    Google Scholar 

  9. W. Thomson, The electro-dynamic qualities of metals. Phil. Trans. Royal. Soc Lond. 146, 733 (1856)

    Google Scholar 

  10. M. Messina, F. Franze, N. Speciale, E. Cozzani, A. Roncaglia, Thermofluid analysis of ultra low power hotplates for a MOX gas sensing device. IEEE Sens. J. 9(5), 504–511 (2009)

    Article  Google Scholar 

  11. A. Hackner, A. Habauzit, G. Muller, E. Comini, G. Faglia, G. Sberveglieri, Surface ionization gas detection on platinum and metal oxide surfaces. IEEE Sens. J. 9(12), 1727–1733 (2009)

    Article  Google Scholar 

  12. J. Courbat, D. Briand, L. Yue, S. Raible, N. F. De Rooij, Ultra-low power metal-oxide gas sensor on plastic foil, in International Conference on Solid-State Sensors, Actuators and Microsystems, Transducers, June 2009, pp. 584–587

    Google Scholar 

  13. S. Bicelli, A. Depari, G. Faglia, A. Flammini, A. Fort, M. Mugnaini, A. Ponzoni, V. Vignoli, Model and experimental characterization of dynamic behaviour of low power Carbon monoxide MOX sensors with pulsed temperature profile, in Proceedings of IEEE Instrumentation and Measurement Technology Conference – IMTC, Victoria, May 2008, pp. 1413–1418

    Google Scholar 

  14. I. Elmi, S. Zampolli, E. Cozzani, M. Passini, G. Pizzochero, G. C. Cardinali, M. Severi, Ultra low power MOX sensors with ppb-Level VOC detection capabilities, in Proceedings of IEEE Sensors, Oct 2007, pp. 170–173

    Google Scholar 

  15. S. Bicelli, A. Flammini, A. Depari, D. Marioli, A. Ponzoni, G. Sberveglieri, A. Taroni, low-power carbon monoxide MOX sensors for wireless distributed sensor networks, in Proceedings of IEEE Instrumentation and Measurement Technology Conference, May 2007, pp. 1–5

    Google Scholar 

  16. C. Falconi, E. Martinelli, C. Di Natale, A. DAmico, F. Maloberti, P. Malcovati, A. Baschirotto, V. Stornelli, G. Ferri, Electronic interfaces. Sensors Actuator B 121, 295–329 (2007)

    Google Scholar 

  17. A. D’Amico, C. Di Natale, Introduzione ai sensori (Aracne, Roma, 2008). ISBN 9788854816633

    Google Scholar 

  18. Internet resource: http://www.figarosensor.com. Datasheet TGS826

  19. A. Ponzoni, C. Baratto, S. Bianchi, E. Comini, M. Ferroni, M. Pardo, M. Vezzoli, A. Vomiero, G. Faglia, G. Sberveglieri, Metal oxide nanowire and thin-film-based gas sensors for chemical warfare simulants detection. IEEE Sens. J. 8(6), 735–742 (2008)

    Article  Google Scholar 

  20. J. Lozano, J. P. Santos, M. Aleixandre, M. C. Horrillo, Electronic nose applied to off flavours detection in wine, in Proceedings of Eurosensors, Dresden, Sept 2008, pp. 479–482

    Google Scholar 

  21. C. Di Natale, F. Davide, A. D’Amico, G. Sberveglieri, Sensors for domestic applications, in Proceedings of the First European School on Sensors, (World Scientific Publ., Singapore, 1995)

    Google Scholar 

  22. Internet resource: http://www.sensorsmag.com/sensors/humidity-moisture/choosing-a-humidity-sensor-a-review-three-technologies-840

  23. S. Pennisi, High-performance and simple CMOS interface circuit for differential capacitive sensors. IEEE Trans. Circ. Syst. II 52(6), 322–326 (2005)

    Article  Google Scholar 

  24. L. Zhao, E. M. Yeatman, Inherently digital micro capacitive tilt sensor for low power motion detection, in Proceedings of Eurosensors, Dresden, Sept 2008, pp. 621–624

    Google Scholar 

  25. T. Schneider, S. Doerner, P. Hauptmann, Wide-band impedance spectrum analyzer for monitoring of dielectric and resonant sensors, in Proceedings of Eurosensors, Dresden, Sept 2008, pp. 1399–1402

    Google Scholar 

  26. K. Manoli, P. Oikonomou, D. Goustouridis, E. Karonis, I. Raptis, M. Sanopoulou, Interdigital chemocapacitive sensors, based on polymer/batio3 composites, in Proceedings of Eurosensors, Dresden, Sept 2008, pp. 1101–1103

    Google Scholar 

  27. E. Pritchard, M. Mahfouz, B. Evans, S. Eliza, M. Haider, Flexible capacitive sensors for high resolution pressure measurement, in Proceedings of IEEE Sensors, Lecce, Oct 2008, pp. 1484–1487

    Google Scholar 

  28. C. Hierold, B. Clasbrummel, D. Behrend, T. Scheiter, M. Steger, K. Oppermann, H. Kapels, E. Landgraf, D. Wenzel, D. Etzrodt, Low power integrated pressure sensor system for medical applications. Sensors Actuator A 73(1–2), 58–67 (1999)

    Article  Google Scholar 

  29. T.G. Constandinou, J. Georgiou, C. Toumazou, Micropower front-end interface for differential capacitive sensor systems. IET Electron. Lett. 44(7), 470–472 (2008)

    Article  Google Scholar 

  30. Y. H. Hsueh, J. H. Lin, Low power integrated capacitive pressure microsensor design, in Proceedings of Eurosensors, Dresden, Sept 2008, pp. 284–287

    Google Scholar 

  31. C.T. Ko, S.H. Tseng, M.S.C. Lu, A CMOS micromachined capacitive tactile sensor with high frequency output. J. Microelectromech. S. 15(6), 1708–1714 (2006)

    Article  Google Scholar 

  32. C.L. Dai, Y. Tai, P.H. Kao, Modeling and fabrication of MicroFET pressure sensor with circuits. Sensors 7, 3386–3398 (2007)

    Article  Google Scholar 

  33. L. Kin-tak, C. Chi-chiu, Z. Li-min, J. Wei, Strain monitoring in composite-strengthened concrete structures using optical fibre sensors. Composites B 32(1), 33–45 (2001)

    Article  Google Scholar 

  34. H. Guckel, T. Randazzo, D.W. Burns, A simple technique for the determination of mechanical strain in thin films with applications to polysilicon. J. Appl. Phys. 57(5), 1671–1675 (1985)

    Article  Google Scholar 

  35. S. Kon, K. Oldham, R. Ruzicka, R. Horowitz, Design and fabrication of a piezoelectric instrument suspension for hard disk, in Proceedings of SPIE 6529, Part 2, art. no. 65292V, 2007

    Google Scholar 

  36. J. Guo, H. Kuo, D. J. Young, W. H. Ko, Buckled beam linear output capacitive strain sensor, in IEEE Solid-State Sensor and Actuator Workshop, 2004, pp. 344–347

    Google Scholar 

  37. P. Broutas, D. Goustouridis, S. Chatzandroulis, P. Normand, D. Tsoukalas, Capacitive strain sensors using polymer embedded thin Si membranes, in Proceedings of Eurosensors, Dresden, Sept 2008, pp. 186–188

    Google Scholar 

  38. Internet resource: http://www.analog.com. Datasheet ADXL50

  39. R. Dai, R.B. Stein, B.J. Andrews, K.B. James, M. Wieler, Application of tilt sensors in functional electrical stimulation. IEEE Trans. Rehabil. Eng. 4(2), 63–72 (1996)

    Article  Google Scholar 

  40. L. Zhao, E. M. Yeatman, Micro capacitive tilt sensor for human body movement detection, in Proceedings of International Workshop on Wearable and Implantable Body Sensor Networks, Aachen, 2007

    Google Scholar 

  41. A.V. Mamishev, K. Sundare-Rajan, F. Yang, Y. Du, M. Zahn, Interdigital sensors and transducers. Proc. IEEE 92, 808–845 (2004)

    Google Scholar 

  42. J. Laconte, V. Wilmart, D. Flandre, J. P. Raskin, High-sensitivity capacitive humidity sensors using 3-layer patterned polyimide sensing film, in Proceedings of IEEE Sensors, 2003, pp. 372–377

    Google Scholar 

  43. Z. Chen, C. Lu, Humidity sensors: a review of materials and mechanisms. IEEE Sensor Lett. 3, 274–295 (2005)

    Article  Google Scholar 

  44. A.D. DeHennis, K.D. Wise, A wireless microsystem for the remote sensing of pressure, temperature and relative humidity. J. Microelectromechanical S. 14(1), 12–22 (2005)

    Article  Google Scholar 

  45. A. Oprea, N. Barsan, U. Weimar, M. L. Bauersfeld, D. Ebling, Capacitive humidity sensors on flexile RFID labels, in Proceedings of Transducers, 2007, pp. 2039–2042

    Google Scholar 

  46. C.Y. Lee, G.B. Lee, Humidity sensors: a review. Sensor Lett. 3, 1–15 (2005)

    Article  Google Scholar 

  47. L. Löfgren, B. Löfving, T. Pettersson, B. Ottosson, S. Haasl, C. Rusu, K. Persson, O. Vermesan, N. Pesonen, P. Enoksson, Low-power humidity sensor, in Proceedings of Eurosensors, Dresden, Sept 2008, pp. 231–234

    Google Scholar 

  48. C. Zhang, T. Yin, Q. Wu, H. Yang, A large dynamic range CMOS readout circuit for MEMS vibratory gyroscope, in Proceedings of IEEE Sensors, Lecce, Oct 2008, pp. 1123–1126

    Google Scholar 

  49. M.A.P. Pertijs, K.A.A. Makinwa, J.H. Huijsing, A CMOS smart temperature sensor with a 3σ Inaccuracy of ± 0. 1 ∘ C from -55 ∘ C to 125 ∘ C. IEEE J. Solid State Circ. 40(12), 2805–2815 (2005)

    Google Scholar 

  50. M. A. P. Pertijs, A. L. Aita, K. A. A. Makinwa, J. H. Huijsing, Voltage calibration of smart temperature sensors, in Proceedings of IEEE Sensors, Lecce, Oct 2008, pp. 756–759

    Google Scholar 

  51. G.C.M. Meijer, G. Wang, F. Fruett, Temperature sensors and voltage references implemented in CMOS technology. IEEE Sens. J. 1(3), 225–234 (2001)

    Article  Google Scholar 

  52. G. Ferri, N. Guerrrini, V. Stornelli, C. Catalani, A novel CMOS temperature control system for resistive gas sensor array, in Proceedings of ECCTD, Cork, 2005, pp. 351–354

    Google Scholar 

  53. S.S.W. Chan, P.C.H. Chan, A resistance-variation tolerant constant-power heating circuit for integrated sensor applications. IEEE J. Solid-State Circuits 34(4), 432–437 (1999)

    Article  Google Scholar 

  54. C. Falconi, C. Di Natale, A. D’Amico, J. Huijsing, A model of bipolar transistors for thermal sensors applications, in Proceedings of IEEE Sensors, Orlando, 2002

    Google Scholar 

  55. A. Sedra, K.C. Smith, Microelectronic Circuits, 5th edn. (Oxford University Press, New York, 2007). ISBN 0195142527

    Google Scholar 

  56. Internet resource: http://www.national.com. Datasheet LM35

  57. E. Zampetti, C. Falconi, S. Pantalei, E. Martinelli, C. Di Natale, A. D’Amico, Thermal sigma delta modulation for quartz crystal microbalances, in Proceedings of AISEM (Associazione Italiana Sensori e Microsistemi) Conference, 2005

    Google Scholar 

  58. J. Huijsing, Integrated smart sensors. Sensors Actuator A 30, 167–174 (1992)

    Article  Google Scholar 

  59. G. Massobrio, P. Antognetti, Semiconductor Device Modeling with SPICE (Mc Graw Hill, New York, 1993). ISBN 0070024693

    Google Scholar 

  60. R. Hogervorst, J.H. Huijsing, Design of Low-Voltage Low-Power Operational Amplifier Cells (Kluwer Academic Publishers, Boston, 1996). ISBN 1441951652

    Google Scholar 

  61. W.A. Serdijin, A.C. van der Voerd, A.H.M. van Roermund, J. Davidse, Design principle for low-voltage low-power analog integrated circuits. Analog Integr. Circ. Signal Process. 8, 115–120 (1998)

    Article  Google Scholar 

  62. W.A. Serdijn, A.C. van der Woerd, J.C. Kuenen, Low-Voltage Low-Power Analog Integrated Circuits (Kluwer Academic Publishers, Boston, 1995). ISBN 9780792396086

    Google Scholar 

  63. S. Sakurai, M. Ismail, Low-Voltage CMOS Operational Amplifiers (Kluwer Academic Publishers, Boston, 1995). ISBN 9780792395072

    Google Scholar 

  64. G. Ferri, Low power adaptive biased integrated amplifiers. Analog Integr. Circ. Signal Process. 33, 251–264 (2002)

    Article  Google Scholar 

  65. G. Ferri, P. De Laurentiis, A. D’Amico, G. Stochino, Low Voltage Design, Electronics World, pp. 714–722, 1999

    Google Scholar 

  66. C. Enz, F. Krummenacher, E. Vittoz, An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications. Analog Integr. Circ. Signal Process. 8, 83–114 (1995)

    Article  Google Scholar 

  67. C. Toumazou, A. Payne, D. Haigh, Analogue IC design: The Current Mode Approach (Peter Peregrinus, London, 1990)

    Google Scholar 

  68. C. Toumazou, J. Lidgey, Universal Current Mode Analogue Amplifiers, in Analogue IC design: The Current Mode Approach, ed. by C. Toumazou, F.J. Lidgey, D.G. Haigh (Peter Peregrinus, London, 1990)

    Google Scholar 

  69. G. Palumbo, S. Palmisano, S. Pennisi, CMOS Current Amplifiers (Kluwer Academic Publishers, Boston, 1999)

    Google Scholar 

  70. K. Koli, K. Halonen, CMOS Current Amplifiers (Kluwer Academic Publishers, Boston, 2002)

    Google Scholar 

  71. G. Ferri, N. Guerrini, Low voltage Low Power CMOS Current Conveyors (Kluwer Academic Publishers, Boston, 2003). ISBN 1402074867

    Google Scholar 

  72. T.G. Beckwith, N.L. Buck, R.D. Marangoni, Mechanical Measurements, 3rd edn. (Addison-Wesley, New York, 1982)

    Google Scholar 

  73. P. Chen, C.C. Chen, C.C. Tsai, W.F. Lu, A time-to-digital-converter-based CMOS smart temperature sensor. IEEE J. Solid-State Circuits 40(8), 1642–1648 (2005)

    Article  Google Scholar 

  74. M. Landwehr, H. Grätz, A low-power, low-area, delay-line based CMOS temperature sensor, in Proceedings of Eurosensors, Dresden, Sept 2008, pp. 1392–1394

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea De Marcellis .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

De Marcellis, A., Ferri, G. (2011). Resistive, Capacitive and Temperature Sensor Interfacing Overview. In: Analog Circuits and Systems for Voltage-Mode and Current-Mode Sensor Interfacing Applications. Analog Circuits and Signal Processing. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9828-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9828-3_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9827-6

  • Online ISBN: 978-90-481-9828-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics