Skip to main content

Roughness Scaling Parameters in the Fully-Rough Regime

  • Conference paper
  • First Online:
IUTAM Symposium on The Physics of Wall-Bounded Turbulent Flows on Rough Walls

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 22))

Abstract

A correlation is proposed to estimate the frictional drag for a surface covered with irregular three-dimensional roughness in the fully rough regime. The correlation relies solely on a measurement of the surface roughness profile and builds on previous work utilizing moments of the surface statistics. A relationship is given for the equivalent sandgrain roughness height (k s ) as a function of the root-mean-square roughness height (k rms ) and the skewness of the roughness probability density function (sk). Boundary layer similarity scaling then allows the overall frictional drag coefficient to be determined as a function of the ratio of the equivalent sandgrain roughness height to length of the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F.A. Dvorak, Calculation Of turbulent boundary layers on rough surfaces in pressure gradients. AIAA J. 7, 1752–1759 (1969)

    Article  Google Scholar 

  2. A. Sigal, J.E. Danberg, New correlation of roughness density effects on the turbulent boundary layer. AIAA J. 28, 554–556 (1990)

    Article  Google Scholar 

  3. D.R. Waigh, R.J. Kind, Improved aerodynamic characterization of regular three-dimensional roughness. AIAA J. 36, 1117–1119 (1998)

    Article  Google Scholar 

  4. S.H. Lee, H.J. Sung, Direct numerical simulation of the turbulent boundary layer over a rod-roughened wall. J. Fluid Mech. 584, 125–146 (2007)

    Article  MATH  Google Scholar 

  5. P. Orlandi, S. Leonardi, Direct numerical simulation of three-dimensional turbulent rough channels: parameterization and flow physics. J. Fluid Mech. 606, 399–415 (2008)

    Article  MATH  Google Scholar 

  6. O. Flores, J. Jimenez, Effect of wall-boundary disturbances on turbulent channel flows. J. Fluid Mech. 566, 357–376 (2006)

    Article  MATH  Google Scholar 

  7. M.P. Schultz, Effects of coating roughness and biofouling on ship resistance and powering. Biofouling 23, 331–341 (2007)

    Article  Google Scholar 

  8. P.S. Granville, Similarity-law characterization methods for arbitrary hydrodynamic roughness. David W. Taylor Naval Ship Research and Development Center, Report# 78-SPD-815-01 (1978)

    Google Scholar 

  9. P.S. Granville, Three indirect methods for the drag characterization of arbitrarily rough surfaces on flat plates. J. Ship Res. 31, 70–77 (1987)

    Google Scholar 

  10. K.E. Schoenherr, Resistance of flat surfaces moving through a fluid. SNAME Trans. 40, 279–313 (1932)

    Google Scholar 

  11. J. Nikuradse, Laws of flow in rough pipes. NACA Technical Memorandum 1292 (1933)

    Google Scholar 

  12. M.P. Schultz, K.A. Flack, Outer layer similarity in fully rough turbulent boundary layers. Exp. Fluids 38, 328–340 (2005)

    Article  Google Scholar 

  13. M.P. Schultz, K.A. Flack, Turbulent boundary layers over surfaces smoothed by sanding. J. Fluids Engr. 125, 863–870 (2003)

    Article  Google Scholar 

  14. K.A. Flack, M.P. Schultz, J.S. Connelly, Examination of a critical roughness height for outer layer similarity. Phys. Fluids (2007) doi: 10.1063/1.2757708

    Google Scholar 

  15. I.P. Castro, Rough-wall boundary layers: mean flow universality. J. Fluid Mech. 585, 469–485 (2007)

    Article  MATH  Google Scholar 

  16. M.A. Shockling, J.J. Allen, A.J. Smits, Roughness effects in turbulent pipe flow. J. Fluid Mech. 564, 267–285 (2006)

    Article  MATH  Google Scholar 

  17. M.P. Schultz, K.A. Flack, The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime. J. Fluid Mech. 580, 381–405 (2007)

    Article  MATH  Google Scholar 

  18. L.I. Langelandsvik, G.J. Kunkel, A.J. Smits, Flow in a commercial steel pipe. J. Fluid Mech. 595, 323–339 (2008)

    Article  MATH  Google Scholar 

  19. M.P. Schultz, K.A. Flack, Turbulent boundary layers on a systematically-varied rough wall. Phys. Fluids (2009) doi: 10.1063/1.3059630

    Google Scholar 

  20. E. Napoli, V. Armenio, M. DeMarchis, The effect of the slope of irregularly distributed roughness elements on turbulent wall-bounded flows. J. Fluid Mech. 613, 385–394 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Flack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Flack, K., Schultz, M.P. (2010). Roughness Scaling Parameters in the Fully-Rough Regime. In: Nickels, T. (eds) IUTAM Symposium on The Physics of Wall-Bounded Turbulent Flows on Rough Walls. IUTAM Bookseries, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9631-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9631-9_14

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9630-2

  • Online ISBN: 978-90-481-9631-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics