Skip to main content

Protein Kinematic Motion Simulation Including Potential Energy Feedback

  • Conference paper
  • First Online:
New Trends in Mechanism Science

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 5))

Abstract

In this article a methodology for simulating proteins function movement is presented. The procedure uses a potential energy feedback algorithm that without minizing the energy obtains succesive positions of the protein. before the simulation process, structures are normalized reducing the experimental methods produced errors. The procedure presents a low computational cost in relation to the accuracy obtained. Finally, results of the simulation for a specific protein are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chirikjian, G.S., A methodology for determining mechanical properties of macromolecules from ensemble motion data. Trends in Analytical Chemistry 22:549–553, 2003.

    Article  Google Scholar 

  2. Cornell, W.D., Cieplak, P., Byly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., and Kollman, P.A., A second generation force field for the simulations of proteins nucleic acids and organic molecules. Journal of American Chemical Society 117:5179–5197, 1995.

    Article  Google Scholar 

  3. Diez, M., Petuya, V., Urizar, M., and Hernandez, A., A biokinematic computational procedure for protein function simulation. In IEEE Conference Proceedings pp. 355–362, 2009.

    Google Scholar 

  4. Kavraki, L.E., Protein-ligand docking, including flexible receptor-flexible ligand docking. Technical Report, Creative Commons, 2007.

    Google Scholar 

  5. Kazerounian, K., Laif, K., and Alvarado, C., Protofold: A successive kinetostatic compliance method for protein conformation prediction. Journal of Mechanism Design, 127:712–717, 2005.

    Article  Google Scholar 

  6. Kazerounian, K. and Subramanian, R., Residue level inverse kinematics of peptide chains in presence of observation inaccurancies and bond lenght changes. Journal of Mechanism Design, 129:312–319, 2007.

    Article  Google Scholar 

  7. Pauling, L. and Corey, R.B., Atomic coordinates and structure factors for two helical configurations of polypeptide chains. Proceedings of the National Academi of Sciences, 37, 1951.

    Google Scholar 

  8. Ramachandran, G.N., Ramakrishnan, C., and Sasisekharan, V., Stereochemistry of polypeptide chain configurations. Journal of Molecular Biology, 7:95–99, 1963.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Diez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Diez, M., Petuya, V., Macho, E., Hermández, A. (2010). Protein Kinematic Motion Simulation Including Potential Energy Feedback. In: Pisla, D., Ceccarelli, M., Husty, M., Corves, B. (eds) New Trends in Mechanism Science. Mechanisms and Machine Science, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9689-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9689-0_10

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9688-3

  • Online ISBN: 978-90-481-9689-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics